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Abstract

Access to real-world medication prescriptions
is essential for medical research and health-
care quality improvement. However, access
to real medication prescriptions is often lim-
ited due to the sensitive nature of the infor-
mation expressed. Additionally, manually la-
belling these instructions for training and fine-
tuning Natural Language Processing (NLP)
models can be tedious and expensive. We
introduce a novel task-specific model archi-
tecture, Label-To-Text-Transformer (LT3),
tailored to generate synthetic medication pre-
scriptions based on provided labels, such as
a vocabulary list of medications and their at-
tributes, to facilitate safe healthcare research.
LT3 is trained on a set of around 2K lines of
medication prescriptions extracted from the
MIMIC-III database, allowing the model to
produce valuable synthetic medication prescrip-
tions. We evaluate LT3’s performance by con-
trasting it with state-of-the-art Pre-trained Lan-
guage Models (PLMs), T5-small/base/large,
analysing the quality and diversity of gener-
ated texts. We deploy the generated synthetic
data to train the SpacyNER model for the
Named Entity Recognition (NER) task over
the n2c2-2018 dataset. The experiments show
that the model trained on synthetic data can
achieve a 96-98% F1 score at Label Recogni-
tion on Drug, Frequency, Route, Strength, and
Form. LT3 codes and data will be shared for
research purposes at https://github.com/
HECTA-UoM/Label-To-Text-Transformer

1 Introduction

Access to real-world medication prescriptions is
pivotal for advancing medical research, includ-
ing clinical natural language processing (NLP) ap-
plications, which is useful for improving health-
care quality and fostering the creation of novel
solutions to address current research challenges
(Nazari Nezhad et al., 2022; Alrdahi et al., 2023;
Cui et al., 2023). However, given the confidential

nature of these instructions, there are significant
difficulties in acquiring and utilising them for re-
search purposes (Spasić et al., 2014). Addition-
ally, manual labelling of such data for training and
fine-tuning NLP techniques is labour-intensive and
costly. This is also discussed by recent overview
work in (Wornow et al., 2023; Rajendran et al.,
2024).

In response to these challenges, this study har-
nesses NLP methodologies to generate synthetic
medication prescriptions. These synthetic exam-
ples provide a feasible alternative when real medi-
cal data is not available, which is a common prob-
lem due to concerns about patient confidentiality.
The use of this synthetic data alongside, or in place
of, real medical data can therefore alleviate chal-
lenges associated with accessing and employing
sufficient data for NLP research, which is essential
for healthcare quality enhancement and the incep-
tion of innovative strategies toward better compu-
tational modelling of digital healthcare data (Chen
et al., 2019).

The generation of synthetic clinical data has
gained attention in recent years due to the chal-
lenges associated with accessing real-world clinical
data (Gonçalves et al., 2020; Marchesi et al., 2022).
Several studies have explored synthetic data gener-
ation for clinical NLP tasks. For instance, Amin-
Nejad et al. (2020) proposed a methodology for
generating synthetic clinical text using structured
patient information in a sequence-to-sequence man-
ner and experimented with state-of-the-art Trans-
former models. They demonstrated that their aug-
mented dataset could outperform baseline models
on a downstream classification task.

Lee (2018) explored the use of an encoder-
decoder model to generate synthetic chief com-
plaints from discrete variables in EHRs, such as
age group, gender, and discharge diagnosis. Af-
ter being trained end-to-end on authentic records,
the model generated realistic chief complaint text
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that preserved the epidemiological information en-
coded in the original record-sentence pairs. This
suggests that such a model could support the de-
identification of text in EHRs, helping address the
significant privacy concerns that often limit the
sharing and use of real-world clinical data. How-
ever, only some works have attempted to control
the generation of these models (Keskar et al., 2019).
Despite these advances, there is still room for im-
provement in generating synthetic clinical letters.

This study puts forth a novel task-specific model
architecture, the Label-To-Text-Transformer (LT3),
crafted to generate synthetic medication prescrip-
tions. Based on the Transformer’s architecture
(Vaswani et al., 2017) and trained on an extracted
set of around 2K medication prescriptions, LT3
is adept at generating high-quality synthetic med-
ication prescriptions by capturing the unique pat-
terns and dependencies involved in prescription
writing and other aspects of clinical documenta-
tion, such as sentence formatting. For example,
given a medication "docusate sodium" we would
expect to generate a prescription such as "docusate
sodium 100 mg Capsule Sig: One (1) Capsule PO
BID (2 times a day) as needed for constipation.".
To test how effective LT3 is, we will compare its
performance to that of another State-of-the-art Pre-
trained Language Model (PLM), T5 (Raffel et al.,
2020), which we fine-tuned for this particular task.
For downstream applications, we also deploy the
synthetic data generated by LT3 for training the
SpacyNER model to compare the model perfor-
mance with the ones trained from real data.

2 Related Work: PLMs for Clinical NLP

NLP technologies have been increasingly used in
healthcare over the past several years, contributing
to advancements in several areas such as clinical
decision support, patient triage, and automated clin-
ical documentation (Yang et al., 2022; Casey et al.,
2021). However, these applications face numerous
challenges, one of the most significant being the
scarcity of available data. This issue is predomi-
nantly due to stringent privacy regulations and the
sensitive nature of healthcare data, which prevent
access to large volumes of real-world clinical data
(Ive et al., 2020; Chapman et al., 2011).

