Accessible Sanskrit: A Cascading System for Text Analysis and Dictionary
Access

Giacomo De Luca
University of Tor Vergata, Via Cracovia 50, 00133 Roma, Italy
University of Tuscia, Via Santa Maria in Gradi 4, 01100 Viterbo, Italy
giacomo.deluca@unitus.it

Abstract

Sanskrit text processing presents unique com-
putational challenges due to its complex mor-
phology, frequent compound formation, and
the phenomenon of Sandhi. While several ap-
proaches to Sanskrit word segmentation ex-
ist, the field lacks integrated tools that make
texts accessible while maintaining high accu-
racy. We present a hybrid approach combining
rule-based and statistical methods that achieves
reliable Sanskrit text analysis through a cascade
mechanism in which a deterministic matching
using inflection tables is used for simple cases
and statistical approaches are used for the more
complex ones. The goal of the system is to
provide automatic text annotation and inflected
dictionary search, returning for each word root
forms, comprehensive grammatical analysis,
inflection tables, and dictionary entries from
multiple sources. The system is evaluated on
300 randomly selected compounds from the
GRETIL corpus across different length cate-
gories and maintains 90% accuracy regardless
of compound length, with 91% accuracy on the
40+ characters long compounds. The approach
is also tested on the complete text of the Yoga
Sutra, demonstrating 96% accuracy in the prac-
tical use case. This approach is implemented
both as an open-source Python library and a
web application, making Sanskrit text analysis
accessible to scholars and interested readers
while retaining state of the art accuracy.

1

Sanskrit, additionally to the difficulties shared with
other Morphologically Rich Languages (MRL)
(Tsarfaty et al., 2020), presents the unique com-
putationally challenge of Sandhi. Sandhi is defined
in (Matthews, 2014) as the written modification
and fusion of sounds at or across the boundaries of
grammatical units and is used to represent words
exactly as they will be pronounced. While the
Sandhi application rules are deterministic, the pars-
ing rules are sometimes not (Hellwig and Nehrdich,

Introduction

31

2018). The Sandhi phenomenon makes Sanskrit in-
herently hard to parse for Large Language Models
(LLM): the same nominative singular "yogah", may
appear as: "yogas", "yoga", or, as "yoga", when
merged with the initial ‘a’ of the next word. In this
last worst case scenario, the word is indistinguish-
able with the nominative plural, and can only be
parsed looking at the context. Without pre-splitting
of Sandhi and compounds, the model has to learn
multiple representations of the same words in an
already scarcely digitalized literature. The ambi-
guity generated by the multiple parsing solutions
of compounds and word blocks agglutinated by
Sandhi were known since antiquity: for teaching
purpose, alongside the Veda we find the Padap-
atha: a didactic version in which the words are
restored to the non morphed grammatical version
(Pillai, 1941). If the challenge of parsing created
such interpretive complexity that multiple versions
of the same poetic text emerged, why was this diffi-
culty deliberately preserved rather than simplified?
Before delving in how current computational ap-
proaches try to handle this difficulty, it is important
to understand the historical reasons for this pecu-
liar phenomenon. Sanskrit, whose name suggests
a ‘well made’ language, is not a naturally arisen
language, but a highly refined one which was for-
malized by the grammarians, starting from Panini’s
seminal Astadhyayi (Gillon, 2007) (Cardona, 1988).
But what was the ideal leading to keep such a com-
plexity in terms of reading? The reason becomes
clear when reading the motivations for the study
of language provided by Patafijali the grammarian:
“preservation, modification, injunction, brevity and
certainty” (Dasgupta, 1991). Those motivations
are all related to the preservation of the Vedas and
the performance of the sacrifices. From the correct
execution of the sacrifice, soteriological immortal-
ity was believed to be attainable, as is stated in the

Proceedings of the Second Ancient Language Processing Workshop associated with NAACL 2025, pages 31-39
May 4, 2025. ©2025 Association for Computational Linguistics

