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Abstract

Morphological Segmentation is a major task
in Indigenous language documentation. In this
paper we introduce a novel statistical algorithm
called Morphemo to split words into their con-
stituent morphemes, and we compare its perfor-
mance to five other methods for morphological
segmentation, including large language models
(LLMs). We use these tools to analyze Bribri,
an under-resourced Indigenous language from
Costa Rica. Morphemo has better performance
than the LLM when splitting multimorphemic
words, mainly because the LLMs are more con-
servative tend to leave words under-analyzed,
which gives them an advantage with monomor-
phemic words. In future work we will use these
tools to tag Bribri language corpora, which
currently lack morphological segmentation. A
Python implementation of Morphemo is pub-
licly available.

Resumen

Segmentación morfológica del Bribri con
métodos no-supervisados, supervisados y
basados en modelos grandes del lenguaje.
La segmentación morfológica es una tarea im-
portante en la documentación de lenguas indí-
genas. En este artículo presentamos un nuevo
algoritmo estadístico llamado Morphemo, que
divide las palabras en sus respectivos morfemas.
Además, comparamos el desempeño de Mor-
femo con cinco otro algoritmos, incluyendo
modelos grande de lenguaje (LLM). Usamos
estas herramientas para analizar el bribri, una
lengua indígenas de bajos recursos de Costa
Rica. Morphemo tiene mejor rendimiento al
dividir palabras multimorfémicas, sobretodo
porque los LLMs es más conservadores y dejan
más palabras sin analizar, lo que a su vez les
da una ventaja al lidiar con palabras monomor-
fémicas. En el futuro usaremos estas herramien-
tas para anotar corpus de lengua bribri, que en
este momento carecen de segmentación mor-
fológica. Finalmente, liberamos una versión en
Python de Morfemo, disponible públicamente.

1 Introduction

Natural Language Processing can be a useful tool
to accelerate the documentation of Indigenous lan-
guages. Numerous ‘bottlenecks’ make the work
considerably more time-consuming than for ma-
jority languages (Seifart et al., 2018), and easing
these bottlenecks can free up the time of linguists,
language teachers and activists to perform their
time-critical work towards language teaching, revi-
talization and reclamation.

In this paper we have two goals. First, we will
study how a probability-based statistical algorithm
can provide good performance in the task of mor-
phological segmentation. Second, we will also
study how Large Language Models (LLMs) per-
form this task, and their advantages and disadvan-
tages compared to statistical methods.

1.1 Morphological Segmentation in
Indigenous Languages

Morphological segmentation is a key aspect of
linguistic documentation, and the highest-priority
task when performing interlinearized annotation of
minority-language data (Moeller, 2025). In Indige-
nous languages this task is particularly complicated
because the paucity of data makes it difficult to
train automated segmentation tools.

Much past work on low-resource languages has
taken an unsupervised learning approach (Ham-
marström and Borin, 2011; Kurimo et al., 2010;
Khandagale et al., 2022; Eskander et al., 2020).
This is often preferred or, in some cases, required
because it eschews the need for a labeled corpus
of data for training, which is particularly difficult
to develop for low-resource languages. Mott et al.
(2020) examined the effectiveness of existing un-
supervised models (models that only train on unla-
beled data) cross a range of low-resource languages
with 2000 tokens. They found average F1 scores
were generally between 0.2 to 0.6, with a mean be-
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low 0.5. However, even this limited success must
be tempered by the reality that much of these sys-
tems’ accuracy derives from their correct prediction
of monomorphemic words.1 Put another way, the
system is good at analyzing words without a mor-
pheme boundary, in which the system is correct
simply by not segmenting. When performing mor-
phological segmentation, it is imperative that a tool
can actually segment a multimorphemic word into
its constituent morphemes.

A semi-supervised model trains on both labeled
and unlabeled data. This can allow a small set of
annotated data to supplement a significantly larger
collection of unannotated data. Comprising on the
limits of data collection and the need for effec-
tive segmentation, recent scholarship has focused
on semi-supervised systems (Kohonen et al., 2010;
Ruokolainen et al., 2016). For instance, for English,
Finnish, and Turkish, a semi-supervised approach
achieved F1 scores of 0.8 to 0.9, despite the anno-
tated data comprising less than 1% of the overall
dataset (Ruokolainen et al., 2014). Although these
datasets have hundreds of thousands of unlabeled
tokens, significantly greater than the Bribri corpus
that will be used here (see section 2.3 for details),
they demonstrate effectiveness with approximately
1000 labeled tokens.

There is some recent work on using LLMs for
morphological segmentation (Weissweiler et al.,
2023; Ács, 2025), and for segmentation of low-
resource languages in particular. For example,
ChatGPT-4o (Hurst et al., 2024) has shown mor-
pheme segmentation accuracies between 13% and
50% for languages like Lezgi and Uspanteko (Ginn
et al., 2024).