To circumvent this problem, synthetic data gen-
eration has been explored as an alternative ap-
proach, aiming to produce data that mimics the
properties and structure of real-world clinical data

without compromising patient privacy (Li et al.,
2021). Despite this approach’s potential, produc-
ing high-quality, domain-specific synthetic data re-
mains challenging due to the complexity and speci-
ficity of medical language.

PLMs have shown remarkable capabilities in
generating contextualised texts, such as translations
(Xue et al., 2020) and summaries (Moradi et al.,
2019). However, they have struggled to generate
coherent text in the medical domain. This is due
to the considerable shift from standard NLP tasks
to the medical domain, which presents challenges
as pre-trained models have a more general-purpose
design and do not learn directly from restricted
domain-specific data (Grambow et al., 2022). For
example, the word "paracetamol" may be captured
in many training documents that do not correspond
to synthetic clinical letter generation tasks and,
therefore, be a noisy contribution. Moreover, PLMs
need more flexibility to handle different input types
and are not explicitly trained on label-to-text data,
resulting in sub-optimal accuracy for the specific
task. To address these challenges, this research
proposal aims to develop a task-specific model ar-
chitecture that can overcome the limitations of pre-
trained models and generate high-quality synthetic
clinical instructions.

Furthermore, in NLP fields, international shared
tasks have been one of the main factors pushing
research forward by having researchers compare
their results on the same data set. However, in the
healthcare and clinical domain, the data we use
to train the model is often sensitive and related
to personal information, so there is a big obstacle
to sharing the data for model training and testing.
Even the popular n2c2 shared task training data
cannot be simply uploaded to current popular ML
platforms, even though they are de-identified via
the user agreement. This aspect is also discussed
by (Wornow et al., 2023) that the publicly being
unable to share the learned models using clinical
data especially EHRs sets a bottleneck for current
LLMs in healthcare NLP. In such a situation, syn-
thetic data can be a good option.

3 LT3: Label-To-Text-Transformer

3.1 Problem Formulation

Let C be a space of clinical instruction features,
and c ∈ C represents a feature vector for individual
clinical instruction, e.g. a sentence piece. Let L
be a set of drug labels. We have a dataset DL

C with
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labels annotated over the clinical instructions.
For each drug label l ∈ L, we originally have

a sub-set data Dl defined as Dl = {cln}Nl
n=1 con-

taining clinical instructions associated with drug l.
Individual instructions are indexed by n for each l,
where Nl is the number of instructions for drug l.

Our primary objective is to generate a synthetic
dataset that replaces the real datasets entirely, con-
ditioned on the drug labels from L. To achieve this,
we aim to learn a density function d̂{C|l}, which
approximates the true distribution d{C|l} of the
clinical instructions conditioned on each drug label
l.

Once the distributions for each drug label l are
learned, we generate an entirely synthetic dataset
by drawing random variables from d̂{C|l} for each
drug l. This synthetic dataset will have clinical
instructions corresponding to every drug label in L
and completely replace the original dataset.

3.2 Model Architecture

We introduce a transformer-based architecture, LT3
with both an encoder and a decoder. The en-
coder processes the input labels, specifies drug
names, and produces a contextualised representa-
tion, which is subsequently used by the decoder to
generate output sequences in the form of prescrip-
tions.

LT3 implements the pre-trained word-piece
BERT tokeniser (Devlin et al., 2019). This selec-
tion is motivated by the objective of representing
words as a series of smaller sub-word tokens. Si-
multaneously, this approach serves the dual pur-
pose of minimising vocabulary size while handling
unseen words as the composition of a set of known
sub-words. Embedding layers are used within the
model’s architecture and are trained from scratch to
precisely cater to the requirements of the medical
prescription writing task (Figure 1).

Figure 1: LT3 Architecture with input/output behaviour
(this is a shortened example of a generated synthetic med-
ical prescription.)

3.3 B2SD: Beam Search Decoding using
Backtracking

LT3 implements a novel Beam Search Decoding
method using Backtracking (B2SD). While the con-
ventional technique adopts a greedy strategy, se-
lecting the best n next-token candidates at each
decoding step based on an overall probability func-
tion, this method instead employs a backtracking
strategy (Golomb and Baumert, 1965).

At each step, we select the best candidate
sequence generated so far. This selection relies on
a heuristic function, specifically a joint probability
function. Subsequently, the selected sequence
is expanded by its best n next-token candidates,
referred to as a beam. This strategy allows the
search tree to be flexible in size rather than limited
to a fixed n ∗ seqlen. However, in addressing the
notable space and time complexity challenges of
the B2SD algorithm, we decided to restrict the
explorable space to the top-m sequences generated
so far, based on the same heuristic function.

In the example from Figure 2, we compare the
execution of both algorithms in generating sen-
tences that describe someone as twelve years old.
Both algorithms use a beam size of two and gener-
ate two sequences. The desired outputs are the ones
with the highest total joint probabilities, namely
"I am twelve" (p=0.138) and "You are twelve"
(p=0.135). When comparing their execution, we ob-
serve that the backtracking algorithm (b) explores
seven vertices, including one dead-end labelled
"scored" (coloured in blue), in contrast to the origi-
nal algorithm (a), which only examines six vertices.
However, in this scenario, the probabilities are suf-
ficiently close to prevent a greedy algorithm, such
as the original one, from catching the best over-
all sequences. Therefore, one of the two optimal
solutions remains undiscovered, and instead, the
dead-end labelled "scored" is greedily considered
optimal by the original algorithm. However, B2SD
managed to discover both desired outputs at the
price of an additional vertex exploration.