Rigveda(Jamison and Brereton, 2014). Patafijali
presents multiple examples on how just a slight pro-
nunciation error is enough to make the entire sacri-
fice backfires: the wrong pronunciation of the word
"helayah" is imputed as the reason for defeat of the
Asuras (Dasgupta, 1991); again the mispelling of
the word "Indra—satru" changes is meaning from
‘slayer of Indra’ to ‘slayed by Indra’, resulting in
the death of the son of Tvastr. From the correct exe-
cution of the sacrifices liberation was expected, and
grammar was a mean, if not the primary mean to
the right execution. It is easy to see how the perfor-
mative aspect of language was prioritized over the
communicative one. In consequence of this early
focus, the language eloquently tells how it should
be pronounced, not what words are underneath the
pronunciation. To tackle this complexity, multiple
approaches to the task of Sanskrit Word Splitting
(SWP, splitting Sandhi and compounds) (Hellwig
and Nehrdich, 2018) have been proposed, started
from the pioneering grammatical based works of
Huet (Huet, 2005, 2009). Several approaches to
sandhi and compound parsing have been proposed,
using both data driven approaches (Nehrdich et al.,
2024) and mixed ones (Krishna et al., 2021). This
development has not yet translated into improved
accessibility to the original texts or the dictionaries.
Without previous knowledge, is hard if not outright
impossible to search in the dictionaries the words
that appears in the texts: most words appear mor-
phed by Sandhi or aggregated in compounds. The
Digital Corpus of Sanskrit (Hellwig, 2010-2021)
provides access on click to the stemmed and parsed
text, with minimal entries derived from the Mon-
nier Williams (MW) dictionary (Monier-Williams,
1899). Yet it works just on a manually annotated
corpus of texts.

To improve the accessibility of the original texts,
we propose an approach to Sanskrit word splitting
that retrieves grammatical information and entries
from multiple dictionaries. This approach allows
for both text annotation and for a dictionary search
allowing words to be queried as they appear in text,
— inflected, compounded and morphed by Sandhi.
This approach has been implemented as an open
source Python library which includes a REST API
built using Flask and a web application, which is ac-
cessible at https://www.sanskritvoyager.com.
As it can be seen in Figure 1a, the application al-

'VII1.48.3: "We have drunk the soma; we have become
immortal; we have gone to the light; we have found the gods"

32

lows access to the text of the GRETIL? library.
Words throughout the text become clickable, al-
lowing users to access grammatical analysis and
dictionary entries with a single click. Alternatively,
text can be provided by the user, either by pasting
or typing, receiving the same on demand interactive
analysis.

Alternatively, the web application can be used
as a more accessible engine to query Sanskrit dic-
tionaries, allowing for inflected form search and
multi-dictionary lookup. To check for the capa-
bilities of the current approach to handle complex
compounds and Sandhi-blocks, the underlying sys-
tem has been tested with a random selection of 300
compounds of various length from the GRETIL
corpus, and with a practical use case of annotat-
ing the entire Yoga Sutra. The system performed
effectively in both tasks, maintaining an accuracy
of 92% for all the compounds categories, which
increases to an accuracy of the 96% for the Yoga
Sutra task.

2 Previous Literature

Sanskrit word processing has seen considerable
development over the past few decades, moving
from rule-based systems to more data-driven ap-
proaches, though it continues to present unique
challenges due to the language’s complex morphol-
ogy and phonology. Early approaches often com-
bined Panini’s phonetic and morphological rules
with lexical resources, using either formal meth-
ods or statistical approaches(Huet, 2005) (Huet,
2009). Finite state transducers were employed for
automatic segmentation, with the aim of splitting
a Sanskrit string into its constituent words (Mittal,
2010). However, a major hurdle is the availability
of annotated datasets, which are crucial for training
data driven models, particularly when compared to
the resources available for other languages. The
Digital Corpus of Sanskrit (DCS) has been a signif-
icant effort, providing over 650,000 lexically and
morphologically tagged sentences. Datasets for
word segmentation have also been created, though
these often come with their own limitations (Krish-
nan et al., 2024). The central challenge to Sanskrit
computational linguistics remains the handling of
sandhi, which obscures word boundaries due to the
phonetic merging of words (Krishna et al., 2021).
Recent work has explored neural sequence labeling
tasks, using recurrent and convolutional neural net-

Zhttps://gretil.sub.uni-goettingen.de/gretil.html

https://www.sanskritvoyager.com

samadhi

(a) Enhanced text reader with parsing capability

(b) Dictionary interface for inflected forms

Figure 1: Web interface of the Sanskrit analysis system. (a) shows the dictionary lookup for inflected forms, and (b)
displays the Yoga Siitra text from GRETIL with commentary and on-demand word parsing.

works, and seq2seq models for word segmentation
(Aralikatte et al., 2018). A graph based frame-
work has been developed for structured prediction
tasks including word segmentation and morpho-
logical parsing (Krishna et al., 2021). The goal
of current computational approaches is develop-
ing an unified models capable of handling multiple
tasks such as word segmentation, lemmatization
and morphological tagging jointly. The approach
proposed in (Nehrdich et al., 2024) promise to be
handle all those tasks at once, and is the most sig-
nificant breakthrough in Sanskrit computational
linguistic in the recent years. In (Nehrdich et al.,
2024) a Byt5 model (Xue et al., 2022) was trained
to handle many downstream Sanskrit analysis tasks
maintaining state of the art performance.

