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This article introduces a novel representation of Arabic text as an alternative approach for Arabic
NLP, inspired by the dotless script of ancient Arabic. We explored this representation through
extensive analysis on various text corpora, differing in size and domain, and tokenized using
multiple tokenization techniques. Furthermore, we examined the information density of this
representation and compared it with the standard dotted Arabic text using text entropy analysis.
Utilizing parallel corpora, we also drew comparisons between Arabic and English text analysis
to gain additional insights. Our investigation extended to various upstream and downstream
NLP tasks, including language modeling, text classification, sequence labeling, and machine
translation, examining the implications of both the representations. Specifically, we performed
seven different downstream tasks using various tokenization schemes comparing the standard
dotted text with dotless Arabic text representations. Performance using both the representations
was comparable across different tokenizations. However, dotless representation achieves these
results with significant reduction in vocabulary sizes, and in some scenarios showing reduction
of up to 50%. Additionally, we present a system that restores dots to the dotless Arabic text. This
system is useful for tasks that require Arabic texts as output.

1. Introduction

Arabic serves as the official language across 22 nations within the Arab world, with a
native speaker base exceeding 400 million speakers (Guellil et al. 2021). Moreover, it
is a secondary language for a large community of non-Arabic Muslims. Recognized as
one of the United Nation’s six official languages (Boudad et al. 2018), Arabic occupies
a significant linguistic sphere. Notably, it has ascended to become the fourth most
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prevalent language on the Internet, experiencing rapid growth in user engagement
between 2013 and 2018 (Boudad et al. 2018).

Arabic can be categorized into three categories. Classical Arabic, which can be
found in sacred texts, tightly connected to the Islamic cultural and religious heritage, as
well as ancient Arabic literature. Modern Standard Arabic (MSA), which is the formal
language used in official documentation and news. Finally, Dialectical or Colloquial
Arabic, which encompasses a multitude of regionally specific vernaculars derived from
MSA, utilized extensively in day-to-day casual communication.

Arabic, similar to other Semitic languages, is distinguished for its dense morphol-
ogy, characterized by a non-concatenative structure. In this morphological structure,
words are crafted by interweaving vowel letters amidst the root consonants, coupled
with the incorporation of prefixes and affixes. This intricate morphology poses
formidable challenges for prevailing natural language processing (NLP) tools. For in-
stance, the expansion of the language’s lexicon surpasses that of languages such as En-
glish. Research by Alotaiby, Alkharashi, and Foda (2009) underscores this, revealing that
the vocabulary size of an Arabic corpus is twice that of an English corpus where both
were drawn from a similar domain, despite containing a roughly equivalent number of
tokens.

The Arabic script is a right-to-left cursive writing system. Each letter exhibits di-
verse glyphs based on its placement within a word. There are a total of 28 letters; 25
of these represent consonants. Notably, nearly half of these letters share the same base
glyphs, known as rasm, but are differentiated by the absence or presence of dots either
above or below their rasm, as illustrated in Figure 1. Additionally, the script incorporates
8 supplementary symbols known as diacritics. These diacritics serve the purpose of
short vowels offering phonetic guidance, thereby mitigating potential ambiguities.

During the initial stages of the language writing development, the utilization of dots
lacked prominence and formalization (Bentouati 2020). This stemmed from the limited
popularity of writing practices during that era, coupled with the relative ease with
which native speakers could disambiguate dotless text from the context. The initial trials
of standardized dots usage along with rasms is attributed to Abu Al-Aswad Al-Dualli, a
renowned Arabic scholar, who introduced dots in the sacred text of the Holy Quran. In
this stage, dots functioned similarly to diacritics representing the word’s grammatical
state within a sentence. However, this practice was subsequently superseded by the
utilization of dots to differentiate letters sharing identical rasm and diacritics to help in
phonetic guidance and represent the word’s grammatical state.

The primary motivation behind this formalization was to facilitate Arabic com-
prehension for non-native speakers, thereby safeguarding against foreign influences
on subsequent generations of native speakers. Figure 2 showcases an Arabic sentence
depicted in three distinct formats. The first is the dotless sentence, followed by the

Figure 1
Characters in the Arabic script.
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Figure 2
Arabic text with and without dots and diacritics.

sentence with dots, and finally, the sentence incorporating both dots and diacritics.
Notably, the second word illustrates a potential ambiguity for multiple meanings, where
this can be resolved through the use of dots.

Utilizing dotless Arabic text presents a promising avenue to address various chal-
lenges encountered in Arabic NLP. The inherent density of Arabic morphology often
results in a considerably large vocabulary. However, dotless text could mitigate this by
mapping many dotted words into a single dotless homographic word. Moreover, using
dotless text can be useful in the area of automatic recognition of ancient parchments
where the script used was predominantly dotless. Furthermore, the findings in this
study can be extended to augmenting processing tools for social media platforms,
especially with the rise of a recent trend encouraging users to use dotless text instead of
dotted text in posts that contravene platform regulations (Rom and Bar 2021). These
studies have highlighted that despite the absence of dots, native speakers retain a
substantial ability to recognize and interpret dotless text.

While native Arabic speakers can understand text without dots, this research aims
to explore whether this capability can be extended to Arabic NLP. Our primary interest
is to evaluate the effectiveness of context-aware deep learning models when applied
to dotless Arabic text, comparing their performance to that of standard dotted Arabic
text. To investigate this, we assessed both text representations across various NLP
tasks, including language modeling, text classification, sequence labeling, and machine
translation. We hypothesize that by leveraging sufficient contextual information, these
advanced algorithms may achieve a level of proficiency in interpreting dotless text that
approaches human-level comprehension.

Before getting into an experimental analysis to evaluate the applicability and utility
of dotless Arabic text as a representation for NLP tasks, conducting a preliminary
statistical analysis would offer valuable insights. This statistical examination encom-
passes token counts across multiple levels of tokenization granularity, namely, words,
subwords, and characters. This analysis also extends to cover quantitative analytical
tools such as Zipf’s and Heap’s laws.

This study tries to bridge the gap in Arabic NLP, introducing the following contribu-
tions. First, it introduces a novel method for representing Arabic text by removing dots
from letters, providing a new perspective on text representation. It also offers a detailed
comparative analysis of dotted and dotless Arabic text across five varied text corpora,
utilizing multiple tokenization levels (character, word, and subword) to investigate the
approach generalization. The study extends further by comparing these representations
with English text, thus broadening the research’s scope and depth. Moreover, the
paper conducts an in-depth examination of language modeling techniques, including
statistical n-grams and neural models, applied to both dotted and dotless text from
diverse domains. The article further explores the impact of dotless representation on
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Figure 3
Paper methodology and main contributions.

various downstream tasks covering text classification, sequence labeling, and machine
translation. Additionally, this article presents a system that is capable of restoring dots
to dotless text, thereby offering practical utility in text processing. Figure 3 illustrates
the main contributions, which can be summarized as follows:

• A novel method to represent Arabic text for NLP by removing dots from
the Arabic letters.

• A comprehensive analysis of Arabic text rigorously comparing dotted
and dotless text conducted on five different corpora, varying in size and
domains. The analysis encompasses multiple tokenization levels,
specifically, character, word, and subword. Additionally, this study
supplements its findings by conducting a comparative analysis between
Arabic dotted and dotless text with English text, enhancing the depth and
breadth of the research insights.

• An extensive examination and comparison of dotted and dotless text is
conducted with two primary language modeling techniques—statistical
n-grams and neural language models—utilizing corpora sourced from
diverse domains.

• A system that restores dots to dotless Arabic text.

• An extensive evaluation and analysis of dotted and dotless text
representation performance on various downstream NLP tasks. The tasks
cover text classification, sequence labeling, and machine translation. We
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conducted this analysis on various tokenization approaches as in the case
of language modeling.

The remaining sections of this article are organized as follows: Section 2 surveys
the advancements and developments relevant to this topic in the existing literature.
Section 3 provides an overview of the corpora utilized in this study, detailing the
preprocessing steps undertaken and elucidating the utilized tokenization methods.
In Section 4, we present the various text analyses conducted to compare dotted and
dotless text. Section 5 outlines our experiments involving language modeling. Section 6
presents our experiments on restoring dots to dotless text. Section 7 presents our exper-
iments conducted on various downstream tasks. Finally, Section 8 concludes this study,
summarizing the findings and presenting future directions for research.

2. Related Work

To the best of our knowledge, this is the first work that analyzes dotless Arabic text in
the domain of natural language processing tasks. However, the utilization of dotless
text in social media to circumvent content filtering algorithms has attracted recent
attention. In response to this trend, Rom and Bar (2021) delved into methodologies to
accommodate undotted text within the prevailing settings of language models trained
predominantly on dotted text, particularly in the context of social media platforms.
Their exploration yielded two primary approaches. The first approach involved recon-
figuring the tokenizer either by removing dots from its tokens or expanding it with
undotted variants of these tokens. These undotted versions were then mapped to the
same identifier as their dotted counterparts, effectively enabling the language model to
accept both dotted and dotless text. The second approach proposed a dotting algorithm
aimed at restoring dots to the undotted text. Through this method, they demonstrated
that the restored dotting approach produced results closely aligned with the original
experiments conducted on dotted text when evaluated across various downstream
tasks.