There is a trade-off between complexity and
the main advantage of the backtracking algorithm,
which is its ability to find the best solution in the
beam tree according to its heuristic within a finite
time compared to the original BSD algorithm. This
means that a higher level of complexity may lead
to a longer search time but a better solution. In our
specific scenario, striking this balance is justified.
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(a) Original BSD (n = 2)

(b) B2SD (n = 2, m = 2, pb = 1)

Figure 2: Execution Examples of Conventional Greedy
BSD and B2SD Algorithms

That is because LT3 deals with a limited number
of samples to generate relatively short sequences.
Moreover, by utilising this algorithm, we can effi-
ciently bypass tokens within the beam that, while
still within the top-n candidates, are significantly
less likely to contribute to genuinely interesting
sequences. This approach encourages the model to
prioritise the development of promising sequences.

Therefore, the complexity of the newly proposed
B2SD algorithm can be expressed as exponential in
the sequence’s length, denoted O(nseqlen). At the
same time, the original one is linear: O(n∗seqlen).
However, worst-case complexity may not represent
the execution times for the above reasons (see Sec
A.3).

Besides using this backtracking approach, the
beam size n does not need to be greater or equal to
the number of desired output sequences. Instead,
m should follow this requirement, as it is the maxi-
mum number of sequences considered for output.

To enhance the quality of sequence genera-

tions, we implement an additional uni-gram repeat
penalty targeting sub-sequences of length 4. This
penalty aims to discourage the generation of se-
quences where a sub-sequence of four tokens con-
tains multiple instances of the same token. For
example, the sub-sequence [43, 32, 21, 43] incurs
a penalty as the token "43" appears twice. The
penalty itself is calculated using the following for-
mula.

p′(Y ) = p(Y )2−0.5∗pT (1)

where pT is the probability (or certainty) of the
last duplicate token, here "43", and p(Y ) is the
joint probability of the sequence Y . This design
allows the application of a penalty that accounts
for the token’s certainty level. In cases where a
duplicate token is suggested but has a high cer-
tainty, the penalty is reduced, considering that the
model may intentionally repeat it to convey spe-
cific information. This can be the case in sentences
such as "(once a day (at bedtime))" where closing
parenthesis are repeated consecutively.

Finally, to further reduce the search space, the
maximal probability difference in beam, pb, con-
strains the tokens considered in a beam. This value
tells how much lower the probability of a token
in the beam from the top probability token in that
same beam is allowed to be. For example, if the
top token of a beam has a probability of 0.5 and
pb = 0.5, tokens in the beam with a probability
< 0.5 ∗ 0.5 won’t be further considered. This is
useful whenever an obvious best candidate exists,
for instance, when selecting the drug name that was
itself given as input.

Therefore, the beam size n, maximum candi-
dates space m, and maximal probability difference
in beam pb are three hyper-parameters to fine-tune
to obtain optimal results. We assign them the
values n = 4, m = 3 ∗ nboutput and pb = 1.

Heuristic function
The heuristic function used is logarithmic in the
sequence’s joint probability

h(Y ) =
loge(p(Y0,...,n))

lp(Y )
(2)

where Yn is the nth token of the sequence Y
generated so far, and Y0,...,n refers to the product
of the probabilities associated with each token in
the sequence Y , which is referred to as the joint
probability of Y . The heuristic function applies
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length normalisation as taken from Google’s NMT
System paper (Johnson et al., 2017), where we set
α = 0.6.

lp(Y ) =
(5 + |Y |)α
(5 + 1)α

(3)

4 Evaluation

4.1 Dataset and Preprocessing

Our research draws upon a specialised subset of
the MIMIC-III (Medical Information Mart for In-
tensive Care) database (Johnson et al., 2016, 2020);
specifically, the portion that aligns with the Na-
tional NLP Clinical Challenges (n2c2) 2018 shared
task data on adverse drug events and medication
extraction with gold labels (Henry et al., 2019). We
chose the n2c2 dataset for two main reasons. First,
it contains many caregiver notes and medication
prescriptions over a varied range of clinical con-
ditions and treatments, ensuring a broad spectrum
of clinical instructions can be generated by our
models, enhancing their utility in different clinical
scenarios. Second, the n2c2 dataset annotations
conform to the 2010 i2b2/VA Challenge on Con-
cepts, Assertions, and Relations in Clinical Text, a
well-established and comprehensive framework for
processing and understanding clinical text. This
standardisation facilitates handling clinical notes’
diverse and complex language patterns. Moreover,
using these gold labels helps us ensure the accu-
racy and consistency of our model’s learning pro-
cess, which is crucial to generating high-quality
synthetic medical data. In addition, using a dataset
that adheres to a widely accepted annotation guide-
line enhances the replicability and validity of our
study. It allows other researchers and practitioners
to understand the method and results of our work
within a known context, promoting transparency
and further collaboration.

We divided the official training set into our "train-
ing" and "validation" sets with the ratio (9:1) and
kept the original test set. We implemented a pro-
cedure in our dataset to automatically extract and
structure discharge medication information from
the n2c2 dataset. The procedure scans each text-
based medical record in the original dataset and
identifies the text segment containing information
about the medications prescribed upon discharge.

The identified medication data is further decom-
posed into two primary components: the label (or
name of the medication) and the associated instruc-

tions. Both are captured and stored in a structured
format. Finally, we apply statistical filtering tech-
niques to remove outliers based on the medica-
tion labels’ length and instructions. This ensures a
dataset free from extreme values that could poten-
tially bias downstream applications.