1.2 Bribri Morphology and NLP
Bribri is a Chibchan language spoken in Southern
Costa Rica and northern Panama. It has a estimated
total of 7000 speakers (INEC, 2011), and it is classi-
fied as a vulnerable language (Sánchez Avendaño,
2013), given that many children in the commu-
nity no longer speak it. The language has a rela-
tively high number of written resources compared
to other languages in its family. It has a gram-
mar (Jara, 2018), an online and a print dictionary
(Margery, 2005; Krohn, 2021), two textbooks (Con-

1Monomorphemic words are words with a single identifi-
able meaningful unit, for example, ‘run’ in English. Contrast
this with multimorphemic words, where multiple meaningful
units can be identified, such as ‘running’ or ‘runner’ which
are each composed of ‘run’ and some other component (‘-ing’
or ‘-er’) that indicates tense or a person who does the action.

stenla et al., 2004; Jara Murillo and García Segura,
2013), an oral corpus (Flores-Solórzano, 2017a,b),
and several schoolbooks (Sánchez Avendaño et al.,
2021a,b) and books with traditional stories trans-
lated into Spanish and English (García Segura,
2016; Jara Murillo and García Segura, 2022).

Bribri is a morphologically inflectional language.
Table 1 has examples of nominal, verbal and adjec-
tival suffixes. The first word, alìnuk ‘to be cooked’,
has suffixes for the middle voice and the infinitive.
The second word is the pronoun ie’pa ‘they’, with
the plural suffix -pa attached to the 3rd person sin-
gular pronoun. The third word, bua’ë ‘very good’,
is an adjective with an intensifier suffix.

Word Morphemes Meaning
1. alìnuk al+ìn+uk ‘to be cooked’
2. ie’pa ie’+pa ‘they’
3. bua’ë bua’+ë ‘very good’

Table 1: Examples of Bribri inflectional suffixes for
verbs, nouns and adjectives

In addition to inflectional suffixes, Bribri has
numerous derivational suffixes (Jara, 2018). Table
2 shows examples of derivation for nouns, verbs
and adjectives. The first two are nouns: bríbriwak
‘Bribri (person)’ has the suffix {-wak} ‘person’;
the second word, kalö̀io ‘pants’ has the noun kalö̀
‘foot, leg’ and the suffix {-io} ‘wearable (thing)’.
Words #3 and #4 are verbs. The word shkö̀kka
‘to climb’ is composed of the verb shkö̀k ‘to walk’
and the directional suffix {-ka}, ‘upwards’, so this
word literally means ‘to up-walk’. Verb #4, kùkwa
‘to find’, is made up of the verb kùk ‘to pull’ and
the directional suffix {-wa} ‘inwards’, and so it
literally means ‘to in-pull’. Finally, the fifth word
is the adjective dawèie ‘sick’, made up of the noun
dawè ‘sickness’ plus a suffix that forms adjectives.

Word Morphemes Meaning
1. bríbriwak bríbri+wak ‘Bribri person’
2. kalö̀io kalö̀+io ‘pants’
3. shkö̀kka shk+ö̀k+ka ‘to climb’
4. kùkwa k+ùk+wa ‘to find’
5. dawèie dawè+ie ‘sick’

Table 2: Examples of Bribri derivational suffixes for
nouns, verbs and adjectives

Finally, Bribri exhibits compounding and redu-
plication as morphological processes. Table 3
shows examples of such words. The word kalö̀tök
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is a compound of the word kalö̀ ‘foot, leg’ and the
verb tö́k ‘to hit’. The second word, tsìrtsir is the
plural form of the adjective ‘small’, and it is a par-
tial reduplication of tsìr ‘small’ (notice how the
second part has a different tone). The third word,
máshmash ‘orange (color)’, is a partial reduplica-
tion of the adjective màtk ‘red’.

Word Morphemes Meaning
1. kalö̀tök kalö̀+t+ök ‘to dance’
2. tsìrtsir tsìr+tsir ‘small’ (pl.)
3. máshmash másh+mash ‘orange (color)’

Table 3: Examples of Bribri compounding and partial
reduplication

There has been work on Bribri NLP, including
speech recognition for Bribri and its sister language
Cabécar (Coto-Solano, 2021; Coto-Solano et al.,
2024), and forced alignment for Bribri, Cabécar,
and Malecu, another Chibchan language (Coto-
Solano and Solórzano, 2016; Solórzano and Coto-
Solano, 2017; Coto-Solano et al., 2022). There has
also been work on machine translation (Feldman
and Coto-Solano, 2020; Kann et al., 2022; Jones
et al., 2023; Ebrahimi et al., 2024) and the study
of semantics through embeddings (Coto-Solano,
2022). There are also tools to extend the usage of
the language, such as keyboards (Solórzano, 2010)
and digital dictionaries (Krohn, 2020).