Alhathloul and Ahmad (2022) presented a deep learning-based approach aimed
at restoring dots to dotless text. Using an extensive experimentation strategy across
various datasets, they conducted an in-depth error analysis to assess the efficacy of
their proposed method. Their approach relied on a Gated Recurrent Networks (GRUs)
based sequence-tagging model, designed to generate dotted text as character sequence
from dotless text as input sequence at the character level. In order to facilitate a fair
comparison and evaluation, the researchers introduced a new metric called “dottization
error rate.” Across their experimentation involving four distinct datasets, their method
exhibited promising results, achieving character error rates ranging between 2% and
5.5%, along with dottization error rates spanning from 4.2% to 11%.

Recent research has explored novel approaches to text representation in En-
glish for natural language processing tasks. Al-Shaibani and Ahmad (2023) proposed
a consonant-based representation of English text, introducing two variants: a
“consonants-only” approach where vowels are entirely removed, and a “masked-
vowels” approach where vowels are replaced with a special symbol. Their work demon-
strated that these representations can achieve comparable performance to standard
text across various NLP tasks while significantly reducing vocabulary size and model
parameters. Similarly, Alajrami, Margatina, and Aletras (2023) conducted an extensive
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study on the role of input token characters in language models. They pre-trained models
using small subsets of characters from individual tokens and found that even under
extreme settings, such as using only the first character of each token, models retained
a high percentage of performance compared to full-token models in standard NLU
benchmarks. Both studies highlight the potential for more efficient text representations
in NLP, suggesting that traditional approaches may contain redundant information
and that simplified representations can maintain effectiveness while reducing compu-
tational demands.

Zipf’s and Heap’s laws serve as pivotal statistical tools in linguistics that link the
number of tokens in a corpora to vocabulary size, offering profound insights when
applied to language corpora, extensively examined in languages like English, Chinese,
Norwegian, and Old German (Li 1992; Moreno-Sánchez, Font-Clos, and Corral 2016;
Sicilia-Garcia et al. 2003; Welsh 1988). However, their application to Arabic remains
relatively limited, potentially influenced by Arabic’s perception as a low-resource lan-
guage (Magueresse, Carles, and Heetderks 2020). Within Arabic language studies, two
primary research objectives were studied. Firstly, analytical comparisons of Arabic with
other languages have been explored (Alotaiby, Alkharashi, and Foda 2009; Alotaiby,
Foda, and Alkharashi 2014; Al-Kadi 1998). Secondly, these analyses have been utilized
to assess the quality of proposed corpora (Alarifi et al. 2012; Almeman and Lee 2013;
Selab and Guessoum 2015; Khreisat 2009). Notably, much of this research has focused
on evaluating extensive corpora within a single domain, predominantly newswire.
Consequently, a notable research gap exists in conducting a comprehensive analysis en-
compassing diverse tokenization levels, linguistic units, and datasets spanning various
domains within Arabic language studies.

Language models can be defined as mathematical models designed to predict the
most probable word within a sequence of preceding words, representing a critical
component in numerous natural language processing domains. Their utility extends
across various tasks, including generative applications like machine translation (Diab,
Ghoneim, and Habash 2007), optical character recognition enhancement (Smith 2011),
and the augmentation of automatic speech recognition systems (Abushariah et al.
2010). Leveraging their capacity to encapsulate implicit linguistic information, neural
language models find applications in sequence labeling tasks such as part-of-speech
tagging and named entity recognition through a transfer learning style. Within these
contexts, language models play a pivotal role in generating high-quality embeddings to
enhance subsequent classification processes.

The evolution of language modeling boasts a substantial developmental history. Ini-
tially, these models sought to learn the joint probabilities of sequences within expansive
training corpora. Using the Markov principle, these sequences were pruned to encom-
pass orders 2, 3, 4, or higher n tokens, commonly known as n-grams, aiming to achieve
an acceptable level of generalization. However, this approach suffered from an inherent
challenge of dealing with Out-Of-Vocabulary (OOV) tokens, wherein the model encoun-
tered difficulty computing the probability of words absent from the training corpus. To
address this challenge, various smoothing techniques have been proposed, including
Laplace (additive) smoothing, Katz smoothing (Katz 1987), and Kneser-Ney smoothing
(Kneser and Ney 1995). Subsequently, specialized toolkits emerged as standardized
solutions for constructing these language models using sufficiently extensive corpora.
Prominent examples of such toolkits include KenLM (Heafield 2011) and SriLM (Stolcke
2002). These toolkits have streamlined the development process by providing efficient
means to build robust language models, marking significant strides in the field of
language modeling.
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Neural language models surpassed statistical counterparts (Bengio, Ducharme, and
Vincent 2000), with Recurrent Neural Networks (RNNs) initially dominating sequence
modeling. However, they struggled with issues like vanishing or exploding gradients,
particularly evident in lengthy sequences. To address this, Long Short-Term Memory
(LSTM) architecture was introduced (Hochreiter and Schmidhuber 1997), albeit slower
and more challenging to train. GRU (Chung et al. 2014) architecture has been introduced
as a compromise between vanilla RNNs and LSTMs. Recently, transformer-based mod-
els (Vaswani et al. 2017) sparked a revolution in NLP, overcoming the long recurrence
limitation of previous recurrent networks. Pretrained models like BERT (Devlin et al.
2019), Wav2Vec2 (Baevski et al. 2020), and GPT-3 (Brown et al. 2020) attained state-
of-the-art performance across various NLP tasks using this architecture. Nonetheless,
the attention mechanism, intrinsic to transformers, exhibited limitations in mastering
simpler tasks easily tackled by earlier models (Dehghani et al. 2018; Chernyavskiy,
Ilvovsky, and Nakov 2021).

3. Text Corpora, Preprocessing, and Tokenization

In this section, we introduce the corpora utilized in this research. We also present the
preprocessing steps we applied for analysis and experimentations. We, furthermore,
overview the tokenization methods we used across this research.

3.1 Text Corpora

We selected corpora from different domains with different sizes to evaluate dotless
text as an alternative representation for Arabic NLP. The following are the selected
corpora:

• Quran (Aloufi 2019): A dataset compiled from Quran verses. In Quran,
most chapters, called Surah, start with a special sentence, called Basmala.
In order not to confuse the training with this repetitive sentence, we
removed it from the beginning of each chapter except the first one. The
total number of samples is 6,236 sentences.

• Sanadset dataset (Mghari, Bouras, and El Hibaoui 2022): This dataset is a
collection of sacred sayings by the prophet Muhammed, called Hadeeth.
Each Hadeeth contains a Matn, which is the sacred text; and a Sanad,
which is the chain of narrators. We selected only the Matn. This dataset is
interesting because its text is coherent with a relatively small vocabulary
size compared to its size in terms of the total running text.

• Ashaar (Poems) (Alyafeai and Al-Shaibani 2020): This is a poetry dataset
collected from various online sources. Samples extracted from this
dataset comprise a set of 6 verses. Throughout this research, we will refer
to this dataset as “Ashaar” or “Poems” dataset.

• Newswire dataset (El-Khair 2016): This dataset is a massive collection of
news collected from various newswires. We only selected one newspaper,
Alittihad.
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• Wikipedia (Foundation ): A dataset collected from Wikipedia dumps of
Arabic articles up to 20 October 2022.

Table 1 presents detailed statistics with respect to dotted and dotless word tokens
for each dataset. In this table, N represents total tokens in the running text, that is, all
words; V represents the vocabulary size; and V‘ represents the vocabulary size of the
dotless text. As presented in the table, there is a noticeable reduction in the dotless
vocabulary compared with the dotted vocabulary. The reduction ranges from 10.3%
to up to 37.3%. It can also be observed that the Quran dataset is the smallest dataset
among our series. The Sanadset dataset contains very coherent text with many repetitive
phrases. This can be deduced from the ratio of its unique vocabulary to the size of
its running text. The Poems dataset, in contrast to the Sanadset dataset, has a large
vocabulary relative to its running text size. This can be used as a measure to highlight
the richness of the poetry dataset, attributed to the inherent creativity associated with
poetry. Furthermore, classical Arabic poetry adheres to strict metrical and rhyming
constraints, which compel poets to seek words that harmonize with the poem’s rhyme
scheme. Regarding the news and Wikipedia datasets, they are large corpora capturing
various aspects and structures of the language. However, the news dataset has a much
narrower domain than Wikipedia as can be deduced from their vocabulary sized com-
pared to their running text size. From this table, it can be observed that Ashaar is richer
than Sanadset. The Wikipedia dataset is richer than the news dataset, indicating that it
covers wider and more diverse topics than the news dataset.

From the above statistics, it is clear that the datasets we chose are of different sizes
and can be grouped into three categories. From the size of the running text N, the Quran
text is a significantly small corpus, Sanadset and Ashaar are medium-sized corpora, and
Wikipedia and news are larger corpora. Further noteworthy information to highlight is
that the number of dotted characters, i.e., the vocabulary size at the character level, is
31 and the number of dotless characters is 19, representing a reduction by 38.7%.

3.2 Text Pre-Processing and Undotting

In this subsection, we present the procedure we followed to pre-process and undot
text. For pre-processing, we removed any non-Arabic characters including numeral
characters and punctuation symbols. Diacritics are also omitted. Further, as the letter
Hamza can appear adjoined with other characters, usually vowels, we removed it,
keeping only the adjoined letter. However, if it is found alone, it is kept unchanged.

Table 1
Datasets statistics with words tokenization covering dotted and dotless vocabulary.