4.2 Baseline Foundation Models: T5 Small,
T5 Base, and T5 Large

The Text-to-Text Transfer Transformer (T5) im-
plements an Encoder-Decoder Transformer archi-
tecture and was pre-trained on various sequence-
to-sequence tasks. It has demonstrated state-of-
the-art results across a wide spectrum of natural
language processing tasks, showcasing its remark-
able capabilities in capturing nuanced semantics
and generating content through transfer learning
techniques. Notably, it has been successfully em-
ployed in various fields, such as generating clinical
text(Yermakov et al., 2021) and document ranking
(Nogueira et al., 2020), making it an ideal choice
for our task.

The reasons to opt for T5, particularly with en-
hancements proposed by Senadeera and Ive (2022),
are manifold. First, controlled text generation is
essential for our application, and the novel method
proposed can aid in generating text conforming to
specific attributes. Second, the novel soft prompt
tuning approach, attaching tunable input embed-
dings at both encoder and decoder levels in T5,
could offer better performance while saving com-
putational resources compared to full model fine-
tuning. Third, it allows for the steering of text gen-
eration at the decoder level, giving more control
over the output. Lastly, it facilitates the effective
utilisation of artificially generated text, thus sup-
porting AI-related tasks like training AI models.

Given the provided labels, we leverage T5
language processing capabilities to fine-tune the
model to generate appropriate text responses. The
labels represent medications such as "paracetamol"
and "ibuprofen," which are used to train the model
and their associated clinical letter. The fine-tuning
process involves adapting the pre-trained T5 model
to this specific task by updating its parameters us-
ing the labeled examples.

4.3 On the Evaluation Settings
To provide a lexical evaluation of the generated
data, we aim to assess the performance of LT3
compared to T5-small, T5-base, and T5-large at
generating synthetic prescriptions from unseen data
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(Figure 3). To process the comparison, we use the
labels from the testing set to generate synthetic
data, creating a five times larger dataset than the
original testing dataset. For instance, ten prescrip-
tions will be generated if a particular label appears
twice in the testing data. We conduct two types of
evaluations:

• Closeness to Reference Evaluation to assess
the quality of the generated prescriptions by
comparing LT3 and T5 against reference pre-
scriptions.

• Lexical Diversity Evaluation to measure the
diversity of the generated prescriptions from
LT3 compared to T5.

The overall framework of this experimental de-
sign for lexical evaluation is displayed in Figure
3. This experiment aims to show that (1) LT3 can
generate lexically diverse prescriptions, as well as
(2) significantly larger volume of data compared
to the available real data. (3), despite generating a
larger dataset, we intend to confirm that the quality
of LT3’s generated prescriptions remains high in
terms of quantitative scores against references. (4)
Most importantly, we try to assess LT3’s overall
abilities at generating prescriptions from unseen
data.

4.4 Model Selection
We conduct a model evaluation experiment to se-
lect the most optimal LT3 model. This experi-
ment entails training each model on the training set
and using them to generate five times the amount
of data from the validation set as synthetic data.
We then assess the models’ performance using the
quantitative metrics BLEU, ROUGE-1/2/L, and
BERTScore. Based on the results, we select the
best model and retrain it on the training and valida-
tion sets to obtain a final LT3 model.

For the T5 model, given the provided labels,
we leverage T5 language processing capabilities
to fine-tune the model to generate appropriate
text responses in the form of medication prescrip-
tions from labels representing medications such as
"paracetamol" or "ibuprofen".

We plot the training loss (Figure 6) and evalua-
tion scores (Table 1) on the validation set to pro-
vide a comprehensive assessment of each model’s
learning trajectory and generation quality. This ap-
proach helps readers understand how each model
evolves through the learning process.

4.5 On Evaluation Metrics

BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
and BERT Score (Zhang et al., 2020) represent
key evaluation metrics, each illuminating different
facets of text quality. BLEU focuses on the syn-
tactic elements, measuring the overlap of n-grams
between the machine-generated text and a refer-
ence. It incorporates a brevity penalty for transla-
tion length, making it particularly useful for tasks
like machine translation.

On the other hand, ROUGE (Recall-Oriented
Understudy for Gisting Evaluation) is more recall-
focused and assesses the quality of summaries by
comparing them to reference summaries. It con-
siders the number of overlapping units, such as
n-grams, word sequences, and word pairs between
the generated and reference summaries.

Finally, the BERT Score leverages the power of
pre-trained language representations to go beyond
mere syntactic overlap, capturing semantic nuances
between predicted and reference texts through co-
sine similarity measures. These approaches reflect
a shift from rigid, rule-based evaluations toward
more dynamic, context-aware metrics, aligning
more closely with human perceptions of text qual-
ity.

4.6 Lexical Similarity Evaluation against
References

For this experiment, we fine-tuned three versions
of T5, namely t5-small, t5-base, and t5-large,
paired with their sentence-piece pre-trained to-
keniser. Each is fine-tuned independently on the
same dataset as LT3 to provide comparable results,
with the prompt "summarise:" as it is the closest
to our task. The results in Table 2 show that LT3’s
generations are the closest match to the reference
samples. We use multi-reference evaluation to con-
solidate our results. Refer to Section 4.3 for more
details on this evaluation’s strategies and motiva-
tions.