3 Methodology

Our methodology takes a fundamentally different
approach from existing solutions by recognizing
that not all Sanskrit words require complex pro-
cessing. Instead of applying sophisticated anal-
ysis techniques universally, we implement a cas-
cading system that starts with simple, determin-
istic methods and progressively moves to more
complex approaches only when necessary. The
foundation of this approach lies in the observa-
tion that many Sanskrit words can be analyzed
through straightforward methods with complete
certainty. For instance, regular inflected forms like
"esyami" can be directly mapped to their root form
through inflection tables, — in this case identifying
it as the third person future of the verb "i" (to go).
Common Sandhi cases follow predictable patterns:
"yoga$" can be restored to its base form "yogah"
through simple substitution rules. Additionally,

33

frequently used inflected forms such as "yogena"
(the instrumental case of "yoga") often appear in
dictionaries as standalone entries, allowing direct
lookup without complex analysis. Our system im-
plements this insight through a three tiered pro-
cessing pipeline, which is shown in the flowchart
at Figure 2. The first tier employs computation-
ally inexpensive methods: dictionary lookup and
basic substitution rules. This provides determin-
istic results for a significant portion of Sanskrit
vocabulary. When these methods fail to produce
a result, the system employs a statistical approach.
The quality of this result is evaluated through a
scoring system. If the confidence score falls below
a predetermined threshold, the system tries again
with a quasi brute force compound splitter that tries
all possible combination using. The system then
retains the highest scoring result from the second
or third approach. Finally, for each recovered entry,
the system retrieves grammatical information and
entries from multiple Sanskrit dictionaries.

3.1 Preprocessing

The transliteration scheme of the input is auto-
matically detected using an adaptation of Indic
Transliteration Detect 3, and transliterated to IAST
through the Indic Transliteration package. The sys-
tem also supports special character handling for
advanced search capabilities. Wildcard searches
can be performed inserting underscore (’_’) charac-
ters, which act as single character wildcards within
words. When a word ends with an asterisk ("*’),
the system switches to exact dictionary matching
mode. If the input is a single word with no diacrit-

3https://github.com/indic-
transliteration/detect.py/blob/master/detect.py

ics there is first an attempt to match it directly in
the UTF-8 decomposed list of words, and it returns
all the entries for the possible words with diacritics.
This allows for searches without diacritics. For
example the term "Siva" can be matched writing

"Siva", "siva" and "shiva".

3.2 Matching using inflection tables and
dictionaries

The rule-based approach draws from the inflected
form lookup of the University of Koeln . Through
this approach are built inflection tables for the non-
indeclinable entries of the Monnier Williams dictio-
naries. The inflection tables are stored in a SQLite
database. Associate to the inflection tables are the
grammatical informations relative to the type of
the word. The code has been rewritten from php to
python, using SQLalchemy as ORM. As was done
in (Nehrdich et al., 2024), the tables have been
converted from SLP1 to IAST for readability, as
it causes minimal storage increase. A multi index
increased drastically the speed of the lookup, and
future version may benefit from the hash indexes
offered by PostgreSQL. The original approach suf-
fers from overgeneration in case of particles (such
as "ca") and curious lack of common words such
as "vrtti". To handle those case a post processing
cleanup was added.

To match words, the system first tries to match
them using the inflection table. Words with un-
common prefixes were a common cause of failure,
since they are outside the dictionary. To handle
those case, the system looks in a list of prefixes, if
the words has one of them it tries again while re-
moving the prefix. If the word initials and endings
are inside a list of common sandhi rules, it tries to
replace them and to match using again the inflec-
tion table. When all of the previous fails, it tries
to check if the word is directly inside the hashed
list of words of all dictionaries. If a word was
matched during any of those steps, the entry (or
entries) are retrieved and the function ends. In case
the function failed, it means that there are probably
multiple words inside and is sent to the multi word
processing.