Dataset N V V’ V’/V
Quran 77.8K 14,748 13,229 89.70%
Sanadset 28.9M 317,331 227,590 71.72%
Ashaar 34.9M 1,007,279 631,487 62.69%
Wikipedia 177.4M 1,811,244 1,345,853 74.31%
News 134.9M 892,583 654,982 73.38%
Aggregated 376.2M 2,739,172 1,865,126 68.09%
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For undotting, the table presented in Figure 4 illustrates Arabic letters and their
corresponding dotless representation, depending on its position in a given word. It
presents the letter shape across all its possible positions. Due to the cursive nature of
the Arabic script, we tried to mimic the same writing shape for a few of the letters to
its closest dotless letter if it comes either at the beginning or the middle of the word.
For the letters and , if they come either at the beginning or the middle of the
word, they are mapped to the dotless version of . Similarly, for the letter , if it comes
at the beginning or middle of the word, it is mapped to the dotless version of .

3.3 Tokenization

Tokenization involves segmenting text into smaller units like words, characters, or
in-between units known as subwords. Notably, subword tokenization emerged as
an interesting approach due to its adaptability, being either language-dependent or
language-agnostic. This method integrates benefits from different ends of the spectrum,
presenting a versatile and robust means to represent input text. Alyafeai et al. (2023)

Figure 4
Arabic dotted letters mapped to their dotless variants depending on their position in the word.
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Figure 5
An Arabic sentence tokenized with different tokenization techniques.

conducted an in-depth comparison of various tokenization techniques for Arabic. They
concluded that different tokenizations may be best suited to different tasks.

In this research, we studied the behavior of dotless text compared to dotted text
using different tokenization techniques. We used word tokenization, character tokeni-
zation, morphology-based, and language-specific disjoint subword tokenizations in
our analysis and across many NLP tasks. These tokenizations are described as follows.

• Word tokenization: This tokenization splits text into words.

• Farasa morphological tokenization: This tokenization splits text into
morphemes. The tool used to perform this tokenization is called farasa
(Abdelali et al. 2016), hence the name.

• Disjoint-letters tokenization: This tokenization is a language dependent
tokenization introduced by Alyafeai et al. (2023). Although the Arabic
script is cursive, some of its letters are written disconnected from their
subsequent letter in the word. Based on this property, this tokenization
splits the text into subwords. That is, each subword in this tokenization is
a sequence of fully connected letters.

• Character tokenization: This tokenization splits text into characters.

Figure 5 shows an example of an Arabic sentence tokenized with each of the
aforementioned tokenizations. To perform the tokenization task, we extended the
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Table 2
Datasets statistics with farasa and disjoint-letters tokenizations covering dotted and dotless
vocabulary.

Dataset Farasa Disjoint-Letters

N V V’ V’/V N V V’ V’/V

Quran 129.8K 7,677 6,074 79.04% 164.6K 6,484 4,303 66.36%
Sanadset 44.1M 105,469 74,674 70.85% 55.9M 76,495 37,412 48.91%
Ashaar 57.4M 361,739 242,735 67.09% 72.4M 191,393 79,968 41.78%
Wikipedia 303.8M 1,002,148 791,084 78.91% 412.8M 266,822 118,150 44.28%
News 241.2M 344,627 263,143 76.36% 326.0M 151,557 68,943 45.49%
Aggregated 646.6M 1,417,437 1,061,481 74.92% 867.4M 402,019 162,389 40.39%

tokenizers package, named tkseem,1 to fit our needs while utilizing their implemented
functionalities.

4. Text Analysis

This section outlines the analysis we performed to compare dotless text with its dotted
counterpart. It begins by providing a comprehensive overview of vocabulary statistics
across various tokenization levels and datasets. Next, it examines the representation of
both dotless and dotted texts by applying Zipf’s and Heap’s laws for linguistic analysis.
Finally, the section ends with an entropy analysis of both the text representations.

4.1 Vocabulary Statistics

In Section 3.1, we presented the vocabulary analysis at the word level. Table 2 presents
the statistics for the two subword tokenizations used in this study. As in the case of
Table 1, N represents total tokens in the running text, V represents the vocabulary size
for the standard Arabic text, and V‘ represents the vocabulary size of the dotless text for
a given tokenization. The table demonstrates that the disjoint tokenization has a finer
granularity compared to farasa as can be seen from both the vocabulary counts and
the total number of tokens in a corpus, that is, it has a lower vocabulary and a higher
number of tokens for each corpus as compared to farasa.

We can also notice from Table 2 that the reduction in vocabulary for dotless text
as compared to standard Arabic text, in the case of farasa tokenizer, ranges between
20.96% (i.e., Quran corpus) and 32.91% (i.e., Ashaar corpus). On the other hand the
reduction for the disjoint tokenizer ranges between 33.6% for Quran and 59.61% for the
Aggregated corpus. It is important to note that the reduction for the disjoint tokenizer
is even higher as compared to the character tokenization, which is the most fine grained
and elementary representation of text.

From both Tables 2 and 1, it can be noticed that rich datasets tend to exhibit
smaller V‘/V ratios across almost all tokenizations. For example, the Wikipedia dataset

1 https://github.com/ARBML/tkseem.
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showcases lower V‘/V values for words and disjoint tokenizations compared with
the news dataset, and a comparable ratio in farasa tokenization, despite having a
considerably larger running text N. This pattern is even more apparent in the poetry
dataset, which has the smallest V‘/V ratio. This observation leads to a hypothesis
that, asymptotically, V‘ grows slower than V as N grows. In essence, it suggests that,
generally, the least frequent vocabulary items tend to share more rasms than the more
frequent ones, leading to a proportional growth of dotless vocabulary as the volume of
running text expands.

To further study this phenomenon and explore the correlation between dotted and
dotless vocabulary, we analyzed the top ith frequent vocabulary, where i ranges from
1% to 100%. In each ith iteration, we undot the top ith vocabulary and calculate the ratio
of the dotless vocabulary count to the dotted count. This analysis was conducted across
the aggregated datasets using words, farasa, and disjoint tokenizations and plotted in
Figure 6. Examining this plot, it is noticeable that the most significant reduction occurs
within disjoint tokenization, where the ratio of dotless to dotted vocabulary size experi-
ences the greatest decrease, starting from approximately a 40% reduction. Furthermore,
it is clear that the ratio reduction in word tokenization initially starts at a lower rate but
increases as the vocabulary grows to the least frequent ones, eventually surpassing the
reduction observed in farasa tokenization. Surprisingly, farasa reduction decreases as

Figure 6
Dotless vocabulary reduction ratio on different tokenization levels.
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vocabulary grows in opposition to the other tokenizations. Moreover, across all three
tokenizations, the ratio exhibits fluctuations, displaying intermittent rises and falls,
forming plateaus stabilizing at the least frequent vocabulary. Based on this analysis,
we hypothesize that while many common vocabularies share identical rasms, this ratio
stabilizes as the vocabulary expands.

The key takeaway from the analysis in this section is that the dotless text leads to
significant reduction in vocabulary sizes as compared to the standard Arabic text across
all the four tokenizations.

4.2 Zipf’s and Heap’s Laws

This section introduces the quantitative analysis we performed on dotted and dotless
text using Zipf’s law (Zipf and Behavior 1949) and Heap’s law (Heaps 1978). We are
interested to observe the behavior of dotless Arabic text with respect to these well-
established relationships, and compare them to standard Arabic texts. Moreover, an
in-depth analysis for Arabic corpora is lacking in literature.

Zipf’s law can be mathematically formulated as shown in Equation (1), where r
indicates the rank of the vocabulary, F(r) represents its frequency, and α is a corpus-
specific parameter typically close to 1.

F(r) ∝ r−α (1)

To fit a corpus with Zipf’s law and determine the value of α, we applied a log
transformation to both sides of the equation, as illustrated in Equation (2). By setting
the constant C as the frequency of the most frequent vocabulary within each dataset, we
aimed to prevent potential biases when fitting the regression line. This transformation
led to the formulation of an equation that exhibits near-linearity on a log-log scale,
allowing us to employ linear regression to estimate the slope (α).

log F(r) = −Cα log r =⇒ α = − log F(r)
C log r (2)

Figures 7 and 8 plot Zipf’s law applied to our datasets using word tokenization.
Other tokenizations followed similar patterns to word tokenization. Figure 15 in Ap-
pendix A shows the plots for all the tokenizations across all the corpora. Here, we made
two plots to reduce the confusion as it is difficult to follow the patterns when plotting
all the corpora in one graph.

Analyzing these two graphs, it is clear that word tokenization adheres to Zipf’s law
for both dotted and dotless text. For other tokenizations, the coarse-grained methods
exhibit more adherence to Zipf’s law, showing a stronger Zipfian distribution compared
with other finer-grained tokenizations. Both graphs here reveal a nearly identical pat-
tern between dotless and dotted plots, with marginal distinctions apparent primarily
within the most frequent and least frequent vocabularies.

Heap’s law (Heaps 1978) serves as another valuable analytical tool. This law ex-
plores the growth of vocabulary within a given corpus relative to its size. This law
similarly demonstrates an exponential correlation between the size of the running text
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Figure 7
Zipf’s law plots for Quran, Sanadset, and Wikipedia datasets comparing dotted and dotless text.

denoted by N and the corresponding vocabulary size denoted by V, governed by an
exponent parameter β, typically below 1. This relation is formulated in Equation (3).

