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Abstract

This paper describes the submission systems of
DLUT-NLP team for the WMT24 low-resource
Indic language translation shared task. We par-
ticipated in the translation task of four language
pairs, including en↔as, en↔mz, en↔kha,
en↔mni. We used a transformer-based neu-
ral network architecture to train the model.
Our system used the following methods: First,
data processing was performed, and then we
used monolingual data for pre-training. Next,
we used parallel data for fine-tuning to ob-
tain a multilingual translation model, and then
we used this model for back-translation. We
merged the back-translated data with the of-
ficial parallel data and used the upsampling
method to train a multilingual translation model
from scratch. In order to improve the transla-
tion ability of the model for each translation
direction, we fine-tuned the model for each lan-
guage pair and used model averaging to obtain
the best model for each language pair. Finally,
we used kNN-MT and established a datastore
using the official parallel data to assist trans-
lation in the inference stage. Experimental re-
sults show that our method greatly improves
the BLEU scores for translation of these four
language pairs.

1 Introduction

This paper introduces our system for WMT24
low-resource Indic language translation shared
task. We participated in 4 language pairs, including
English↔Assamese (en↔as), English↔Mizo
(en↔mz), English↔Khasi (en↔kha) and
English↔Manipuri (en↔mni).

The main methods used by our system are de-
noising language model pre-training (Lample and
Conneau, 2019; Song et al., 2019; Lewis et al.,
2020), back-translation (Sennrich et al., 2016a)
and kNN-MT (Khandelwal et al., 2020). Neu-
ral machine translation is the first choice for ma-
chine translation systems nowadays, but it requires

a large amount of parallel data. Therefore, low-
resource translation is a major challenge due to its
lack of data. In this task, the organizers provided
a large amount of monolingual data in addition to
a small amount of parallel data. So we considered
using some pre-training methods to improve the
performance of the model. At the same time, back-
translation is a commonly used method in the field
of machine translation, which is effective in many
scenarios. Therefore, we used the back translation
method to obtain pseudo-parallel data to train a
strong baseline model. To obtain the best model
for each translation direction, we fine-tuned the
baseline model for each language pair using the
official parallel data. During this process, we used
model averaging technology to improve the transla-
tion quality of the model. In addition to parametric
methods, a large number of non-parametric meth-
ods have recently emerged to help models generate
translations. We adopted the kNN-MT method and
built a datastore for each translation direction to
assist the model in the inference phase.

The rest of the paper is organized as follows: In
Section 2 we describe our data processing meth-
ods; In Section 3 we describe the implementation
process of our translation systems; In Section 4,
we describe the experimental settings; In Section 5,
we discuss about the results; Finally, in Section 6,
the conclusion is drawn.

2 Data

For bilingual data, we only used official bilingual
data. For monolingual data, in addition to the offi-
cial monolingual data for Assamese, Mizo, Khasi
and Manipuri (Pal et al., 2023; Pakray et al., 2024),
we obtained English monolingual data from the
WMT24 general task. Specifically, we used the En-
glish side of bilingual data (English↔German) in
the WMT24 general task as English monolingual
data.The statistics of the dataset is shown in Table
1.
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as kha mni mz en
train (mono) 2.6M 0.2M 2.1M 1.9M 2.5M
train (para) 50k 24k 22k 50k -
dev 2k 1k 1k 1.5k -
test 2k 1k 1k 2k -

Table 1: The number of sentences in the training, dev and test sets.

Since the quality of official data is relatively
high, we did not perform additional preprocessing.
For the English monolingual data, we performed
some additional preprocessing steps. During pre-
processing, we deleted sentences that were too long
or repeated. And then we filtered out sentences in
other languages by applying language identifica-
tion. Finally we used an n-gram language model
trained with KenLM (Heafield, 2011)1 to calcu-
late the perplexity of English monolingual data and
removed sentences with high perplexity (>7,000).
We used the Sentencepiece (Kudo and Richardson,
2018) tool to train a multilingual BPE (Sennrich
et al., 2016b) model for subword segmentation.
The training data includes all the parallel training
data and monolingual data. The vocabulary size is
set to 32,000.