3.3 Dictionaries

For the word entries, the digitalized Sanskrit dic-
tionaries from the university of Cologne were em-
ployed (Cologne University, 2024). To provide a

*https://github.com/sanskrit-lexicon/csl-inflect

34

Preprocess

Inflection table or
dictionary term
matches?

Sanskrit parser,
Score splits >
minimum ?

Get dictionary
entries

Split compounds,
Compare scores

E—

—

Clean results

-

Figure 2: Flowchart of the cascading system, simple
words are directly matched using inflection tables, more
complex cases are handled with the parser first, then the
compound splitter in case the score if too low.

clean interface, dictionaries were manually selected

to provide non redundant quality output. The Con-
cise Pali Dictionary’ was later added as well since

many terms employed by Vasubandhu could be

found there and not in the Sanskrit dictionaries.
In table 1 there is the list of the dictionaries and

the number of unique entries in each dictionary.
The total number of unique words contained in the

database is 246,955. Since the system is for web

reading and not for print, the majority of the abbre-
viations (both references and in text) were removed

to increase clarity. To increase usability, in the on-
line interface all the Sanskrit words in the entries

were made clickable, returning the clicked entry.
This way, if "rajapurusa" is searched, it returns the

entries for the word, but also the split version "raja—
purusa". Selecting one of the splits, the sub-entry

is opened. The dictionary lookup accepts a list of

dictionary abbreviation as argument, and tries to

return the entries from the dictionaries. If the entry

is not present in the selected dictionaries, it tries

to look in the hashed dictionary with entries and

dictionaries that have it, and returns it.

Shttps://buddhistuniversity.net/content/reference/concise-
pali-dictionary

Dictionary Name Number of Entries

Monier-Williams 194,068
Grassmann 11,108
Apte Practical 31,703
Buddhist Hybrid 17,777
Concise Pali 23,849
Cappeller 38,484
MacDonnell 20,100
Total Unique Words 246,955

Table 1: Number of unique entry in each dictionary, and
total of unique words

3.4 Sandhi Splitting

For Sandhi and compound splitting the Python li-
brary Sanskrit_parser is used as base °. The library
places every possible split in a graph and attempts
to find the most probable split. As stated in the
documentation, the first result provided is often not
accurate, but the correct one is usually to be found
in the first ten splits.

The incorrect splits showed patterns that were in-
credibly easy to spot: multiple dual letter fragments
such as "to" and "ta", non grammatical entries, in-
correct sandhi usage. Any application intended for
general public use and also for a non professional
audience should be providing a single split for a
sentence. Recovering the right split amid possi-
ble ones may be easy for someone that knows the
language, but risks alienating further other kind of
interested users.

To select the best split among the offered one, a
simple scoring system was made that evaluates the
splits on three dimensions: length, morphology and
sandhi. The length score tries to predict the num-
ber of split, and rewards a number of splits close
to the expected. Less splits to the expectation are
preferred to more, since errors are usually words
being broken up into multiple places. The morphol-
ogy score punishes multiple very short words that
are not in the list of the indeclinable or of the word
suffixes (like "tva"). The sandhi score monitors
that the sandhi rules were correctly applied. The
split with the best score is then selected. If the
split is under the confidence threshold, the word
is sent to the last cascading fallback. It is to note
that every compound with no presence of Sandhi
returns none at this stage and is processed by the
compound splitter.

®https://github.com/kmadathil/sanskrit_parser

35

Type Total | Errors | Err% | Acc%
V.Long 654 58| 887 91.13
Long 377 22| 5.84| 94.16
Medium | 187 13| 6.95| 93.05
Total 1218 93| 7.63| 92.37
Y.Sutra 665 27| 4.06| 95.94

Table 2: Text Accuracy Analysis. *Total excludes

Y.Sitra

3.5 Compound Splitter

The root compound function takes advantage of a
characteristic of Sanskrit grammar: in compounds,
only the rightmost word is declined. All the words
on the left are then in their root form. Assuming it
is a pure compound with no Sandhi, it’s going to be
possible to reach the first word on the left by simply
erasing the rightmost letter one by one and trying
to match it with the hashed vocabulary with all
the dictionary entries. In the ideal pure compound,
this returns the leftmost word in O(n) operations,
where n is the number of the remainder. Since the
rightmost word is inflected, after removing a word
on the left, it should be checked if the remainder
is in the inflection tables, using replacements in
case there is possible sandhi at the endings. Since
most compounds contain 2—8 roots, and each root
requires O(n) operations to find, with n decreasing
at each step, the practical performance remains
efficient despite the theoretical O(n?) worst case.