V ∝ Nβ =⇒ V = kNβ (3)

Following the same procedure conducted for Zipf’s law to estimate the parameters
using linear regression, we transform both sides of the equation using the log function
as in Equation (4). We fit this equation using linear regression to estimate both values k
and β.

log V = log k + β log N (4)

Figures 9 and 10 illustrate Heap’s law applied to word tokenization across all the
corpora. As Quran corpus vocabulary is very small compared with the other corpora,
we plotted it separately in a different figure. Other tokenizations follow similar patterns.
Figure 16 in Appendix B plots heaps law for all tokenizations across all the corpora.

The depicted plots demonstrate the conformity of both dotted and dotless vocab-
ularies to Heap’s law. Notably, the growth of dotless vocabulary consistently trails be-
hind that of the dotted vocabulary across various tokenizations. However, a significant
observation arises particularly in the case of disjoint tokenization where the growth
rate appears notably slower. This phenomenon suggests a substantial sharing of rasms
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Figure 8
Zipf’s law plots for poems, news, and aggregated datasets comparing dotted and dotless text.

among the dotted vocabularies within this specific tokenization scheme, contributing to
a slower expansion of the vocabulary.

Another notable observation is the influence of corpus richness on the growth dif-
ference between dotted and dotless vocabularies. Specifically, a substantial gap between
the growth rates of dotted and dotless vocabularies is noticeable in corpora with higher
richness, such as Ashaar and Wikipedia. In contrast, this gap noticeably narrows in
less-rich corpora, such as News and Sanadset. This divergence suggests a correlation
between corpus diversity and size and the distinctiveness in growth rates between the
dotted and dotless vocabularies.

The key takeway from the analysis in this section is that both dotless and standard
Arabic text largely follows the Zipf’s and Heap’s law. However, course-grained tok-
enization such as word and farasa adhere more strictly to the Zipf’s law as compared
to a fine-grained tokenizer such as disjoint. Moreover, the vocabulary growth rate is
significantly slower for dotless representation, especially for richer corpora having a
high ratio of V/N.

4.3 Text Entropy

In information theory, entropy is a measure of uncertainty or unpredictability of a
random variable. It quantifies the number of bits necessary to transmit information,
that is, the information content of text in our context. In our investigation, we try
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Figure 9
Heap’s law plot for the Quran dataset comparing dotted and dotless text.

Figure 10
Heap’s law plots for Sanadset, Ashaar, Wikipedia, News, and aggregated datasets comparing
dotted and dotless text.
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Table 3
Entropy results for each tokenization across different text corpora.

Dataset Words Farasa Disjoint Characters

H H‘ H H‘ H H‘ H H‘
Quran 11.02 10.87 8.240 7.968 7.451 6.958 4.15 3.83
Sanadset 10.92 10.67 8.364 8.004 7.644 7.098 4.24 3.86
Ashaar 14.33 13.70 9.659 9.148 8.480 7.687 4.30 3.90
Wikipedia 13.20 12.94 8.892 8.599 8.153 7.493 4.27 3.87
News 13.10 12.87 8.563 8.286 7.981 7.363 4.25 3.85
Aggregated 13.60 13.26 9.063 8.711 8.210 7.523 4.27 3.87

to assess the extent of information loss resulting from the elimination of dots across
various tokenization levels for all token strings, denoted as T, in the introduced datasets.
Equation (5) was used to compute the entropy of tokens within the corpus where T
represents the alphabet, and P(t) represents the probability of token t to appear in
the text. Interestingly, this topic has not been extensively explored in the literature for
Arabic language. Previous work by Al-Kadi (1998) performed entropy calculations on
Arabic text, reporting an entropy of 9.98 bits/words and 2.39 bits/letters. This study
considered a corpus made up of only 3,025 words. Table 3 presents the entropy results
for each tokenization comparing dotted and dotless text. In this table, H and H′ denotes
text entropy of dotted and dotless text, respectively.

H(T) =
T∑
t

− P(t) log2 P(t) (5)

For character tokenization, we can see that the number of dotless characters drops
by 12 letters, a reduction of about 39%. However, we can also notice that the highest
entropy for dotted characters is 4.3 and the lowest is 4.15, while the highest for the
undotted is 3.9 and the lowest is 3.83. If we consider the aggregated dataset as a rep-
resentation of the language, we can see that the reduction of entropy due to undotting
is 0.4.

To compute the upper bound of the entropy at the character level, we assume
that characters appear randomly in a string. This can be calculated using Equation (5)
as −

∑31
i P(i) ∗ log2 P(i) = log2 31 = 4.95 for dotted characters and log2 19 = 4.24 for

undotted ones. Based on this, if we consider the aggregated dataset as a representative
set of the language, the language has a characters redundancy of 1− 4.27

4.95 = 13.74%
for dotted and 1− 3.87

4.24 = 8.76% for undotted characters. The redundancy is less for
undotted text because dots were helpful in resolving confusion. It can be concluded
from this analysis that dots, at most, decrease the text redundancy by 5%. This also
indicates that there are other sources of redundancy shared between dotted and dotless
text. It is also important to note here that a drop in entropy at the character level
between the dotted and dotless version is almost the same across all the corpora. This is
understandable, as character frequency distribution is almost the same across different
text corpora.

From the table, we can see that Ashaar has the highest entropy at the word level.
It is even higher than Wikipedia, which is a magnitude larger in terms of running text
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N. This confirms our hypothesis about the vocabulary richness of Ashaar being due to
creativity and the use of unusual phrases and sentences. We can also note that Sanadset
has the lowest entropy. It is even lower than the Quran dataset, which is a significantly
smaller corpus. This indicates that the Sanadset samples share a lot of similarities and
the text is quite uniform. It is also important to note here that the drop in entropy at the
word level between dotted and dotless text is not uniform across all the text corpora.
The highest drop is for the Ashaar corpus and the lowest is for the Quran corpus.

As can be noticed from Table 3, the entropy trend at the subword levels follows
similar patterns as the entropy at the word level for both the dotted and dotless version
of texts. However, the Quran corpus has the lowest entropy at both the subword levels,
whereas it has the second lowest entropy at the word level behind the Sanadset corpus.
Moreover, the drop in entropy for the dotless text at the disjoint token level is the
highest as compared to other token levels. Thus encoding and representing dotless
Arabic text at different token levels can have different implications in text and context
understandability and other tasks such as dot retrieval.

4.4 Comparison with English

Arabic has a dense morphology and a rich linguistic structure compared with widely
spoken languages like English. This complexity significantly expands Arabic’s vocab-
ulary. As shown previously, using dotless text reduces vocabulary by consolidating
multiple dotted vocabularies into a single dotless one called rasm. To further study and
quantify this reduction, we compared dotless and dotted texts in Arabic against English.

We approached this comparison in two ways. First, we used a parallel corpus,
the UN corpus (Ziemski, Junczys-Dowmunt, and Pouliquen 2016). Second, we chose
the English Wikipedia corpus and compared it with the Arabic Wikipedia corpus. The
English Wikipedia corpus was much larger in terms of running text than the Arabic one.
To make the comparison fairer, we curated a subset of English articles whose total text
size was similar to the Arabic corpus.

For both comparisons, we processed the English text by converting characters to
lowercase and removing characters not in the English set, including numerals and punc-
tuation. Table 4 shows the statistics for these datasets. In this table, V is the vocabulary
size, N is the total number of tokens, Hc is the entropy at the character level, and Hw is
the entropy at the word level.

From this table, it can be seen that English has a lower entropy at the character
level as compared to dotted Arabic, but dotless Arabic has the lowest. However, dotless

Table 4
Parallel datasets comparison considering dotted and dotless text.

Dataset N V Hc Hw

English UN 248M 272,567 4.12 9.70
Arabic UN 208M 637,778 4.19 12.21
Dotless Arabic UN 515,946 3.68 12.07
English Wikipedia 198M 1,019,960 4.17 10.97
Arabic Wikipedia 177M 1,811,244 4.27 13.20
Dotless Arabic Wikipedia 1,345,853 3.72 12.93
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Figure 11
Zipf’s and Heap’s law for English-Arabic parallel datasets.

Arabic has a higher entropy at the word level as compared to English. It is also interest-
ing to note that although the UN corpus is parallel, the number of words in English is
40M (around 17%) more as compared to Arabic.

To further study vocabulary frequencies and growth, we plot Zipf’s and Heap’s
laws for both corpora in Figure 11. From this graph, we can notice that the Zipfian
fit overlaps for both corpora. It is interesting to observe this generalization across
languages. It can be noted that in the UN corpus, the plot for English seems to be
shifted upwards for the most frequent vocabulary and downwards for the least frequent
vocabulary. Following a similar pattern for the Wikipedia corpus, it seems that the most
frequent words in English are more frequent than in the case of Arabic. However, the
least frequent English words are less frequent than the least frequent Arabic words.
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For the vocabulary growth described by Heap’s law, it can be seen that Arabic is
larger by orders of magnitude in terms of vocabulary, although the English running text
is larger for both datasets, UN and Wikipedia. It can also be noted from the graph that
the Wikipedia corpus is richer than the UN corpus. Following our previous findings that
the vocabulary growth for dotless text is slower for rich datasets, we can see this pattern
clearly in the UN corpus as compared to Wikipedia. In fact, in Wikipedia, the dotless text
growth is close to the average of both English and Arabic vocabulary growth.