3 System Overview

3.1 Pre-training
Using monolingual data for pre-training tasks is an
effective solution for low-resource situations (Raf-
fel et al., 2020). To this end, we first performed
BART-style pre-training (Lewis et al., 2020) with
all the available monolingual data and then fine-
tuned the pretrained model with bilingual data. Fol-
lowing Lewis et al. (2020), we masked words with
a probability of 0.15 and we randomly swapped
words in the input sentences with a probability of
0.5.

After pre-training, we used all the bilingual data
to fine-tune the pre-trained model. The bilingual
data contains 4 language pairs in 8 translation di-
rections.

3.2 Back-translation
To improve our translation pipeline, we explored
the integration of back-translation as a potential
enhancement. Back-translation involves using a
trained model to translate from the target language
back to the source language, effectively creating a

1https://github.com/kpu/kenlm

synthetic parallel dataset. We used the approach
inspired by Sennrich et al. (2016a) to generate
pseudo-parallel corpus.

Specifically, we used the model fine-tuned in the
pre-training phase. We used this model to trans-
late all non-English monolingual data into English
as pseudo-parallel data. Then we mixed all the
pseudo-parallel data with the official bilingual data.
We used this data to train a multilingual translation
model from scratch. During training, we used up-
sampling method and the official parallel data was
upsampled until it reached to a ratio of 1:1 with the
synthetic data.

3.3 Language-specific Fine-tuning
Although multilingual translation models have
made great progress, there is still the problem of in-
consistent convergence of different language pairs
in joint training (Wu et al., 2021; Huang et al.,
2022). That is, different language pairs reach con-
vergence in various training stages. We hope to
get the best model for each language pair. Due to
the low quality of pseudo-parallel data, we used
the official bilingual data of each language pair to
fine-tune the model trained using pseudo-parallel
data.

During fine-tuning, we used the model averaging
technology. Through model averaging, we com-
bined the advantages of various models into a uni-
fied translation model. This process can not only
improve the stability of the translation output, but
also help improve the overall translation quality.
We kept the three models with the lowest loss on
the validation set for each language pair. We then
used these three models to get the best model for
each language pair.

3.4 kNN-MT
Non-parametric, k -nearest-neighbor algorithms
have recently made inroads to assist generative
models such as language models and machine
translation decoders. Khandelwal et al. (2020) in-
troduced k -nearest-neighbor machine translation
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(kNN-MT): a simple non-parametric method for
machine translation via nearest-neighbor retrievals
was proposed and has been verified its effective-
ness. According to his method, we constructed a
datastore to store the translation examples to be
accessed during decoding with the official parallel
data. When decoding, we used the current trans-
lation context to retrieve the k -nearest-neighbors
in the datastore. Let x =

(
x1, . . . , x|x|

)
∈ V |x|

X

and y =
(
y1, . . . , y|y|

)
∈ V |y|

Y denote a source
sentence and target sentence, respectively, where |·|
represents the length of the sentence, and VX and
VY are the vocabularies of the source language and
target language, respectively. Each target token yt
from the translation examples is stored in the datas-
tore with a d -dimensional key (∈ Rd), which is the
representation of the translation context (x,y<t)
obtained from the decoder of the pre-trained NMT
model. The datastore M ⊆ Rd × VY is formally
defined as a set of tuples as follows:

M = {(f (x,y<t) , yt) |(x,y) ∈ D, 1≤ t≤ |y |}
(1)

The size of the datastore for each translation direc-
tion is shown in Table 2. During decoding, kNN-
MT retrieves the k -nearest-neighbor key–value
pairs {(ki, vi)}ki=1 ⊆ Rd × VY from the datastore
M using the query vector f (x,y<t) at timestep t .
f : V |x|

X × Vt−1
Y → Rd represents the intermediate

representation of the final decoder layer from the
source sentence and prefix target tokens. In our
system, the value of k is set to 32 for all translation
directions. In order to speed up the retrieval during
translation, we used FAISS (Johnson et al., 2019).
We then obtained the output probability for each to-
ken by interpolating the kNN-MT probability and
the probability from the translation model. The
formula for calculating the kNN-MT probability
is:

pkNN (yt | x,y<t)

∝ ∑k
i=1 1yt=vi exp

−∥ki−f(x,y<t)∥2

2
τ

(2)

The formula for calculating the output probability
is as follows:

P (yt | x,y<t)
=λpkNN (yt |x,y<t)+(1−λ)pNMT(yt |x,y<t).