The complexity of this operation actually in-
creases since pure compounds are rare, and often
there is the presence of Sandhi either in the initial
position or in the middle. To handle these cases
two dictionaries with replacements for the initial
and ending position are used. This way if a word if
a letter is found that could have been the result of
Sandhi, it is tested with all the grammatical possi-
bilities (usually less than two) before getting erased.
To handle cases like "klesakarmavipakaSayair", to
avoid it to be split after "kleSaka", which is in
the dictionary, when selected suffixes like "ka" are
meet, the system tries to split again ignoring the
suffix, and measures (in terms of length of words)
the quality of the results and pick the best one.

3.6 The problem with current Sanskrit
Benchmarks

To test the accuracy of the computational ap-
proaches to Sanskrit, the Sandhikosh benchmark
has been proposed (Bhardwaj et al., 2018) (Ara-
likatte et al., 2018) , which includes 13,930 anno-
tated sentence splits. The sentence are split only for

Sandhi and not for compounds, which remains ag-
glutinated together. Since this system splits sandhi
and compounds in the same pass, the benchmark
is not usable to test the proposed approach. It
should also be mentioned that the corpus used is
extremely unbalanced in favor of Brahmanical text
compared to Buddhist ones, drawing extensively
from the online corpus of the University of Hyder-
abad 7. A more interesting corpus is the Sighum
one, presented in (Krishna et al., 2017). The cor-
pus has been used as a benchmark in the inspiring
(Nehrdich et al., 2024). The Sighum corpus, sim-
ilarly from the Hackaton 8 is derived from the
Digital Corpus of Sanskrit (Hellwig, 2010-2021).
Those corpus provide the roots for all the sandhi
and compound split words in the sentence, similarly
to the approach proposed there.There is however a
important methodological difference which should
be considered. This difference can be explained
with the parsing of the block "dagdhabijakalpan”
which appears in the Yoga Stitra Bhasya. In the pro-
posed system the block is split in "dagdha", "bija"
and "kalpa". The word "dagdha" is indicated as
coming from dah in the provided vocabulary entries
(from Apte Practical Sanskrit-English:"dagdha Past
passive participle. [dah-kta] 1 Burnt, consumed by
fire"). In the DCS the word is directly described
as the "PPP" of "dah". While both approaches are
grammatically equivalent, the approach used here
provides a more specific dictionary entry, with the
possibility of accessing the primitive "dah" with an
additional click. The DCS approach returns instead
directly the primitive without an additional action.
Since the current system is built with the explicit
goal of vocabulary entry retrieval in mind, rather
than stemming, for the current goal is preferable
to keep it as it is. For the same reasons common
compounds which are present in the dictionaries,
such as "rajayoga" are not split. "Rajayoga" and
other similarly common compounds have specific
dictionary entries, and the entry offers also the de-
tailed parsing "raja—yoga". The two split parts
can be accessed with a simple click on the online
interface. This methodological difference makes it
so that simply using the smaller corpus derived by
the DCS would result in countless errors, derived
by the different format of the output. In a bench-
mark of tens of thousands of sentences it would
be impossible to parse manually all those errors.

"https://sanskrit.uohyd.ac.in/Corpus/
8hittps://sanskritpanini.github.io/

36

For those reasons is impossible to test the current
approach on any benchmark directly derived from
the DCS. It also highlight the problem with every
current benchmark testing in Sanskrit: each system
employs his own convention. A good benchmark
should be able to return positive for both "dah" or
"dagdha". Since no similar benchmark currently
exist, we manually test the system on a random
selection of the Gretil corpus and on a practical use
case on the Yoga Sitra text.

3.7 Testing

Owing to the problems with the current Sanskrit
benchmarks highlighted in the last paragraph, an
alternative testing approach was used. Since all the
simple words are deterministically parsed, what
needed to be tested is the capability of the fallback
systems to handle complex compounds and the ap-
plicability on the automatic annotation of a real
text. All the text of the Gretil corpus was extracted
and split in four lists of words in the following cate-
gories: medium 10-20, long 2040, very long 40+.
To avoid English words mixed in, only words with
diacritics were kept. From each of the four lists
100 random samples were taken. The testing was
made to check if the system is resilient enough to
handle tasks that cannot be handled by the deter-
ministic matching. The system was applied to each
one of those compounds, and manually reviewed.
For the practical use case the system was tested on
the Yoga Siitra in the transcription by Philip Maas
accessible through Gretil °. Both tests can be repli-
cated with the testing module inside the python
library.