5. Language Modeling

Language modeling stands as a core area of research within NLP, focusing on modeling
and generating texts that mimics human language patterns. The primary objective is
to predict a token given the context. A common type of language model, termed the
causal language model, aims at predicting the next token given a sequence of preceding
tokens. These models play a vital role in enhancing the outputs of diverse downstream
tasks such as optical character recognition (OCR), speech-to-text (STT), and grammar
correction, among others.

Language models are constructed through either statistical methods or deep learn-
ing approaches. In statistical methods, text generation relies on determining the most
likely token given a preceding sequence of tokens, computed from the corpus to es-
tablish conditional probabilities of tokens. These models, often termed n-gram models
where n denotes the sequence length of tokens considered, use probabilistic approaches.
Conversely, neural language models employ neural networks to predict the most prob-
able token. Notably, statistical language models are typically shallower in structure
compared to neural models, offering lower language comprehension and abilites.

Statistical language models face significant challenges in predicting unseen or
infrequently used words due to their reliance on word probabilities computed from
corpus counts. To mitigate this issue, smoothing techniques have been developed,
including Laplace smoothing, discounting, interpolation, backoff, and notably, Kneser-
Ney smoothing (Ney, Essen, and Kneser 1994), which is acknowledged as one of the
most effective smoothing methods in the literature (Zhang and Chiang 2014).

In this study, we experimented with both of these types of language modeling, that
is, the statistical n-grams and neural language models. For neural language models,
we experimented with two architectures, RNNs (Chung et al. 2014) and transformers
(Vaswani et al. 2017). The architecture setup will be detailed in a separate subsection
for each. For dataset splits, each dataset has been split into 90%–10% for training and
evaluation, respectively. We further take a validation set of 5% from the training split
for model calibration. We selected five different datasets varying in size, domain, and
style. It should be noted that all the five datasets consist of classical or modern standard
Arabic. The goal was to investigate the behavior of language models generated using
dotless Arabic and compare them qualitatively with the language models generated
using standard dotted script. We did not use datasets generated with user-generated
content such as social media posts and blogs, which can be interesting to investigate.
However, such datasets were used for downstream NLP tasks as presented in Section 7.

Language models can be evaluated with two distinct approaches: extrinsic and in-
trinsic. Extrinsic evaluation involves assessing the model’s performance within a down-
stream task, such as speech recognition or optical character recognition. Conversely,
intrinsic evaluation refers to assessing the model’s performance without relying on
external tasks. Perplexity (PPL) serves as a metric for intrinsic evaluation, quantify-
ing the model’s surprise when presented with a given sentence, and leveraging the
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Table 5
Train, validation, and test statistics for datasets used in language modeling tasks.

Dataset Text Type Train Vocab Val Vocab Test Vocab

Quran Dotted 13,435 1,720 3,161
Dotless 12,102 1,658 3,018

Sanadset Dotted 299,162 81,763 121,488
Dotless 215,758 65,941 95,132

Ashaar Dotted 881,669 208,236 321,650
Dotless 560,069 151,916 225,293

Wikipedia Dotted 970,567 211,025 323,331
Dotless 730,885 173,672 259,353

News Dotted 837,244 231,783 333,842
Dotless 617,593 187,819 263,524

probabilities learned during training. The calculation of perplexity is formulated in
Equation (6):

PPL(D,M) = exp

(
− 1

N

N∑
i=1

logM(wi)

)
(6)

Where PPL(D,M) represents the perplexity of the language model M on a test
dataset D, N is the total number of words in the dataset, wi is the i-th word in the dataset,
andM(wi) is the probability assigned by the language modelM to the i-th word.

A lower perplexity value indicates that the language model is better at predicting
a token given the context. Before discussing the results of the language models, we
present the preparation procedure used for the datasets. Table 5 shows the statistics of
these datasets for each split in terms of the vocabulary size.

It should be noted that we applied some selection criteria for our datasets as a
result of which some samples were eliminated. For instance, in the Ashaar dataset,
we were interested in studying classical poetry. Hence, we selected samples where
the meter is known to be from the classical poetry meters. Furthermore, the Wikipedia
dataset contains samples with varying lengths. To capture meaningful samples, we only
selected those with lengths greater than or equal to 30 tokens.

As vocabulary follows a Zipfian distribution, we only select the words that cover
95% of the text, considering the rest as unknowns. It should be noted that subword
tokenization was applied as follows. We first selected the words that cover 95% of the
running text, then applied the subword tokenization on these words.

5.1 Statistical n-grams

In this subsection, we present the results of statistical n-gram language models on
dotted and dotless Arabic text. For implementation, we used KenLM toolkit (Heafield
2011). KenLM is an n-gram language model toolkit that implements the modified
Kneser-Ney smoothing (Heafield et al. 2013). The toolkit implements disk-based stream-
ing algorithms, allowing it to be seven times faster than its counterpart SriLM (Stolcke
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2002), a popular language model toolkit, in estimation with efficient memory manage-
ment (Heafield 2013). We experimented with different orders of n-grams ranging from
bigrams to 6 grams. However, other hyperparameters are set to standard values.

Figure 12 presents the n-gram counts for each order we investigated in this work. In
this figure, for each dataset, the normal line is the dotted n-gram counts and the dashed
line represents the undotted counts and both lines share the same color. Each row in the
figure presents the results of a tokenization with two groups of datasets presented in
two separate plots for better readability.

A general observation from this graph is that the difference between the n-gram
counts between the dotted and dotless text is higher for fine-grained tokens such as
characters and disjoint as compared to word and farasa. For n-grams at the word level, it
has significantly higher counts as compared to other tokens for lower n-gram levels but
then it plateaus for higher n-grams. For subword as tokens, the count is small for lower
n-grams but increases rapidly for higher n-grams, even reaching values comparable to
word tokens for 6-grams.

Table 6 presents the OOV statistics for dotted and dotless text after splitting our
dataset into training and test sets. The row labeled ‘Ratio’ presents the reduction in
OOV rates for dotless text as compared to dotted texts. It should be noted that the last
column represents the aggregated dataset. OOVs are calculated as follows: As we only
considered vocabulary that covers 95% of the running text, other vocabularies are set to
unknown. We counted the total occurrences of unknowns and reported the results.

It can be noticed from this table that the reduction in OOV rate between dotless and
dotted texts resembles similar patterns for rich datasets as in Tables 1 and 2. For instance,
it can be noticed that the poems dataset has a high reduction across all tokenizations
as compared to the Sanadset dataset. Wikipedia, although it has more running text as
compared to News, it has a similar reduction in OOV. We can also note that for the
farasa tokenization the reduction ratios for the dotless texts are mostly lower than other
tokenizations. The results in this table seem to follow our conclusions and hypotheses
drawn in our discussion in Section 4.

Figure 13 plots the perplexity of our statistical models trained on all the presented
datasets across different tokenizations for various n-grams. As in the n-gram counts
figure, the dashed lines represent the dotless version of the dataset. A general pattern
to note in this figure is that as the n-gram order increases, the difference in perplexity
between dotted and dotless text decreases. This pattern becomes more apparent for fine-
grained tokenization. We can also note that, for less rich datasets, that is, those that have
a smaller V/N, the perplexity for the dotted texts is almost the same as the dotless texts
for higher order n-grams across various tokenizations even though the vocabulary size
is significantly smaller for the dotless versions.

5.2 Neural Language Models

For neural language models, we experimented with both the RNN and transformer
architectures. The details for each architecture are described below. However, both
architectures share the following training setup.

The learning rate is reduced on plateaus when little progress has been made. That
is, we decrease the learning rate by a factor of 0.75 for RNNs and 0.25 for transformers
if no improvement was noticed after a full epoch. The training continued for 100 epochs
at most, unless no significant improvement with a margin greater than 5× 10−3 is
witnessed for consecutive 5 epochs. The best model that achieved the lowest valida-
tion loss is kept. We built the model with PyTorch (Paszke et al. 2019), exploiting the
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Figure 12
n-gram counts at various tokenization levels across all the datasets.
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Table 6
OOV statistics for dotted and dotless texts across different tokenization levels and datasets.

Tokenization Quran Sanadset Poems Wikipedia News Aggregated

Words
Dotted 910 13,273 34,577 57,329 39,177 94,216
Dotless 786 8,619 20,080 40,901 26,507 60,093
Reduc. (%) 13.63 35.06 41.93 28.66 32.34 36.22

Farasa
Dotted 390 4,253 12,514 32,153 17,997 51,268
Dotless 300 2,948 8,112 25,104 13,680 37,430
Reduc. (%) 23.08 30.68 35.18 21.92 23.99 26.99

Disjoint
Dotted 287 2,534 5,985 7,747 5,619 12,196
Dotless 185 1,078 2,216 3,116 2,252 4,417
Reduc. (%) 35.54 57.46 62.97 59.78 59.92 63.78

batteries-included features provided by PyTorch-Lightning package (Falcon et al. 2019).
For datasets, we follow a similar setup as in the n-gram experiments, partitioning each
dataset into 85%, 5%, and 10% splits for training, validation, and test with a batch size
of 64 samples.