4.7 Lexical Diversity Evaluation within
Generated Outputs

A diverse range of content is crucial in the note-
generation process to create unbiased and individ-
ualised clinical instructions. To achieve this, we
have implemented a diversity score that measures
the breadth of our model’s output. For each la-
bel, we measured the Jaccard similarity (Jaccard,
1908; Ivchenko and Honov, 1998) score of the gen-
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Figure 3: Lexical Evaluation Pipeline

Figure 4: Model Selection Pipeline

erations of our models. A higher Jaccard Score
indicates more similarity between the two popu-
lations. A lower score indicates better diversity
in our tasks. The results in Table 3 show a lower
intra-similarity score for the generations of LT3,
implying that LT3 produces more diverse samples.

4.8 Downstream Named Entity Recognition
Task

In the cross-model evaluation (Figure 5), we aim to
substantially increase the size of our dataset beyond
what we initially extracted from n2c2. To achieve
this, we generate synthetic data using LT3 on the
known training labels. This synthesis allows us to
create a dataset that is five times larger than the
original one. Subsequently, we perform fine-tuning
on Spacy1 using both the original and synthetically

1https://spacy.io

generated datasets. Finally, we compare the three
resulting NER models, one fine-tuned on the real
dataset, one on the synthetic dataset, and the last on
a combination of real and synthetic data. Specifi-
cally, the real dataset is oversampled, ranging from
100% (identical to the original) to 500% (five times
the original size). The synthetic dataset is gener-
ated using real labels, ranging from 100% to 500%.
The combined real and synthetic dataset starts with
100% real data, to which synthetic data is incre-
mentally added, from 100% to 400%. The NER
model is trained to recognise medical labels: Drug,
Strength, Form, Route, and Frequency. This com-
parison helps us to quantify the effectiveness of
using synthetic data generated using LT3 to aug-
ment or replace the training dataset by assessing
the ability of the fine-tuned models to recognise
named entities in unseen data.
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Figure 5: Cross-model Evaluation Pipeline

Table 1: Closeness to Reference Evaluation Results of LT3 Models on the Validation Set

Tokenizer Embeddings Beam Search BLEU ROU-1 ROU-2 ROU-L BERTScore
BERT Emb. layers B2SD 66.31 70.74 60.01 70.03 0.65

Pre-trained 36.11 43.16 28.56 41.81 0.29
Emb. layers Default 54.33 67.01 55.46 66.20 0.60

Custom B2SD 64.19 70.00 58.34 68.13 0.63
T5-base 65.78 68.99 58.63 68.22 0.63

Figure 6: Training Loss of LT3 Models

The evaluation scores F1 in Figure 7 show that
LT3 could successfully train Spacy on this NER
task on five labels "drug, form, frequency, route,
and strength" achieving 0.96+ scores. The eval-
uation on Drug labels always yields around 1.00
accuracy. Most importantly, it yielded compara-
ble performance to the real data, demonstrating the
quality of generated texts and the benefit of using
the generated synthetic data as an alternative to real
data.

We list some discussion and comparisons on
tokenisations, embeddings and Beam Search De-
coding Algorithms in Section A.1, A.2 and A.3.

Figure 7: Average F1 score for five labels (Drug,
Strength, Form, Route, Frequency) using Synthetic data,
Real data, and Real+Synthetic. RealSynthetic: 100%
real + n*100% Synthetic. Real: over-sampled.

5 Conclusion and Future Work

To facilitate clinical NLP research and address the
data privacy and restriction issues, we proposed
LT3 for generating synthetic clinical data using
pre-defined drug labels and related attributes from
the n2c2-2018 shared task. The evaluation against
the T5 model demonstrated that LT3 can generate
better quality and diversity outputs. Furthermore,
utilising synthetic data generated by LT3 for the
NER task demonstrated its ability to effectively
train SpacyNER, resulting in performances compa-
rable to those achieved with real data. This under-
scores the advantages of employing LT3 as a viable
alternative to real data. 1) Firstly, LT3 has demon-
strated comparable or superior performance to the
pre-trained Large Language Model (LLM) T5 at
generating prescriptions for previously unseen la-
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Table 2: Quantitative evaluation of LT3 (learned-scratch) vs T5 (fine-tuned) on the Testing Set.

Models BLEU ROUGE-1 ROUGE-2 ROUGE-L BERTScore
T5 Small 71.75 76.16 66.24 75.55 0.70
T5 Base 71.98 76.28 66.30 75.45 0.70
T5 Large 69.89 75.07 65.19 74.22 0.68

LT3 78.52 78.16 68.72 77.55 0.72

Table 3: Jaccard scores of LT3 and T5 on the testing set
(lower score is better).

Median Jaccard Average Jaccard
LT3 0.650 0.652

T5 Base 0.658 0.660

bels. Compared to reference data, this assertion
is substantiated by our quantitative evaluation re-
sults (refer to Table 2). All five metrics, namely
BLEU, ROUGE-1/2/L, and BERTScore, exhibit
improvements ranging from 3% to 9%. This sup-
ports that, despite generating five times more data
than presented in the testing dataset, the quality of
LT3’s generated prescriptions remains high in quan-
titative evaluation scores. Moreover, LT3 could
generate considerably more diverse samples, as
evidenced by the Jaccard scores in Table 3. 2)
Secondly, we showcased LT3’s ability to gener-
ate a synthetic dataset five times larger than the
original. When fine-tuning Spacy NER on the syn-
thetic and the real data separately, the NER trained
on LT3 demonstrated significant performance im-
provements comparable to the ones obtained on
real data. Our experiments confirmed that the syn-
thetic data was an efficient resource for training a
NER model, which can act as a replacement for the
original dataset extracted from n2c2.