Additionally, there has been previous NLP work
on Bribri morphology. Chiruzzo et al. (2024)
worked on morphological prediction for the cre-
ation of language learning tools, and Karson
and Coto-Solano (2024) worked with morpholog-
ical tagging using UFEATS (de Marneffe et al.,
2021), reaching a precision of 80%. Flores-
Solórzano (2019) used an FST to annotate a
corpus (Flores-Solórzano, 2017a). For example,
the word mèkeka ‘to put (something) in (some-
thing in an upward direction)’ produces the output
ame+V+Imp1Tran+Imp2+Dir[ascenso]. Here we
will focus on segmentation per se, so that we can
get an output form like m+è+ke+ka, where the root,
the thematic vowel, the imperfect aspect and the
directionals are separated automatically.

2 Methodology

In order to test the segmentation of Bribri mor-
phemes, we will compare the performance of our
novel, statistical algorithm (Morphemo) to an un-
supervised algorithm (BPE), a semi-supervised al-

gorithm (Morfessor), and to direct prompting from
a commercial LLM algorithm (Claude 3.7 Sonnet).
We will train and test the algorithms using two
pre-existing corpora for Bribri.

2.1 Morphological Segmentation Algorithms

We chose byte-pair encoding, or BPE (Gage, 1994)
as a baseline due to its completely unsupervised
nature. We used a sample of unlabeled Bribri text
to train the BPE tokens (more information about
this data in section 2.3). We compare this to the
semi-supervised method used in Morfessor (Virpi-
oja et al., 2013), where pre-labeled Bribri words
were used for the training. For example, Morfessor
saw shk+èn+a for shkèna ‘hello’.

We then selected an LLM-based algorithm to
compare these statistical methods with state-of-the-
art deep learning techniques. The selection of a
specific model was not straightforward, and it will
be described further in section 4.3 below, but, after
a preliminary exploration of the performance of
several models, Claude 3.7 Sonnet (Feb 19, 2025)
was selected (Anthropic, 2025).

We used three types of LLM evaluation. (1) In
the Zero shot condition, we provided the LLM with
a file that contained the list of words to split (the
test set), and a prompt asking the system to split
the words into morphemes (see Appendix A for the
prompts). (2) In the Few shot condition, we up-
loaded three files: (a) the unlabeled test set, which
contains a list of words to split, (b) the unlabeled
training set, a longer list of words, without any
morpheme boundaries (e.g. shkèna), and (c) the la-
beled training set, where the words do have marked
boundaries (e.g. shk+èn+a). We upload this data
to provide a suggestion for how to label the words
with their morpheme boundaries. Along with this
upload, we provided a prompt for the system to
try to learn from the training sets and apply that
to the test set. (3) Finally, in the Few shot plus
unlabeled condition, we uploaded the same three
files, plus a fourth file with unlabeled, monolin-
gual Bribri text from the AmericasNLP collection
(Ebrahimi et al., 2022), with a total of 20 thousand
additional words. 20 thousand was the maximum
size allowed by the context window. We hypothe-
size that the added text will allow the LLM to gain
further understanding of the patterns in Bribri text
and therefore increase its performance.
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2.2 Morphemo Algorithm

We will compare the algorithms above to our novel
algorithm we are calling Morphemo.2 This semi-
supervised, N-gram-based algorithm is geared to-
wards morphological segmentation in low-resource
settings. Using Bayesian inferences, it examines
each point in the word between two characters.
Let’s consider a two character sequence with the
characters NM. Considering the N-grams both be-
fore N and after M at that point, as well as the
current number of assigned morpheme boundaries
nb at the time of calculation, an estimate of the
likelihood of a non-morpheme boundary is:

fp(NM) = P (M |N) ∗ P (N |M) ∗ P (nb) (1)

This is to say, the probability of a non-boundary
is the probability of M following N, multiplied by
the probability of N preceding M, multiplied by the
probability that a word of the same length as our
word will have nb boundaries.

Then, using a slightly altered formula to consider
the likelihood of a morpheme boundary b given N
and M, the boundary likelihood is:

fm(NM) = P (b|N) ∗ P (b|M) ∗ P (nb + 1) (2)

This is to say, the probability of a boundary be-
tween N and M is the probability of a boundary
after N, multiplied by the probability of a boundary
before M, multiplied by the probability that, given
the length of the word, it would have nb+1 bound-
aries. Once these probabilities are calculated, the
system can decide to apply a boundary or not.