Undecidable words such as "alasya" are re-
turned with both possible parsings: the uninflected
"alasya" and the genitive of "ala". Since the only
way to decide between the two is looking at the con-
text, both words are returned, and is not counted
as an error as long as the correct parsing is there.
Even in presence of those cases, the system tends
to not overgenerate. Figure 3 present the parsing
results from a complex text block from the Yoga
Sutra: some of the words are presented with two
possible parsing, such as "alasya" and "ala" for the
"alasya" in the text. Every non perfect parsing is
counted as an error. Errors are counted on a root by
root basis: if a compound has 10 roots and only one
is incorrect, a single error out of then is counted.

9https: //gretil.sub.uni-goettingen.de/gretil/
1_sanskr/6_sastra/3_phil/yoga/patyogbu.htm

https://gretil.sub.uni-goettingen.de/gretil/1_sanskr/6_sastra/3_phil/yoga/patyogbu.htm
https://gretil.sub.uni-goettingen.de/gretil/1_sanskr/6_sastra/3_phil/yoga/patyogbu.htm

vyadht styana samsaya pramada

vyadhi

ala avirati bhrantidar§ana

alasya

alabdhabhtimikatva

anavasthitatva

Figure 3: Parsing of one of the Yoga Siitra verses with
multiple possible roots.

In Table 2 are presented the result of the testing,
maintaining 90%+ accuracy for all categories. The
most surprising result is the high accuracy rate with
long compounds considering that the longest one
was 283 character long. The practical example of
the Yoga Siitra shows that the accuracy increases
with a normal text in which the inflection tables can
be used to automatically parse single words such

as "atha", "ca" or "iti" or the multiple variations of

”yOga".

3.8 Error discussion

The majority of the errors come from words which
are outside the dictionaries or the inflection tables,
and are then unrecognized. The Monnier-Williams
dictionary is from 1899 and, while being an incred-
ible work, is oddly missing some reasonably com-
mon compounds like "dvandva" (which is instead
present in the Macdonnel dictionary). In partic-
ular, about 20% of the overall errors come from
abstract words produced with the suffix fva, which
are sometimes recorded (such as "Stinyatva", from
"Siinya", emptiness, which is even recorded as the
even rarer "sarvasiinyatva"), but more often than
not outside the dictionary entries. The system at
the moment returns the root word, the suffix "tva"
and the inflected ending as another word, which is
clearly not optimal. Since the inflection tables are
based entirely on the Monnier Williams entries, all
the inflected forms of words outside the Monnier
Williams that are not listed as entries may provoke
errors. The shape of those errors is typically the
word being rightfully recognized plus the inflec-
tional suffix being marked as another word. Less
common but still present are the cases in which the
word root is morphed. In that case the word is split

37

in small morphemes. Less common verbal forms,
like causatives, are often not listed in the inflection
tables; the inflection tables are also missing many
irregular forms. A possible solution would be to
use LLMs to generate the missing inflection tables,
and to also use LLMs to search inside the Monnier
Williams and other Dictionaries for mentions of
irregular forms, and to apply them to the tables.

The sandhi splitter is, even with the scoring, the
weakest part of the pipeline. Further versions of
this approach could try replacing it entirely with
the model developed in (Nehrdich et al., 2024) to
increase the accuracy. The other alternative avenue
explored was fine-tuning using a Llora (Hu et al.,
2021) a middle sized LLM. Since the errors pro-
duced by the system are easily identifiable, it is
possible to use the output of this system to train
a transformer that replaces it. This replacement
should be assessed with respect to the increased
computational cost and the scalability of the online
application. In the best case scenario the current
approach resolves annotation with just a few SQL
queries. There is no reason to replace the inflection
table lookup, as it is deterministically correct and
computationally inexpensive.

4 Limitations

The cascading system is highly modular; conse-
quently, most limitations stem from the current
implementation rather than from the architecture
itself.