We conclude that LT3 demonstrated its capabil-
ities in generating synthetic medical data. This
proves advantageous due to the non-sensitive na-
ture of synthetic writings, ensuring quality and di-
versity comparable to real data. Furthermore, LT3
has proven to generate significantly larger volumes
of data while preserving the high quality and diver-
sity of generated prescriptions.

In future work, we plan to design new bench-
marks on clinical NLP tasks using synthetic data
to move the field forward. We also plan to con-
duct model training on new label sets such as "di-
agnoses" and generating full clinical letters. Fur-
thermore, generating full sentence-level free text
beyond the prescription level is our next step to

address the low-resource and privacy concerns in
clinical and healthcare NLP.

Limitations

To evaluate the usefulness of generated medical pre-
scriptions, we carried out downstream application
task on training a NER model on medications and
related attributes mining. To evaluate the clinical
soundness of the generated text, we need to carry
out expert-based human evaluation. However, due
to the limitations of resources, we leave this task
into the future work if we manage to recruit experts
such as clinicians who are willing to conduct this
task.

Furthermore, relation extraction and evaluation
shall be considered for automatic setting if possible,
e.g. the relations between drug names and their
strength, form, route, and frequency.

Ethical Considerations

To generate synthetic clinical data, we used the
publicly available n2c2-2018 data set, which is
already annonymised by the shared task organisers.
It does not identify any personal information.

Acknowledgements

LH, WDP, and GN are grateful for the support
from the grant “Assembling the Data Jigsaw: Pow-
ering Robust Research on the Causes, Determi-
nants and Outcomes of MSK Disease”, and the
grant “Integrating hospital outpatient letters into
the healthcare data space” (EP/V047949/1; funder:
UKRI/EPSRC). LH is grateful for the 4D Picture
EU project (https://4dpicture.eu/) on cancer
patient journey support.

References

Haifa Alrdahi, Lifeng Han, Hendrik Šuvalov, and Goran
Nenadic. 2023. Medmine: Examining pre-trained
language models on medication mining. arXiv e-
prints, pages arXiv–2308.

213

https://4dpicture.eu/


Ali Amin-Nejad, Julia Ive, and Sumithra Velupillai.
2020. Exploring transformer text generation for med-
ical dataset augmentation. In Proceedings of the
Twelfth Language Resources and Evaluation Confer-
ence, pages 4699–4708, Marseille, France. European
Language Resources Association.

Arlene Casey, Emma Davidson, Michael Poon, Hang
Dong, Daniel Duma, Andreas Grivas, Claire Grover,
Víctor Suárez-Paniagua, Richard Tobin, William
Whiteley, Honghan Wu, and Beatrice Alex. 2021.
A systematic review of natural language processing
applied to radiology reports. BMC Medical Informat-
ics and Decision Making, 21.

Wendy W. Chapman, Prakash M. Nadkarni, Lynette
Hirschman, Leonard W. D’Avolio, Guergana K.
Savova, and Özlem Uzuner. 2011. Overcoming barri-
ers to nlp for clinical text: the role of shared tasks and
the need for additional creative solutions. Journal
of the American Medical Informatics Association :
JAMIA, 18 5:540–3.

Junqiao Chen, David Chun, Milesh Patel, Epson Chi-
ang, and Jesse James. 2019. The validity of synthetic
clinical data: A validation study of a leading syn-
thetic data generator (synthea) using clinical quality
measures. BMC Medical Informatics and Decision
Making, 19.

Yang Cui, Lifeng Han, and Goran Nenadic. 2023.
MedTem2.0: Prompt-based temporal classification
of treatment events from discharge summaries. In
Proceedings of the 61st Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 4: Stu-
dent Research Workshop), pages 160–183, Toronto,
Canada. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171–
4186.

Solomon W. Golomb and Leonard D. Baumert. 1965.
Backtrack programming. J. ACM, 12(4):516–524.

André Gonçalves, Priyadip Ray, Braden Soper, Jennifer
Stevens, and Linda Coyle. 2020. Generation and
evaluation of synthetic patient data. BMC Medical
Research Methodology, 20.

Colin Grambow, Longxiang Zhang, and Thomas Schaaf.
2022. In-domain pre-training improves clinical note
generation from doctor-patient conversations. In Pro-
ceedings of the First Workshop on Natural Language
Generation in Healthcare, pages 9–22, Waterville,
Maine, USA and virtual meeting. Association for
Computational Linguistics.

Samuel Henry, Kevin Buchan, Michele Filannino, Am-
ber Stubbs, and Ozlem Uzuner. 2019. 2018 n2c2
shared task on adverse drug events and medication

extraction in electronic health records. Journal of the
American Medical Informatics Association : JAMIA,
27.

GI Ivchenko and SA Honov. 1998. On the jaccard
similarity test. Journal of Mathematical Sciences,
88:789–794.

Julia Ive, Natalia Viani, Joyce Kam, Lucia Yin, So-
main Verma, Stephen Puntis, Rudolf Cardinal, An-
gus Roberts, Robert Stewart, and Sumithra Velupillai.
2020. Generation and evaluation of artificial mental
health records for natural language processing. npj
Digital Medicine, 3.

Paul Jaccard. 1908. Nouvelles recherches sur la distribu-
tion florale. Bull. Soc. Vaud. Sci. Nat., 44:223–270.

Alistair Johnson, Tom Pollard, and Roger Mark. 2020.
MIMIC-III clinical database.