We fixed the sequence length for each dataset for a given tokenization. We discard
the remaining text for samples larger than the specified sequence length and padded
samples with smaller sequence lengths. The padding token is ignored in loss and per-
plexity calculations. We noticed that few samples in different datasets are significantly
larger in length as compared to the rest of the samples. Thus, setting the sequence
length to the maximum sequence length will lead to lengthy training with little knowl-
edge learned. Additionally, this issue becomes serious with fine-grained tokenization
as learning in RNNs is less efficient for longer sequences (Khandelwal et al. 2018;
Rumelhart, Hinton, and Williams 1985; Werbos 1990). Hence, we considered different
percentiles for different tokenization as the maximum length: 0.99 percentile for word
tokenization, 0.975 percentile for disjoint letters tokenization, and 0.95 percentile for
character tokenization.

5.2.1 RNN-based Language Model. For the RNN-based language model, the model com-
prises an embedding layer, a dropout layer (Gal and Ghahramani 2016), a layer of
stacked GRU units (Chung et al. 2014), a dense layer utilizing ReLU activation, and
another dropout layer followed by a dense output layer with softmax activation to
predict the next token as a causal language model. We used cross-entropy loss and
Adam (Kingma and Ba 2014) as an optimizer.

As we are experimenting with different datasets from different domains and dif-
ferent tokenizations, the optimal set of hyperparameters may differ from one setup to
another. For that reason, we implemented a tuning procedure that determines the best
hyperparameters for a given dataset with a given tokenization. It should be noted that
this tuning was applied on the dotted experiment; then the resulting best hyperparam-
eters are applied to the dotless system. We used the AHSH scheduling technique (Li
et al. 2020) that terminates bad trials early. We used the Ray framework (Liaw et al.
2018), which is a well-known framework for distributed computing. We optimized the
hyperparameters in a grid-search style on a subset of the training set.

With word tokenization, or in any experiment involving a large vocabulary, the
parameters in the embedding and output layers increase significantly. Research has
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Figure 13
n-gram perplexities at various tokenization levels across all the datasets.
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Table 7
Perplexity results using RNN-based language models.

Dataset Words Farasa Disjoint Characters

Quran PPL 179.02 22.89 15.76 5.28
PPL‘ 195.69 18.54 14.90 4.66

Sanadset PPL 33.11 5.16 4.87 2.79
PPL‘ 35.85 5.31 5.11 2.74

Poems PPL 1,195.47 36.60 18.30 6.17
PPL‘ 1,022.35 31.40 16.80 5.60

News PPL 166.90 7.72 7.00 3.17
PPL‘ 179.09 8.60 7.29 3.18

Wikipedia PPL 290.25 9.55 8.79 3.61
PPL‘ 296.16 10.49 9.13 3.52

shown that these layers have similar properties (Press and Wolf 2017; Inan, Khosravi,
and Socher 2016; Nowlan and Hinton 1991; Pappas, Miculicich, and Henderson 2018).
Consequently, they can share the same parameters, significantly reducing the model
size. We used this technique, known as weight tying, when applicable, based on the
optimal hyperparameters determined from the tuning procedure.

Table 7 presents the perplexity results of the RNN-based language models. PPL is
the perplexity of dotted text while PPL‘ is the perplexity of the dotless text. Analyzing
the results from this table, it can be noted that the Poem dataset has significantly high
perplexity at the word level, which indicates that predicting the words for poems in
Arabic is a very difficult task. Perplexities for other tokenization levels are also compar-
atively higher for the Poem dataset but still comparable to other datasets. Moreover, the
perplexities at the word level are significantly higher across all the datasets as compared
to other tokenizations. Another interesting thing to note is that dotless text has higher
or comparable perplexities to the dotted counterparts for most of the datasets across
different tokenizations. This seems to indicate that the tokens that are merged due
to dots removal mostly appear in the text under different contexts. This also implies
that correct words can be inferred from the dotless tokens based on the contexts of the
sentences.

As the dotless text significantly reduces the vocabulary size as compared to the
dotted text, the embedding layer of the dotless model becomes smaller than the dotted
model. This results in significant reduction in the model parameters. Figure 14 plots the
model parameters of dotted text as compared to the dotless on different datasets across
all the tokenizations. The figure shows a noticeable reduction in terms of model size,
especially for rich datasets. It can also be noted that the difference in model size is almost
negligible for character tokenization. This is because the embedding layer for characters
is negligible as compared to other layers due to the small vocabulary size. Another
interesting observation arises with farasa tokenization, where, in certain datasets, the
model size of the dotted representation is unexpectedly smaller than the dotless one.
This occurs because the ratio of dotless to dotted vocabulary decreases as the vocabulary
size increases, as shown in Figure 6. These findings highlight the importance of carefully
selecting the vocabulary size, particularly with this tokenization, as these choices can
subtly impact the performance.
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Figure 14
Neural language model parameter size comparison for dotted and dotless text.

5.2.2 Transformer-Based Language Models. Transformers (Vaswani et al. 2017) have
emerged as a cutting-edge architecture for generative modeling, originally proposed for
machine translation. To adapt this architecture for language modeling, we implemented
a model consisting of 3 encoder layers with 8 attention heads and 2,048 feedforward
hidden parameters. In line with the original paper, we used cosine-based positional
encodings. For optimization, we opted for Rectified Adam (RAdam) (Liu et al. 2020)
due to its demonstrated stability during training compared to Adam.

Table 8 presents the results of our experiments with transformer-based language
models across all datasets. As with the RNN-based results, PPL is reported for the
dotted datasets, while PPL‘ represents the perplexity for the dotless counterparts.

Analyzing the results presented in this table, a significant decrease in perplexity
is evident compared to the RNN-based language models (cf. Table 7). This marked
reduction underscores the superior capabilities of transformers over RNNs in model-
ing natural language and capturing long-term contexts. Notably, analogous patterns
observed in the RNN-based experiments are similarly reflected here, affirming the
consistency of observed trends across different modeling architectures.

Additionally, the consistent performance improvements achieved by transformers,
especially evident when confronted with rich and diverse datasets such as poems or
Wikipedia articles, underscore their efficacy in handling complex linguistic context and
diverse vocabulary size.
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Table 8
Perplexity results using a transformer-based language model.

Dataset Words Farasa Disjoint Characters

Quran PPL 116.18 10.35 9.89 4.53
PPL‘ 117.74 11.16 9.80 4.40

Sanadset PPL 20.72 4.45 4.17 2.55
PPL‘ 22.08 4.71 4.40 2.56

Poems PPL 908.37 15.14 13.95 4.95
PPL‘ 792.80 16.13 13.26 4.82

News PPL 106.50 6.53 5.75 2.94
PPL‘ 113.71 7.22 6.20 2.96

Wikipedia PPL 197.29 8.39 6.53 3.38
PPL‘ 198.11 9.23 7.65 3.35

6. Restoring Dots to Dotless Text

This study introduces dotless Arabic text as an alternative representation to dotted text
for Arabic NLP. For tasks requiring Arabic text as output, we need to convert the dotless
representation back to the standard Arabic texts having dots for human readability.
Accordingly, we extended our work by building a system to retrieve dots for dotless
text. The successful implementation of such a system depends on a comprehensive
and diverse dataset. Hence, we used the Wikipedia corpus introduced in Section 3 to
train this system. The dataset is split such that there are 1,368,742 training samples and
72,040 test samples for evaluation. Furthermore, we set aside 5% of the training set as a
validation set for model calibration.

The task is modeled as a character-level sequence labeling task, wherein the input
is a sequence of character rasms and the output is a sequence of characters as text.
For dataset cleaning, symbols appearing fewer than 1,000 times—primarily uncommon
unicode characters or symbols from other languages—were excluded. The total number
of unique tokens after preprocessing was 128 in the input text, including 19 Arabic
character rasms, digits, punctuation symbols, and other frequently occurring symbols
and 144 characters in the output. For preprocessing, we removed some of the Arabic-
specific symbols such as diacritics and the tatweel character. We also standardized
numbers into English format (0, 1, 2,. . . , 9). We added a space around punctuation
characters and eliminated extra spaces.

The model architecture used for this task consists of an initial embedding layer with
a hidden size of 512, followed by two bidirectional LSTM layers. This is followed by a
dropout layer with a rate of 0.33 and then a dense layer with softmax activation that
predicts the probabilities for the output. Optimization is achieved using cross-entropy
loss with the Adam optimizer. The learning rate is set to 0.001. To handle the typical
length of Wikipedia samples, the sequence length is set to 500, and training is done
with a batch size of 256 samples.

To evaluate the model’s performance, we utilized two metrics: Word-Error-Rate
(WER) and Character-Error-Rate (CER). WER measures errors at the word level and
is computed using Equation (7), where:

• S represents the number of substitutions (words incorrectly recognized or
generated).
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• D represents the number of deletions (words missing in the output
compared to the reference).

• I represents the number of insertions (extra words present in the output
compared to the reference).

• N represents the total number of words in the reference.

WER = S + D + I
N (7)

On the other hand, CER calculates errors at the character level, following a similar
methodology to WER.

The proposed model exhibited a WER of 4.7% and a CER of 1.13% on the test
set. Error analysis highlighted that less-frequent words, particularly those associated
with named entities or individuals, were more prone to misplacement of predicted
dots. Further errors were noted in words featuring multiple variants determined by dot
placement, where context played a pivotal role in identifying the correct dot arrange-
ment. This error occurrence may be attributed to the limited comprehension capabilities
inherent in character-level tokenization.