The system relies heavily on dictionary en-
tries, with the majority derived from the Monier-
Williams dictionary (1899), as illustrated in Table
1. While the Monier-Williams dictionary provides
a comprehensive foundation, it exhibits notable de-
ficiencies regarding abstract words formed with the
"-tva" suffix and numerous compounds of moderate
frequency. Although these dictionary limitations
are partially mitigated through the integration of
multiple dictionaries, the inflection tables are cur-
rently constructed solely from the Monier-Williams
dictionary. Furthermore, certain common terms,
such as "vrtti" (vortex, mental fluctuation), appear
in the dictionary but are notable absent from the
inflection tables. The next version of the imple-
mentation should take care in reconstructing the
inflection table using the correct list of all words
as a basis. A possible approach for adding all the
irregular forms would be using language models to
extract them from dictionaries and grammar books.

Even with the scoring improvements, the Sandhi
splitter remains the weakest component in our
pipeline. While it works well for most cases, com-
plex Sandhi patterns can still lead to incorrect
splits. Future versions can replace this component
with neural models such as the one described in
(Nehrdich et al., 2024), although this would in-
crease computational costs. The computational
increase would still be limited for just the complex
cases, since for most words the inflection tables are
going to still be enough.

Finally, our approach prioritizes dictionary en-
try retrieval over stemming, which creates method-
ological differences when compared to existing
benchmarks. This system prioritizes keeping com-
pound and inflected forms intact when the dictio-
nary entry is there: "yoganusasanam" (the instruc-
tion on yoga) is matched directly with the entry for
"yoganusasana" that contextualizes the term within
Patafjali’s framework, rather than being decom-
posed into the components "yoga" and "anusasana".
While this is an advantage for a text annotation tool,
since the results are more context aware and usu-
ally present the split in the dictionary entries, it is
a severe limitation when used as a pure stemming
tool.

5 Conclusions

This work demonstrates that by taking a progres-
sive approach to Sanskrit text processing, starting
with simple, deterministic methods and escalating
to more complex analysis only when necessary, it
is possible to achieve both high accuracy and prac-
tical usability. The system’s 90%+ accuracy on the
long compounds drawn from the GRETIL corpus
and 96% accuracy on the Yoga Sitra validates this
approach, showing that it performs reliably across
different text types and compound complexities.
The system’s capability lies in the deterministic
lookup for inflected and Sandhi-ed single words,
returning entries from multiple dictionaries with
accurate grammatical information with minimal
computational cost. The approach peculiarity is
in keeping compounds and inflected forms which
have entries in the dictionaries, returning more con-
textualised entries than direct stemming. This ap-
proach has been implemented as an open source
Python library which includes a REST API built
using Flask and a web application, which is accessi-
ble at https://www.sanskritvoyager.com. The
system was designed with practical performance

38

considerations in mind. The entire backend re-
quires only 2GB of RAM to operate effectively,
making it deployable on modest hardware. Re-
sponse times vary based on word complexity: sim-
ple inflected forms that can be resolved through
table lookups are processed in milliseconds, while
the most complex compound and Sandhi cases re-
quire at most 3 seconds to resolve on a 4GB RAM
virtual machine. This performance profile makes
the system suitable for both interactive web appli-
cations and batch processing of larger texts. The
current approach allows dictionary searches for
Sandhi-ed inflected and compounded words, with-
out specifying the transliteration scheme and re-
trieving entries in multiple dictionaries. Future ver-
sions may employ a ByT5 based model (Nehrdich
et al., 2024) as the last step in the cascading sys-
tem to handle the most complex cases. The hope
of this approach is to open up the treasury of the
original Sanskrit literature to any interested reader,
regardless of their previous linguistic skills.

References

Rahul Aralikatte, Neelamadhav Gantayat, Naveen Pan-
war, Anush Sankaran, and Senthil Mani. 2018. San-
skrit sandhi splitting using seq2 (seq)” 2. arXiv
preprint arXiv:1801.00428.

Shubham Bhardwaj, Neelamadhav Gantayat, Nikhil
Chaturvedi, Rahul Garg, and Sumeet Agarwal. 2018.
SandhiKosh: A benchmark corpus for evaluating San-
skrit sandhi tools. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan. European
Language Resources Association (ELRA).

George R Cardona. 1988. Panini : his work and its
traditions. Motilal Banarsidass, Delhi, India.

Cologne University. 2024. Cologne digital Sanskrit
dictionaries. Online resource. Accessed on February
19, 2025.

Surendranath Dasgupta. 1991. The Mahabhasya of
Patanjali (Ahnikas 1-1V). INDIAN COUNCIL OF
PHILOSOPHICAL RESEARCH, New Delhi.