This dual forward and backward-facing N-gram
approach is designed to capture the intuition that a)
certain n-grams may disproportionately precede a
morpheme boundary and b) certain n-grams may
disproportionately follow a morpheme boundary,
such as common verbal inflections or derivation
and compound suffixes. Lastly, the term at the
end of the model is meant to prevent the model
from both over- and under-segmentation, by prefer-
ring boundary insertion steps toward the average
number of morphemes for the given word’s length.
Admittedly, these are broad generalizations that
avoid many nuanced morphological features. But

2A Python implementation of Morphemo can
be downloaded at https://github.com/Celsian4/
bribri-morphology

they were chosen to give a system trained on little
data the best chance of succeeding.

The model trains on both the unlabeled and la-
beled data by building frequency tables. The un-
labeled data is used to note the occurrence of se-
quences of n-grams in the language as a whole (this
is used for the P(N|M) and P(M|N) in the above
functions). The labeled data is used to generate
a similar table but with an additional morpheme
boundary character, providing a more specific view
into the frequency of certain n-grams near mor-
pheme boundaries (this is used for the P(N|b) and
P(b|M) in the above functions). Additionally, the
labeled data is used to tabulate the number of mor-
phemes per word (for P(nb)).

2.3 Data and Evaluation

The algorithms described above were trained using
two types of data. First, the labeled data came from
a set of 1410 words in the Universal Dependen-
cies TreeBank in Coto-Solano et al. (2021). These
words (and the sentences they come from) were
chosen from the oral corpus (Flores-Solórzano,
2017a) and from the Constenla et al. (2004) and
Jara Murillo and García Segura (2013) textbooks,
and they represent a realistic distribution of Bribri
morphology.

The words were manually segmented into mor-
phemes by the authors of this paper, one of whom
is a linguist trained in the Bribri language. A ran-
dom 80% of the words were used for training (1128
words), and the remaining 20% were left aside for
testing (282 words). This procedure was repeated
20 times, so the results are reported for 20 itera-
tions of training/testing of each algorithm. In the
case of Morphemo and Claude 3.7, the labeled
data was supplemented with unlabeled, monolin-
gual Bribri data from the AmericasNLP machine
translation corpus (Ebrahimi et al., 2022). This was
85816 words for Morphemo, and only 20000 due
to prompt-size restrictions.

We chose F1, a combination of precision and
recall, to represent the results (β=1). For each of
the models we calculated three variations of F1: (1)
The F1 for all of the words, regardless of how many
morphemes they have, (2) the F1 but only for the
monomorphemic words in the gold-standard, and
(3) the F1 but only for the multimorphemic words
in the gold-standard. We do this to distinguish
the performance of the system when understanding
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more complex morphological configurations.3

In the case of BPE, we trained the model using
the 80% splits of the TreeBank’s unlabeled data,
and then evaluated it using the remaining 20% of
the TreeBank’s (manually labeled) data. For Mor-
fessor, we used the 80% of the labeled data, and the
remaining 20% for the evaluation. As for Claude
Zero Shot, we only used the 20% evaluation sets,
but in Claude Few Shot we gave the model both
the labeled training data and the evaluation set, and
in the Claude Few shot + Unlabeled, we loaded
labeled training data, the evaluation set, plus ad-
ditional unlabeled text. Finally, for Morfemo, we
gave it the unlabeled test sets.

3 Results

Table 4 shows the average F1 for the algorithms
studied, divided by their performance for all the
words in the test set, for its monomorphemic words,
and for its multimorphemic words. Figure 1 shows
the medians and the distribution of these results.

From the results in table 4, the BPE, Morfes-
sor and Zero Shot Claude 3.7 had similar results
for morphological segmentation (around F1=57).
Morphemo has higher performance (F1=68), but
the Few Shot Claude 3.7 results have the highest
accuracy (F1=78). This pattern also holds for the
monomorphemic words, but not so for the words
with more than one morpheme.

A statistical analysis was conducted to study the
differences between monomorphemic and the mul-
timorphemic words. A two-way ANOVA was used
to study the interaction of the algorithm (6 levels:
BPE, Morfessor, Claude 3.7 Zero Shot, Claude 3.7
Few Shot, Claude 3.7 Few Shot plus unlabeled data,
and Morpheme) and the type of metric (2 levels:
monomorphemic and multimorphemic words),4

with F1 as the independent variable. This ANOVA
revealed that there is a significant interaction be-
tween these variables (F(5,228)=46, p<0.00001).

A Bonferroni pairwise correction was used to
further study the relationship between Morphemo
and Claude 3.7. Claude 3.7 using Few Shot is
better than Morphemo when the segmentation of

3When calculating F1, morphemes were considered inde-
pendently, such that a non-exact match would not be counted
as entirely inaccurate. This was done to acknowledge that,
particularly in morphologically complex languages, all-or-
nothing performance is unrealistic to expect from morphologi-
cal segmentation programs. As such, partial accuracy is worth
recognizing.