7. Downstream NLP Tasks

We extend the exploration of dotless representation of Arabic text by applying it across
a diverse array of downstream tasks, each selected for its relevance to both the lin-
guistic peculiarities of the Arabic language and the broader objectives of NLP research.
Our investigation spans three main areas: text classification, sequence labeling, and
neural machine translation. Within text classification, we experimented with sentiment
analysis, news topic classification, and Arabic poetry meter classification. For sequence
labeling tasks, we experimented with part-of-speech tagging (POS) and named entity
recognition (NER). Lastly, the challenge of machine translation serves as a capstone to
this exploration, assessing the model’s capacity for maintaining meaning and context
between languages considering the dotless representation. It’s important to note that
these tasks were initially optimized for the best performance with dotted text before
evaluating the dotless representation under the same optimal hyperparameters tailored
for the dotted scenarios.

7.1 Text Classification

In text classification, we have chosen tasks comparing dotless text representation with
dotted, addressing diverse challenges and variations. Sentiment analysis represents the
class of binary classification tasks. News topic classification demonstrates adaptability
to multi-class scenarios. Arabic poetry meter classification, relying on character tok-
enization, stands as an instance of Arabic language-specific tasks. This selection aims to
compare the versatility of dotless representation against dotted across various tasks and
setups. Throughout all the experiments, we evaluated the performance with accuracy.
When a dataset is imbalanced, we extend the evaluation to cover micro recall, precision,
and F1-score.
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Table 9
Sentiment analysis results with three different tokenizations.

Representation Tokenization Accuracy Vocab. Size
dotted Word 74.70 25,908
dotless 75.56 17,576
dotted Farasa 74.87 11,759
dotless 73.91 9,970
dotted Disjoint-Letters 78.04 10,035
dotless 77.34 5,233

7.1.1 Sentiment Analysis. Sentiment analysis, a fundamental NLP task, involves auto-
matically extracting and interpreting emotions, opinions, and attitudes expressed in
text, to determine whether the sentiment conveyed is positive or negative. Our study
investigates the impact of removing dots in sentiment analysis tasks, utilizing the
LABR dataset collected from Goodreads2 (Aly and Atiya 2013). The dataset includes
book reviews with ratings indicating sentiment polarity. A unique characteristic of this
dataset is its reflection of real-world usage scenarios from daily Arabic content posted
on the Web, encompassing a mixture of MSA and dialects commonly used in day-to-day
verbal and social media communication. After preprocessing and filtering for the binary
classification task, the dataset contains 9,225 training samples and 2,338 test samples.
We experiment with three tokenization methods to evaluate and compare models’ per-
formance between dotted and dotless text representations. For vocabulary, we selected
vocabulary that covers 90% of the running text following subwords tokenization similar
to the one applied in language modeling described in Section 5. We used a RNN-based
deep learning architecture for the task. The model architecture includes embedding
layers, GRU layers, dropout layers, and dense layers, with binary cross-entropy loss.
The Adam optimizer was utilized during training. The model’s hyperparameters are
tuned to ensure a proper setup for the dotted text. For evaluation, we utilized accuracy
as the dataset is balanced.

The test accuracy results shown in Table 9 showcase the impact of different tok-
enizers on both dotted and dotless texts for sentiment analysis. Notably, finer-grained
tokenization generally leads to higher test accuracy across both text types. An important
aspect to be noted is the significant reduction in vocabulary size when transitioning
from dotted to dotless text, across all the tokenization methods, with a negligible effect
on performance. This reduction underscores the efficiency of dotless text in maintaining
high levels of accuracy while simplifying the model’s complexity. Another effect of hav-
ing a smaller vocabulary size is that the embedding layer becomes smaller, affecting the
overall size of the resulting model. In the case of words as tokens, dotless representation
show a slightly better accuracy with almost a third reduction in vocabulary size. For the
other two tokenizations, dotless text has slightly lower accuracy. Interestingly, disjoint
tokenizer shows almost similar performance with vocabulary reduction for dotless
representation by almost 50%.

7.1.2 News Topics Classification. News topic classification entails organizing news articles
into thematic categories, aiding in information retrieval and content recommendation.

2 https://www.goodreads.com/.
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Table 10
News topics classification results.

Representation Tokenization Accuracy Vocab. Size
dotted Word 97.81 33,082
dotless 96.83 24,972
dotted Farasa 97.77 12,280
dotless 97.70 13,010
dotted Disjoint-Letters 97.77 10,604
dotless 97.70 5,995

This task can be considered as an instance of multi-class text classification. In the
Arabic context, this task involves assigning articles to predefined categories like politics
and sports based on content, and navigating linguistic nuances specific to Arabic. We
utilized the Sanad dataset (Einea, Elnagar, and Al Debsi 2019), comprising nearly 200k
articles, and selected the Khaleej newspaper subset for experimentation. Preprocessing
procedures mirrored those in language modeling and sentiment analysis tasks. Various
tokenization methods were explored, including word, farasa, and disjoint tokenizations,
with vocabulary covering 90% of the running text at the word level. Similar to the senti-
ment analysis task, we used an RNN-based architecture. Model architecture consists of
an embedding layer, bidirectional GRU layers, dropout layers, and a dense layer with
softmax activation. Hyperparameters were tuned using a range of values for the dotted
text, and accuracy is used as the primary evaluation metric as the dataset is balanced.

The test accuracy presented in Table 10 showcases the effects of various tokenization
methods on both dotted and dotless texts for the news topic classification task. All the
three tokenization shows comparable performances for both the dotted and dotless
representations. The vocabulary size reduces by a fourth for the dotless text at the
word level and reduces by more than 43% for the dotless text at the disjoint level. For
the farasa tokenization, dotless text has slightly more vocabulary size as compared to
the dotted text. The results for text classification shows the efficacy of using dotless
representation, which can provide similar performances while significantly reducing
the vocabulary sizes most of the time.

7.1.3 Poetry Meter Classification. Arabic Poetry meter classification involves categorizing
classical Arabic poem verses into predefined classes known as “meters” based on a
metric system derived from verse diacritics. Earlier methodologies relied on predefined
rules and diacritization for classification, while recent advancements showcased the
efficacy of RNNs in autonomously classifying verses without prior diacritization. The
Ashaar dataset, introduced in Section 3, was used in this experiment. The dataset was
filtered to include only the verses belonging to classical Arabic poem meters. The
dataset exhibits an inherent imbalance among classes due to the different popularity
of different meters, posing a challenge to deep learning architectures. For tokenization,
we used character-level tokenization (Abandah et al. 2015; Al-Shaibani, Alyafeai, and
Ahmad 2020) with 10% of the dataset allocated for testing and 5% for validation. For
preprocessing, we adapted the processing procedure applied in the language model-
ing experiments. The trained architecture is a GRU-based architecture with a stack of
5 GRU layers.

Table 11 summarizes the results for classifying meters using both the dotted and
dotless text representations using character as tokens. Since the dataset is imbalanced,
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Table 11
Meter classification results.

Representation Accuracy Recall Precision F1-score
Dotted 95.01 86.72 88.42 87.56
Dotless 94.29 84.46 85.89 85.17

we reported recall, precision, and F1-scores. Dotless text shows slightly higher accuracy
as compared to dotted text and lower F1-score as compared to dotted text. It should be
noted that this small difference in performance was achieved by using only 19 character
rasms for dotless text representating a reduction of about 39% when compared to dotted
text. Dotted text outperforms dotless by about 2% in Recall and 2.5% in Precision. Con-
sequently, the F1-score also shows a similar trend, with dotted text achieving slightly
higher values. These findings indicate strong classification performance for both text
representations, with dotted text marginally ahead in performance, highlighting their
predictive capabilities in meter classification.

7.2 Sequence Labeling

Sequence labeling is the task of assigning labels to tokens within a sequence. Some
notable examples of this class of tasks are POS tagging and NER. We compared the
performance of dotless text representation with that of dotted text within the context
of these two tasks. This section highlights the details of the experiments conducted,
along with the results, discussion, and analysis. For each of these experiments, we report
accuracy, precision, recall, and F1-score.

7.2.1 Part-of-Speech Tagging. POS tagging is the task of assigning grammatical categories
to words in sentences, labeling them as nouns, verbs, adjectives, and so forth. This
process enhances syntactic analysis and aids in sentence comprehension. In our study,
we explored the impact of using dotless Arabic text compared with dotted text in the
context of this task. Our experimental setup utilized the Arabic subset of the PADT
dataset from the Universal Dependencies project (Nivre et al. 2020), which aims to stan-
dardize syntactic representations across languages. The dataset features 5,959 training
samples, 906 for development, and 674 for testing, and presents challenges due to its
class imbalance with 17 different tags. The RNN-based model architecture includes
an embedding layer, 5 layers of bidirectional LSTMs, and a dense output layer with
softmax activation. The Adam optimizer was used along with cross-entropy loss for
model training. We focused on word tokenization, as this tokenization is a standard
tokenization for such tasks.

Table 12 presents the results comparing dotted and dotless Arabic text in the POS-
tagging task. The dotted representation exhibits a larger vocabulary of 21,908 compared
with 18,885 for dotless, representing approximately a 14% reduction in vocabulary
size for the dotless representation. Despite this reduction, the differences in accuracy,
precision, and recall are marginal. These results suggest that dotless text can effectively
address the POS-tagging task with the added benefit of reduced vocabulary size. This
reduction could simplify model training and deployment, enhancing computational
efficiency without significantly compromising performance.
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Table 12
POS-tagging performance for dotted and dotless Arabic text.