Brendan S Gillon. 2007. Panini’s" astadhyay1" and
linguistic theory. Journal of Indian philosophy,
35(5/6):445-468.

Oliver Hellwig. 2010-2021. Dcs - the digital corpus of
sanskrit.

Oliver Hellwig and Sebastian Nehrdich. 2018. Sanskrit
word segmentation using character-level recurrent
and convolutional neural networks. In Proceedings of
the 2018 conference on empirical methods in natural
language processing, pages 2754-2763.

https://www.sanskritvoyager.com
https://aclanthology.org/L18-1712/
https://aclanthology.org/L18-1712/
https://www.sanskrit-lexicon.uni-koeln.de
https://www.sanskrit-lexicon.uni-koeln.de
http://www.sanskrit-linguistics.org/dcs/index.php
http://www.sanskrit-linguistics.org/dcs/index.php

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Gérard Huet. 2005. A functional toolkit for morpho-
logical and phonological processing, application to a
sanskrit tagger. Journal of Functional Programming,
15(4):573-614.

Gérard Huet. 2009. Sanskrit segmentation. In Pro-
ceedings of the South Asian Languages Analysis
Roundtable XXVIII, Denton, Ohio.

Stephanie W Jamison and Joel P Brereton. 2014. The
Rigveda: 3-Volume Set. Oxford University Press.

Amrith Krishna, Bishal Santra, Ashim Gupta, Pavanku-
mar Satuluri, and Pawan Goyal. 2021. A graph-based
framework for structured prediction tasks in sanskrit.
Computational Linguistics, 46(4):785-845.

Amrith Krishna, Pavan Kumar Satuluri, and Pawan
Goyal. 2017. A dataset for Sanskrit word segmenta-
tion. In Proceedings of the Joint SIGHUM Workshop
on Computational Linguistics for Cultural Heritage,
Social Sciences, Humanities and Literature, pages
105—114, Vancouver, Canada. Association for Com-
putational Linguistics.

Sriram Krishnan, Amba Kulkarni, and Gérard Huet.
2024. Normalized dataset for sanskrit word seg-
mentation and morphological parsing. Language
Resources and Evaluation, pages 1-52.

P H Matthews. 2014. The concise oxford dictionary
of linguistics, 3 edition. Oxford Quick Reference.
Oxford University Press.

Vipul Mittal. 2010. Automatic sanskrit segmentizer
using finite state transducers. In Proceedings of the
ACL 2010 Student Research Workshop, pages 85-90.

M. Monier-Williams. 1899. A Sanskrit-English Dictio-
nary: Etymologically and Philologically Arranged
with Special Reference to Cognate Indo-European
Languages. The Clarendon Press, Oxford.

Sebastian Nehrdich, Oliver Hellwig, and Kurt Keutzer.
2024. One model is all you need: Byt5-sanskrit, a
unified model for sanskrit nlp tasks. arXiv preprint
arXiv:2409.13920.

PK Narayana Pillai. 1941. The gveda padapaha—a
study with special reference to the gveda pratisakhya.
Bulletin of the Deccan College Research Institute,
2(3/4):247-257.

Reut Tsarfaty, Dan Bareket, Stav Klein, and Amit Seker.
2020. From SPMRL to NMRL: What did we learn
(and unlearn) in a decade of parsing morphologically-
rich languages (MRLs)? In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 7396-7408, Online. Association
for Computational Linguistics.

39

Linting Xue, Aditya Barua, Noah Constant, Rami Al-
Rfou, Sharan Narang, Mihir Kale, Adam Roberts,
and Colin Raffel. 2022. Byt5: Towards a token-free
future with pre-trained byte-to-byte models. Transac-
tions of the Association for Computational Linguis-
tics, 10:291-306.

https://doi.org/10.18653/v1/W17-2214
https://doi.org/10.18653/v1/W17-2214
https://doi.org/10.18653/v1/2020.acl-main.660
https://doi.org/10.18653/v1/2020.acl-main.660
https://doi.org/10.18653/v1/2020.acl-main.660

	Introduction
	Previous Literature
	Methodology
	Preprocessing
	Matching using inflection tables and dictionaries
	Dictionaries
	Sandhi Splitting
	Compound Splitter
	The problem with current Sanskrit Benchmarks
	Testing
	Error discussion

	Limitations
	Conclusions