4The "all words" condition was excluded to preserve the
assumption of independence in the ANOVA.

all of the words is considered (∆F1=10.3), and it
is significantly better for monomorphemic words
(∆F1=14.9, p<0.00005). This is also true of Claude
3.7 Few Shot when it gets the additional unlabeled
data; it is better for all words (∆F1=16.6) and it
is significantly better for monomorphemic words
(∆F1=16.6, p<0.00001).

The pattern, however, is very different for multi-
morphemic words. When we compare Morphemo
to the Few Shot model, the F1s for both methods
are virtually identical in how they tag multimor-
phemic words, and in fact the Morphemo’s aver-
age F1 is better (F1Morphemo=59.6, F1Claude=57.2).
There is no significant difference between their
means (p=0.99), but there is a considerable dif-
ference in variance. Claude has a standard devia-
tion more than three times larger (SDF1:Claude=15.0,
SDF1:Morphemo=4.2). When analyzing multimor-
phemic words, the results for the Claude F1 can
be as high as 94, but they can also be as low as
18. With Morphemo, on the other hand, the multi-
morphemic F1 ranges from 53 to 78. This implies
that the results from Morphemo are more reliable
overall.

Morphemo’s advantage when labeling multimor-
phemic words is even more pronounced when com-
pared to Claude 3.7 with Few Shot plus the un-
labeled data. Morphemo is significantly better
(∆F1=17.2, p<0.00001). Moreover, Claude shows
an even wider range of F1 values, from 15 to 72,
but with a median of 36 and an average of 42.

In summary, out of all the algorithms tested, Mor-
phemo has the best performance when analyzing
multimorphemic words.

4 Discussion

In the following section we will further analyze
the difference between the statistical method Mor-
phemo and the LLM-based morphological segmen-
tation, as well as explain how the LLM was chosen
for the comparisons in the paper.

4.1 Morphemo versus LLM-Methods
The most notable pattern in the results is that Mor-
phemo, which has a relatively fast training time
(1.42 seconds for loading and training on a sin-
gle CPU) and no neural language model, matched
and sometimes outperformed the LLM.5 This is a

5This model also has the advantage of using much less
processing time and power. The usage of excessive power by
artificial intelligence is a important concern for our field, given
that Indigenous communities and other minoritized communi-
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Figure 1: F1 for morphological segmentation of Bribri. (ZS: Zero Shot, FS: Few Shot, FS+Unlabeled: Few Shot
plus additional file with unlabeled monolingual Bribri text).

Algorithm All words Monomorphemic words Multimorphemic words
BPE 53.6 ± 2.0 53.1 ± 2.4 51.1 ± 3.6
Morfessor 58.6 ± 2.4 70.0 ± 2.6 28.9 ± 4.8
Claude 3.7 (Zero) 59.0 ± 10.9 73.0 ± 13.2 22.4 ± 7.7
Claude 3.7 (Few Shot) 78.0 ± 6.9 85.5 ± 8.8 57.2 ± 15.0
Claude 3.7 (FewShot+Unlabeled) 75.0 ± 6.0 87.5 ± 8.1 42.4 ± 17.0
Morphemo 67.7 ± 2.1 70.9 ± 3.1 59.6 ± 4.2

Table 4: F1 mean and standard deviation for morphological segmentation of Bribri using unsupervised, semi-
supervised and LLM-based algorithms

pattern that is still observable in low-resource lan-
guage work, lending support to the continued use
of statistical tools for the preparation of resources
in low-resource settings.

In order to further understand the prediction pat-
terns of Morphemo and Claude Few Shot, we ran-
domly selected five test sets to conduct a closer ex-
amination. In this sample, the gold-standard Bribri
words had 1.39 ± 0.03 morphemes. (The multi-
morphemic words had 2.36 ± 0.05 morphemes).
When we compare each gold-standard word with
their respective predictions from Morphemo and
Claude Few Shot, we can see that Morphemo pre-
dicted 0.33 ± 0.04 more morpheme boundaries
than it should have, whereas Claude predicted 0.11
± 0.15 fewer boundaries than it should. In other
words, Claude seems to be more conservative. This
helps it overall in this particular language because
most of the words are monomorphemic (206 ±
6) and only about 27% of each sample is multi-
morphemic (76 ± 6). We predict that, in settings
with morphologically richer languages, Morphemo

ties feel the impact of climate change first and more intensely
(Maldonado et al., 2016).

might outperform Claude overall.

4.2 Types of morphemes and performance

The next question might be: Does the type of mor-
pheme make a difference? Do the systems have
different behaviors depending on whether they are
analyzing roots or affixes, be they inflectional or
derivational?

First we’ll examine the affixes. For this calcula-
tion we will focus on a single, randomly selected
test set, and we’ll compare the predictions of Mor-
phemo and Claude 3.7 Few Shot. We selected a
single type of inflectional morpheme, the infinitive
marker (-ök, -uk) because of its relative frequency.
Out of 282 words in the test set, 14 had infinitive
markers. Both Morphemo and Claude predicted 13
out of 14 correctly.