Alistair E W Johnson, Tom J Pollard, Lu Shen, Li-
Wei H Lehman, Mengling Feng, Mohammad Ghas-
semi, Benjamin Moody, Peter Szolovits, Leo An-
thony Celi, and Roger G Mark. 2016. MIMIC-III,
a freely accessible critical care database. Sci. Data,
3(1):160035.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2017. Google’s
multilingual neural machine translation system: En-
abling zero-shot translation. Transactions of the As-
sociation for Computational Linguistics, 5:339–351.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney,
Caiming Xiong, and Richard Socher. 2019. CTRL:
A conditional transformer language model for con-
trollable generation. CoRR, abs/1909.05858.

Scott Lee. 2018. Natural language generation for elec-
tronic health records. CoRR, abs/1806.01353.

Jianfu Li, Yujia Zhou, Xiaoqian Jiang, Karthik Natara-
jan, Serguei Vs Pakhomov, Hongfang Liu, and Hua
Xu. 2021. Are synthetic clinical notes useful for real
natural language processing tasks: A case study on
clinical entity recognition. Journal of the American
Medical Informatics Association, 28(10):2193–2201.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Raffaele Marchesi, Nicolo Micheletti, Giuseppe Jur-
man, and Venet Osmani. 2022. Mitigating health
data poverty: Generative approaches versus resam-
pling for time-series clinical data. In NeurIPS 2022
Workshop on Synthetic Data for Empowering ML
Research.

Milad Moradi, Georg Dorffner, and Matthias Samwald.
2019. Deep contextualized embeddings for quan-
tifying the informative content in biomedical text

214

https://aclanthology.org/2020.lrec-1.578
https://aclanthology.org/2020.lrec-1.578
https://doi.org/10.1186/s12911-021-01533-7
https://doi.org/10.1186/s12911-021-01533-7
https://doi.org/10.1186/s12911-019-0793-0
https://doi.org/10.1186/s12911-019-0793-0
https://doi.org/10.1186/s12911-019-0793-0
https://doi.org/10.1186/s12911-019-0793-0
https://doi.org/10.18653/v1/2023.acl-srw.27
https://doi.org/10.18653/v1/2023.acl-srw.27
https://doi.org/10.1145/321296.321300
https://doi.org/10.1186/s12874-020-00977-1
https://doi.org/10.1186/s12874-020-00977-1
https://aclanthology.org/2022.nlg4health-1.2
https://aclanthology.org/2022.nlg4health-1.2
https://doi.org/10.1093/jamia/ocz166
https://doi.org/10.1093/jamia/ocz166
https://doi.org/10.1093/jamia/ocz166
https://doi.org/10.1038/s41746-020-0267-x
https://doi.org/10.1038/s41746-020-0267-x
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://arxiv.org/abs/1909.05858
https://arxiv.org/abs/1909.05858
https://arxiv.org/abs/1909.05858
https://arxiv.org/abs/1806.01353
https://arxiv.org/abs/1806.01353
https://doi.org/10.1093/jamia/ocab112
https://doi.org/10.1093/jamia/ocab112
https://doi.org/10.1093/jamia/ocab112
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://openreview.net/forum?id=Ib-8gIymC1
https://openreview.net/forum?id=Ib-8gIymC1
https://openreview.net/forum?id=Ib-8gIymC1
https://doi.org/10.1016/j.cmpb.2019.105117
https://doi.org/10.1016/j.cmpb.2019.105117


summarization. Computer Methods and Programs in
Biomedicine, 184:105117.

Sana Nazari Nezhad, Mohammad H. Zahedi, and El-
ham Farahani. 2022. Detecting diseases in medical
prescriptions using data mining methods. BioData
Mining, 15(1):29.

Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and
Jimmy Lin. 2020. Document ranking with a pre-
trained sequence-to-sequence model. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 708–718, Online. Association
for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(1).

Suraj Rajendran, Weishen Pan, Mert R Sabuncu, Yong
Chen, Jiayu Zhou, and Fei Wang. 2024. Learning
across diverse biomedical data modalities and co-
horts: Challenges and opportunities for innovation.
Patterns, page 100913.

Damith Chamalke Senadeera and Julia Ive. 2022.
Controlled text generation using t5 based encoder-
decoder soft prompt tuning and analysis of the utility
of generated text in ai. Preprint, arXiv:2212.02924.
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A Discussion and Comparisons

A.1 On tokenisation

Experiments were conducted to select the most ef-
fective tokenisation strategy for this task, for which
results are summarised in Table 1 and Figure 6.
Three different types of tokenisers were consid-
ered: a custom full-word tokeniser, a pre-trained
word-piece tokeniser (BERT-base-cased), and a pre-
trained sentence-piece tokeniser (T5-base).

Throughout the experiment, LT3 encountered
challenges implementing the full-word tokeniser
built from scratch. Although this tokeniser yielded
overall good performances, it struggled with han-
dling unknown words, for which the only solution
seemed to be significantly expanding the vocabu-
lary size to cover a vast tokenisation space. With-
out an extensive vocabulary, the tokeniser fails to
map unseen words, leading to a lack of contextual
understanding for LT3.

On the other hand, significant improvements
were observed when using the word-piece tokeniser
(BERT) due to his ability to represent any word as
a sequence of smaller sub-words while minimis-
ing its vocabulary size. This allows the model to
effectively handle unseen words and cover a large
tokenisation space to yield better generalisation
capabilities.

Experiments were also carried out using the pre-
trained sentence-piece tokeniser provided by T5.
This tokeniser demonstrated improvements similar
to those of the word-piece tokeniser (BERT), ef-
fectively mitigating the issues faced by the custom
tokeniser. However, we observed that the word-
piece tokeniser (BERT) could generate predictions
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for unseen data at an earlier stage of training com-
pared to the pre-trained sentence-piece tokeniser
(T5). This might be due to LT3 generating short
sentences with low correlation and no repetitive pat-
terns between words, a task for which word-piece
tokenisers may be more adapted.