Representation Vocab Size Accuracy Precision Recall F1-score
Dotted 21,908 94.40 90.50 88.44 89.07
Dotless 18,885 93.39 90.17 86.12 87.50

Table 13
NER performance for dotted and dotless Arabic text.

Representation Vocab Size Accuracy Precision Recall F1-score
Dotted 27,282 91.13 72.78 47.03 54.77
Dotless 24,332 91.30 70.81 48.11 55.34

7.2.2 Named-Entity Recognition. NER is tasked with identifying and categorizing specific
entities within text, such as names of persons, organizations, and locations. This pro-
cess enhances comprehension by providing structure to unstructured textual data and
supports applications across domains like information retrieval and recommendation
engines. In this subsection, we explore the use of dotless Arabic text compared to dotted
for NER using the ANERCorp dataset, which includes 3,972 training samples and 924
testing samples, with an additional 10% reserved for development. Our experimental
setup used a word-based tokenization approach similar to the POS-tagging task. The
RNN-based architecture includes an embedding layer, three layers of bidirectional
LSTMs with a 0.5 dropout, and a dense layer with softmax for generating class proba-
bilities. Optimization was performed using the Adam optimizer and cross-entropy loss.

Table 13 compares dotted and dotless Arabic text in the NER task. Unlike in POS
tagging, dotless text shows marginal improvements in recall and F1-score. The dotted
text has a larger vocabulary of 27,282 words compared to 24,332 for dotless. These
results suggest that dotless text is a viable alternative for named-entity recognition
tasks. It can provide similar performances as compared to dotted text while providing
reduction in vocabulary size.

7.3 Neural Machine Translation

Machine translation (MT) is the process of converting text or speech from one language
to another. This task is crucial for breaking down language barriers and facilitating
global communication across diverse groups. MT systems rely heavily on understand-
ing the nuances of language, including grammar, syntax, and context, to produce accu-
rate and coherent translations. Analyzing the performance of dotted text against dotless
is of great importance to demonstrate the capabilities of dotless text in representing the
language structure and intricacies. In this subsection, we experimented with English-
Arabic translation in both directions.

We utilized a transformer-based architecture (Vaswani et al. 2017) comprising 6
encoder and decoder layers with 512 embedding size and a 2,048-dimensional feed-
forward layer, utilizing the RAdam optimizer (Liu et al. 2020). We trained our model on
the English-Arabic subset of the iwslt2017 dataset (Cettolo et al. 2017), which includes
231,713 training samples, and 888 validation samples. For testing, we used the 2015
subset containing 8,583 samples. Data preprocessing involved removing uncommon
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Unicode characters, normalizing punctuation using sacreMoses (hpl), and unifying nu-
merical characters to English formats. For Arabic, diacritics and tatweel characters were
removed, and spaces were added around punctuation. We evaluated the performance
using sacreBLEU (Post 2018) on both dotless and dotted texts, with dotless experiments
involving the re-addition of dots to predicted texts. To achieve better performance, we
averaged the last 10 checkpoints and reported its score if it outperformed the best check-
point score. For the dot restoration, we utilized a similar system to the one introduced
in Section 6 and trained it on this translation dataset to ensure domain adaptation. Batch
sizes were adjusted to handle 4k tokens per iteration.

In both translation directions, we experimented with word-based and data-driven
subword tokenization using SentencePiece (Kudo and Richardson 2018), which is well-
known for such tasks. For word-based tokenization, we included all the vocabulary.
This results in vocabulary size was 97,387 for dotted text and 81,272 for dotless text,
achieving a reduction of around 16.5%. For subword tokenization, we set the vocabulary
size to 4,000. In the case of Arabic text, we observed that this impacts the sequence
length, resulting in 81 tokens for dotless text and 89 tokens for dotted text, as we selected
sequence lengths covering the full text of at least 99% of the training samples.

7.3.1 English to Arabic. Table 14 presents the results of machine translation comparing
dotted and dotless text representations. For each tokenization method, the undotted
representation compares the undotted predictions with the undotted version of the test
set. Additionally, we restored dots to the undotted predictions using the dot restoration
system introduced and reported the corresponding BLEU scores. The results indicate
that with coarse-grained tokenization, such as word-based tokenization, dotless text
produces results that are on par with dotted text, even after restoring dots. For fine-
grained tokenization like SentencePiece, a small difference is observed when dots are
restored. Nonetheless, the dotless text maintains robust performance on the undotted
text, demonstrating its efficacy in dotless settings. It should be noted that the reduction
in the BLUE score for dotless representation is the result of the dots restoration system
and not due to using dotless text in the translation task.

7.3.2 Arabic to English. The results in Table 15 illustrate the BLEU scores for Arabic- to
English machine translation across word and subword tokenization methods. As in the
English-to-Arabic translation, in the undotted version, we removed the dots from the
targets before computing the BLEU score. Interestingly, the undotted representation
outperforms its dotted counterpart when using word-based tokenization. However,

Table 14
BLEU scores of English-to-Arabic translation comparing dotted and dotless text performance
with words and SentencePiece tokenizations.

Representation Tokenization BLEU Score
Dotted

Word
12.57

Undotted 13.55
After Dots Restoration 12.48
Dotted

SentencePiece
17.38

Undotted 17.35
After Dots Restoration 16.01
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Table 15
BLEU scores of Arabic-to-English translation comparing dotted and dotless text performance
with words and SentencePiece tokenizations.

Representation Tokenization BLEU Score
Dotted Word 25.85
dotless 27.10
Dotted SentencePiece 31.48
dotless 29.77

in the case of the more granular SentencePiece tokenization, the performance of the
undotted text decreases to 29.77 as compared to 31.48 for the dotted text. This variation
suggests that the finer segmentation of SentencePiece may be more sensitive to the
nuances introduced by dots.

As a summary for the downstream NLP tasks, we performed 7 different tasks using
various tokenization schemes comparing the standard dotted text with dotless Arabic
text representations. The performances using both the representations were compara-
ble across different tokenizations, with dotted representation achieving slightly better
performances many times and dotted representation outperforming at other occasions.
Dotless representation achieves these results with significant reduction in vocabulary
sizes, and in some cases showing reduction of up to 50%. This concludes our findings
that dotless representation is a promising and viable approach for Arabic NLP.

8. Conclusion and Future Directions

In this study, we explored the feasibility and adaptability of a novel text representation
of Arabic for various NLP tasks that relies on using dotless Arabic rasms to represent
the Arabic text, thereby significantly reducing the vocabulary size. To examine the
capabilities of this representation, we conducted an in-depth analysis comparing dotted
and dotless representations across different datasets and tokenizations. We also evalu-
ated the performance of both dotted and dotless texts across various tasks, including
language modeling and a wide range of downstream tasks, such as text classifica-
tion, sequence labeling, and machine translation. Our comprehensive experiments and
evaluations have led to several key findings that highlight the potential benefits and
implications of adopting this novel representation. For tasks with a generative nature,
we proposed a dotting system that restores dots for dotless text.

We noted that the dotless representation significantly reduces the vocabulary size
across all tokenization levels, which directly translates into more efficient processing
and compact models. Our analysis using Zipf’s and Heap’s laws confirms that dotless
text follows similar patterns compared to its dotted counterpart, demonstrating its
viability as a reliable alternative representation. Furthermore, entropy analysis indicates
that dotless text maintains a level of linguistic information close to dotted text, with a
minimal reduction in information content.

In language modeling tasks, statistical n-gram models and neural language models
using RNNs and transformers revealed that dotted and dotless text share similar
perplexity patterns. This suggests that, despite the absence of dots, the dotless repre-
sentation can effectively capture the linguistic structure of Arabic. Notably, the neu-
ral models also benefited from the reduction in vocabulary size, leading to smaller
model size.

591



Computational Linguistics Volume 51, Number 2

In downstream NLP tasks, our results across sentiment analysis, news topic classi-
fication, and Arabic poetry meter classification show that the performance gap between
dotted and dotless text is minimal. For sequence labeling tasks such as part-of-speech
tagging and named entity recognition, the dotless representation continues to perform
comparably well. Finally, in machine translation tasks, dotless text proved capable of
achieving on-par results compared to its dotted counterpart in English-Arabic and
Arabic-English translation tasks.

Future work could explore several directions to further enhance the practical appli-
cations of dotless representation. This includes investigating the integration of dotless
text to improve the performance of language models, especially in large language
modeling domains. Exploring hybrid methods that combine the dotless and dotted
representations for specialized NLP tasks, where context-sensitive dotting might be
necessary, would also be valuable. Moreover, investigating the impact of dotless text
on speech recognition systems is an interesting research direction to explore. These
directions will pave the way for fully leveraging the efficiency and performance benefits
offered by dotless representation in real-world applications.
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Appendix A

Figure 15
Zipf’s Law plots for various datasets with different tokenizations. Each row represents a
tokenization level. The first row is for word tokenization, the second is for farasa tokenization,
and the third is for disjoint-letters tokenization. Each tokenization is split into two graphs as it is
difficult to plot all datasets in one graph.
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Appendix B

Figure 16
Heap’s Law plots for various datasets with different tokenizations. Each row represents a
tokenization level. The first row is for word tokenization, the second is for farasa tokenization,
and the third is for disjoint-letters tokenization. In each tokenization, Quran has been split into a
separate graph as it has a small vocabulary size compared with the other datasets.
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