We also studied a type of derivational morpheme,
the directionals, examples of which can be found
on items #3 and #4 of table 2 above. There were
6 directionals in the test set, and Claude had more
of them correct (5 out of 6). The difference be-
tween the two was the word mèkettsa ‘to give’, lit-
erally, “to put outwards". Here the correct division
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is m+è+ke+ttsa, with the directional suffix {-ttsa}
‘outwards’. Claude produced mè+ke+ttsa, where
the suffix is intact (but the root {m} is not separate
from the thematic vowel {–é}). On the other hand,
Morphemo got the root right, but mistakenly broke
up the suffix and produced m+è+ke+t+tsa. Table
5 below summarizes these numerical patterns here.
In short, Claude might have an advantage here be-
cause it was less aggressive in splitting uncommon
derivational suffixes apart.

Type of morpheme Morphemo Claude
Inflectional (n=14) 93% 93%
Derivational (n=6) 67% 83%

Table 5: Percentage of correctly segmented morphemes
for inflectional (infinitive) and derivational (directional)
suffixes in one randomly selected test set. “Claude" is
Claude 3.7 (Few Shot).

The sample only had two examples of reduplica-
tion. Both of them were oversplit by Morphemo,
and one of them was split correctly by Claude:
The word molótsmolóts ‘really tasty’ has the com-
plete reduplication molóts+molóts. Claude split
the word correctly, but Morphemo oversplit the
word and produced mol+ó+ts+mol+ó+ts.

The real difference between the two algorithms
can be seen when we analyze the segmentation
of the roots. We analyzed the first 120 words of
the randomly selected test set studied above and
counted the number of mono and multimorphemic
words that were analyzed correctly. Table 6 shows
a summary of these patterns.

Morphemes in word Morphemo Claude
One (n=78) 71% 89%
More than one (n=42) 83% 45%

Table 6: Percentage of roots in one randomly selected
test set that were predicted correctly, for monomor-
phemic words (just the root) and multimorphemic words
(the root plus affixes). “Claude" is Claude 3.7 (Few
Shot).

When faced with monomorphemic words,
Claude tends to be more conservative, and therefore
gets more of them correct (89%, versus 71% for
Morphemo). For example, the verb tso ‘to be, exist’
shouldn’t be split, but Morphemo tried splitting it
into ts+o. This could be because there are verbal
conjugations that are a suffix {–o}, and Morphemo
overgeneralized from that pattern.

On the other hand, when the algorithms try to

find the roots in multimorphemic words, the situ-
ation reverses. Claude only gets 45% of the roots
right, whereas Morphemo can accurately segment
83% of them. There are common verbs like dë’
‘to go’ and sú ‘to see’ whose root is only the first
consonant, and which should be split d+ë’ and s+ú.
This type of one-phoneme root occurs in other com-
mon words (e.g. (a)múk ‘to put’, tö́k ‘to hit’), and
Claude consistently fails at these kinds of verbal
splits. Claude also fails to separate common deriva-
tional suffixes. For example, the word dlásháwö
‘ginger (food)’ should be dláshá+wö. The second
morpheme means that something is spherical, and
it is a reduced, morphologized version of the free
root wö̀ ‘sphere’. Morphemo did get the separation
between the two correct.

4.3 Selection of LLM

One important aspect of this paper is that Claude
was chosen from a group of LLMs because it
provided the most consistent answers. The same
prompts and inputs were used with ChatGPT-4o
(Hurst et al., 2024), Llama 3.2 11b (Meta AI, 2024)
and Mistral 7b (Jiang et al., 2023). ChatGPT re-
fused to provide outputs for about half of the splits,
which is, after all, a desirable behavior for an LLM
dealing with an Indigenous language it doesn’t
know. However, sometimes it would provide ex-
planations for its (incorrect) splits, instead of just
providing a list, and this made the processing dif-
ficult. As for Mistral, it would attempt to offer
code to solve the problem instead of offering solu-
tions. Sometimes this code would be runnable, but
sometimes it contained hallucinations that made it
unworkable for the problem. The output of Llama
was perhaps the most difficult to process. It pro-
duced hallucinated lists, and then simply halluci-
nated additional text. Appendix B has examples of
LLM outputs for these systems.

4.4 Testing Morphemo for Extremely
Low-Resource Settings

Finally, we were interested in pushing the low-
resource conditions to understand how the algo-
rithm behaves with even less data, and how it came
to behave the way it does with Bribri. In order
to do this, we performed additional experiments
where we manipulated the size of the training data.
As described in section 2.2, Morphemo uses two
sources of data for training: (i) labeled data and (ii)
unlabeled monolingual data. Morphemo uses these
two sources to calculate its probabilities. Therefore,
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by changing how much training input there was,
we could study the algorithm’s reaction to lower
volumes of data.