Considering these factors, we concluded that
the BERT word-piece tokeniser aligned most effec-
tively with our task.

A.2 On Embeddings
Alternatively, this study explored two interesting
embedding methods: transfer learning using pre-
trained embeddings and embedding layers trained
from scratch. Transfer learning used BioBERT
(base-v1.1) embeddings, pre-trained on large med-
ical corpora, including PubMed 1M, while em-
bedding layers were trained during LT3’s training
phase.

Although transfer-learning can provide a solid
foundation for the model, especially when task-
specific data is scarce or when the pre-training do-
main closely matches the task, its experimental
results displayed challenges when applied to our
task (Table 1). Despite training in medical texts,
pre-trained embeddings could not grasp the pre-
scriptions’ nuances and unique formats. This led to
a need for extensive training to overwrite the previ-
ous embeddings, as seen in Figure 6. On the other
hand, embedding layers outperformed pre-trained
embeddings by addressing the task’s unique format
and leveraging the extensive available data. As a
result, LT3 displayed a much better learning shape
and evaluation results when implementing embed-
ding layers.

Note that, when using pre-trained embeddings,
the disparity between the learning curve, which ap-
pears to be reasonably good (Table 1), and the eval-
uation scores, which are rather very low (Figure 6),
is attributed to the application of teacher forcing
during training. This explains that the model with
pre-trained embeddings can accurately predict the
next token, provided with an accurate context and
a generated sequence. However, it struggles when
tasked with independently creating an appropriate
context from the input and generating a complete
sequence that is contextually coherent.

A.3 Comparisons on Beam Search Decoding
Algorithms

To quantify the difference in execution time be-
tween the original BSD algorithm and the proposed

backtracking variant, we ran the following experi-
ment on a TPU v2.

Initially, the validation set is 304 samples di-
vided into 157 unique labels, with a median of 36
samples per label. This experiment used LT3 to
generate four synthetic datasets from the validation
set by increasing its size by 2, 5, 7, and 10. The
increase in size is proportional to the number of
samples per unique label. Hence, the same num-
ber of unique labels remains while the number of
samples increases. For instance, if the first label
has three samples, it will be increased to 6 in the
first synthetic dataset, 15 in the second, etc. Thus,
we force the beam search tree to expand in size for
each label to quantify its impact on the execution
time.

For each synthetic dataset, we use five different
versions of the LT3 model from different check-
points of its training. This is done to simulate the
execution time of the algorithm on models of vary-
ing efficiency and certainty.

In practice, we observe a rather linear increase in
complexity when using both algorithms, reducing
the huge trade-off in their theoretical complexi-
ties. LT3 deals with a limited number of samples
per generation, and the generated sequences are
relatively short. On the other hand, most of the
advantages of the backtracking algorithm are pre-
served.

It is important to note that, whereas B2SD uses
a heuristic function based on the joint probability
of a sequence, this algorithm will perform the best
on well-trained models with certainty in their to-
ken selection, meaning high distinction between
sequence probabilities. This ensures that the algo-
rithm goes straight at generating the most promis-
ing sequences. However, on ineffective or un-
trained models, it may perform slowly as it might
consider many dead-end sequences where proba-
bilities are close to each other due to uncertainty in
token generation.

B Objectives

We highlight our paper below. Contributions This
research project aims to design and develop a task-
specific model architecture for synthetic clinical
text generation that addresses the limitations of
pre-trained models and healthcare analytics safety
issues. The specific objectives include:

Objective 1 Introducing a simpler architecture
than existing pre-trained models, thus accelerating
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the training process by forgoing the pre-training
step and concentrating the model on generating
synthetic clinical letters only.

Objective 2 Customising the model architecture
to capture the unique patterns and dependencies
involved in prescription writing.

Objective 3 Gaining fine-grained control over
the training process, including data preprocessing,
augmentation techniques, and specialised loss func-
tions, to optimise the model for the specific task of
prescription generations.

Objective 4 Incorporating label-to-text genera-
tion into the model architecture to ensure accurate
and contextually appropriate synthetic clinical let-
ter generation.

Objective 5 Comparing the performance of the
proposed task-specific model architecture against
existing pre-trained models to demonstrate its supe-
riority in generating high-quality synthetic clinical
letters.

C Model hyperparameters

We list model parameters in Table 4 where:

• dmodel represents the dimension of the
model’s hidden states or embeddings;

• dff represents the dimension of the feed-
forward network within the Transformer’s
self-attention layers;

• dkv represents the dimension of the query, key,
and value vectors used in the attention compu-
tation.

Figure 8: Quantitative Evaluation Scores of LT3 Models
on the Testing Set
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Figure 9: Average Execution Time of Original BSD and B2SD Algorithms

Parameters LT3 T5 Small T5 Base T5 Large
dmodel 515 512 768 1024
dff 2038 2048 3072 4096
dkv 64 64 64 64
Dropout 0.2 0.1 0.1 0.1
Heads 5 8 12 16
Layers 2 6 12 24
Learning rate 0.0004 0.0004 0.001 0.001
Weight decay 0.02 0.02 0.02 0.02
Epochs 10 12 10 10
Batch size 53 10 10 10
FP16 False False False
Optimizer AdamW AdamW AdamW AdamW
Params (x106) 56 60 220 770

Table 4: Parameters
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