In the first experiment, we changed the size of
the labeled training data. We started with the same
20 training/test sets from the previous experiment,
but, for each of them, we used 7 partitions contain-
ing {25, 50, 100, 200, 500, 1000, 1128} randomly
selected labeled words, chosen from the total of
1128 available labeled training examples. The un-
labeled data was either kept at its maximum (large)
size (85816 words), or artificially capped to be
small (100 words) in order to simulate extremely
low-resource conditions. The test set remained the
same for all of the evaluations (282 words). Figure
2 shows the results.

In the second experiment, we changed the size
of the unlabeled data. We split the unlabeled train-
ing set into 10 partitions of {50, 100, 200, 500,
1000, 5000, 10000, 20000, 50000, 85816} words,
chosen at random from the 85816 words available.
These were paired with the 20 labeled training sets,
which were either provided as they are (large, 1128
words), or capped (small, 100 words). These were
used to train Morphemo models and they were eval-
uated on the same 20 test sets (282 words). Figure
3 shows the results.

Table 7 summarizes the results. There are several
trends that can be observed. First, when there is lit-
tle labeled training data, adding unlabeled doesn’t
help. The blue line in figure 3 refers to labeled
training data kept extremely low. No matter how
much unlabeled data is added, the trend remains
the same. For example, when the labeled data is
nLabeled=100 and the unlabeled is nUnlabeled=50, the
F1 is 70.0. Adding more unlabeled data, up to
nUnlabeled=85816, only increases F1 up to 70.6.

A second trend is that adding labeled training
data improves the analysis of multimorphemic
words, regardless of how much unlabeled train-
ing data there is. In figure 3, when the labeled
data is nLabeled=25, the F1 for multimorphemic
words is very low, F1=9.9 for nUnlabeled=100, and
F1=10.4 for nUnlabeled=85816. As labeled data is
added the multimorphemic performance contin-
ues to improve, up to a maximum of F1=59.6 for
nLabeled=1128 and nUnlabeled=85816. The size of the
unlabeled dataset also makes a difference here. If
the unlabeled data is kept small (nUnlabeled=50), the
multimorphemic F1 is 11 points lower (F1=48.5).
The unlabeled data contributes to learning mor-
pheme splits, but most of the learning is coming

from the labeled data.
A third trend is that there is a trade-off between

the aggressiveness of the algorithm and its accu-
racy with monomorphemic words. In section 4.1
we hypothesized that Claude is more conservative
in splitting words. This is also the behavior we ob-
serve when Morpheme gets very little training data.
If both the labeled and unlabeled training data are
kept low, then the monomorphemic F1 is extremely
high (F1=91.5), but the multimorphemic F1 is ex-
tremely low (F1=9.9). This benefits the general
F1 because this Bribri sample is mostly composed
of monomorphemic words (73% versus 27% mul-
timorphemic). Adding data, up to the available
maximum of 1128/85816 labeled and unlabeled
words, reduces the F1 to 67.7, but this is because
Morphemo has improved almost 50 points when
splitting multimorphemic words (F1=59.6), while
only losing 20 points when analyzing monomor-
phemic words (F1=70.9). By adding data the sys-
tem has become more aggresive. This penalizes
the monomorphemic words, but greatly helps when
analyzing words with more than one morpheme.
The penalty for monomorphemic words becomes
larger when the unlabeled data is small; this type
of data seems to add as a “brake", helping Mor-
phemo understand the behavior of words with a
single morpheme.

In summary, we hypothesize that the algorithm’s
behavior might help analyze languages which tends
towards a higher number of morphemes per word,
and that higher volumes of labeled data would help
it understand those morpheme boundaries better
than current LLMs. We hope to continue testing
this hypothesis in future work.

5 Conclusions

In this paper we studied the problem of morpho-
logical segmentation in Bribri, a language from
Costa Rica. We focused on two specific meth-
ods. We looked at a statistical-based algorithm
called Morphemo, which has better performance
when splitting multimorphemic words. We also
studied how LLMs behave when tackling this prob-
lem. By using Claude 3.7, we provide evidence
that LLMs tend to be conservative with segmen-
tation, and even if they have problems extracting
roots in multimorphemic words, they have better
performance if the sample is mostly made up of
monomorphemic words. These two findings con-
tribute to our knowledge of how computer algo-
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Figure 2: Changes in Morphemo F1 as more labeled training data is added. The unlabeled training data is kept at
two sizes: The full available set (n=85816) and a small, randomly selected subset (n=100) to simulate extremely
low-resource conditions.

Figure 3: Changes in Morphemo F1 as more unlabeled training data is added. The labeled training data is kept at
two sizes: The full available set (n=1128) and a small, randomly selected subset (n=100) to simulate extremely
low-resource conditions. The x-axis is shown at a logarithmic scale.

Labeled words Unlabeled words All words Monomorphemic words Multimorphemic words
25 100 68.9 ± 2.4 91.5 ± 2.5 9.9 ± 4.6
25 85816 68.4 ± 2.8 90.6 ± 2.9 10.4 ± 8.5
100 50 70.0 ± 3.2 85.0 ± 2.8 30.8 ± 9.5
100 85816 70.6 ± 2.7 86.0 ± 3.7 30.4 ± 8.0
1128 50 47.6 ± 5.1 47.3 ± 7.6 48.5 ± 3.6
1128 100 52.9 ± 5.4 53.9 ± 8.3 50.4 ± 4.4
1128 85816 67.7 ± 2.1 70.9 ± 3.1 59.6 ± 4.2

Table 7: Morphemo F1 for different combinations of labeled and unlabeled training data sizes.

rithms interact with under-resourced languages and
their morphology.

Future work should include combining these
two approaches to improve the performance of the
segmentation task. If LLMs can be informed or
modified based on the typological properties of the
language, this could help boost their performance.
Conversely, the results here speak to the continued
relevance of statistical methods when working with
datasets from low-resource languages.

Limitations

The algorithms presented here were trained on writ-
ten Bribri, and can only accept text as their input.
Because most speakers do not write the language,
the system’s usability may be hindered for other
applications. Furthermore, the majority of data that
we wish to tag in Bribri is oral narratives. More-
over, Bribri lacks a single standardized orthography.
Instead, multiple Latin alphabet orthographies are
currently in use to represent the language, only one
of which is present within this dataset. To ensure
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wide applicability, an input system that can easily
accept and interpret all orthographies would need
to be included in a Bribri-directed version of the
Morphemo morphological analyzer in the future.

The Morphemo algorithm needs to be tested
against other algorithms and LLMs. One potential
avenue for NLP work in Bribri is to construct a rule-
based segmentation tool (e.g. Lucas et al. (2024)),
where the specific rules of Bribri morphemes could
be hard-coded programatically or induced using
machine-learning.

Finally, using an LLM might not be a possibility
with languages whose data should not be put in
writing, or used in a way that could be accessed
by software companies. In such a circumstance,
only locally-run software could be a possibility for
morphological segmentation.

Ethics Statement

The models studied in this paper were trained and
tested on openly available materials published by
Costa Rican institutions, such as the University of
Costa Rica, and in shared tasks such as Americ-
asNLP. These materials are available online, and
it can be presumed that they are already part of
the training sets of the LLMs included in this pa-
per. However, the issue of data sovereignty would
emerge if a community wanted to use a commercial
LLM to process restricted data. This would poten-
tially render the LLM-based methods unusable.

The models are being produced to aid in the de-
velopment of corpora, which will occur in collab-
oration with Bribri community members studying
the linguistics of their language.
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A LLM Prompts

The following are the prompts provided to Claude
3.7 for the inference of Bribri morphemes. The
first is the prompt for the zero shot processing:

I need your help to break
down words into morphemes. I
will give you a text file
with words; the text file
is “test-corpus-06.txt". Each
line has a word. I need
you to divide those words into
morphemes, separating them with
the symbol “+”. Please split
those words and print them
in a list, without any other
explanation text. They are from
a language called Bribri. Please
try your best, even if the task
is difficult and you’re not sure
about the answer.
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The second prompt is for the few shot processing,
where the system gets an unlabeled training test, its
corresponding labeled solution, and an unlabeled
test set.

I need your help to break
down words into morphemes. I
will give you a text file
with words; the text file
is "test-corpus-02.txt". Each
line has a word. I need
you to divide those words into
morphemes, separating them with
the symbol “+”. Please split
those words and print them
in a list, without any other
explanation text. I will also
give you an example of the input
and the output. The input is in
"train-corpus-02.txt", and the
output is in "train-gold-02.txt".

The third prompt is for the few shot plus unla-
beled condition. Here the LLM gets the training
and test files, and an additional, unlabeled monolin-
gual Bribri set (20 thousand words) so that it can
infer more data about the language.

I need your help to break
down words into morphemes. I
will give you a text file
with words; the text file
is "test-corpus-02.txt". Each
line has a word. I need
you to divide those words into
morphemes, separating them with
the symbol “+”. Please split
those words and print them
in a list, without any other
explanation text. I will also
give you an example of the input
and the output. The input is in
"train-corpus-02.txt", and the
output is in "train-gold-02.txt".
You can also use the data in
"bribri-unmarked-corpus.txt" to
support your hypotheses. I
don’t need code. I just
need you to split the words
in "test-corpus-02.txt" into
morphemes, with the support of
the other files.

B LLM Output Examples

Figures 4 and 5 show output examples from Llama
3.2 11b and Mistral 7b.
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Figure 4: Sample Llama output

Figure 5: Sample Mistral output
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