(3)
For all translation directions, we set λ = 0.3 and τ
= 100 in the kNN-MT decoding.

datastore size
en→as 1,212,711
en→kha 1,024,451
en→mni 574,142
en→mz 1,404,832
as→en 1,253,490
kha→en 878,620
mni→en 524,002
mz→en 1,263,000

Table 2: Datastore size for all translation directions.

4 Experiments

All of our translation models were implemented
based on fairseq (Ott et al., 2019) and trained
on 8 NVIDIA 3090 GPUs. All models use the
same structure of 12 transformer layers (Vaswani
et al., 2017). During training, we used the Adam
(Kingma, 2014) optimizer with β1 = 0.9, β2 = 0.98,
the learning rate scheduling strategy of inverse sqrt,
the number of warmup step set to 4000, the maxi-
mum learning rate set to 0.0005 and FP16 to accel-
erate the training process. We trained our models
till convergence with early stopping criteria with a
patience of 5. The dropout ratio is set to 0.5. We
used a fixed beam size of 4 and a length penalty of
0.8 when doing back-translation.

All experiments were evaluated using the sacre-
bleu (Post, 2018) tool to calculate BLEU (Papineni
et al., 2002) scores on the official validation sets.

5 Results

As shown in Table 3, each method can bring cer-
tain improvements to the model. However, pre-
training and back-translation did not bring much
improvement. For example, pre-training leads to
an improvement of 0.82 BLEU on average, while
back-translation brings BLEU improvements of
0.41. In particular, back-translation has caused
some damage to the performance of the model on
some translation directions. The BLEU in en→mni
direction dropped from 25.17 to 24.04. This may be
caused by the low quality of pseudo-parallel data.
We believe that fine-tuning the model separately us-
ing the data of each language pair is necessary for
a multilingual translation model. And it achieves
1.03 BLEU improvement on average. Doing so
can alleviate the problem of inconsistent conver-
gence of different language pairs in joint training,
although it does not benefit all translation direc-
tions. It can be seen that all translation directions
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System en→as en→kha en→mz en→mni as→en kha→en mz→en mni→en
M2M Baseline 8.75 17.84 22.26 24.49 15.69 13.15 22.45 32.41
Pre-training 9.24 17.77 22.72 25.17 17.70 14.05 22.89 34.08
Back-translation 11.51 18.24 23.29 24.04 17.98 13.22 23.36 35.25
Fine-tuning 12.50 18.29 24.17 26.93 18.55 13.33 24.32 37.06
kNN-MT 12.82 18.78 29.39 28.99 19.69 13.82 31.27 39.02

Table 3: BLEU scores of all translation direction on validation sets

are further improved with kNN-MT (+2.33 BLEU).
The four translation directions of the two language
pairs en↔mni and en↔mz can even get an average
improvement of 4.05 BLEU. This shows the great
potential of kNN-MT in improving data utilization
efficiency, inspiring more research on kNN-MT
in low-resource scenarios. Finally, from the over-
all perspective, some translation directions do not
benefit much from our methods. The translation
performance of the model in these translation di-
rections may be most limited by the size of the
data. However, the results in most translation di-
rections still achieve significant improvements over
the baseline, which demonstrates the effectiveness
of our approach for low-resource machine transla-
tion.

6 Conclusion

In this paper, we describe DLUT-NLP’s submis-
sion to the WMT24 low-resource Indic language
translation shared task. We participated in four sub-
tasks with a total of eight translation directions. We
leveraged methods ranging from pre-training, back-
translation, language-specific fine-tuning and kNN-
MT. Experimental results show that we achieved
large improvements in all directions.

Limitations

We found that our system still has the following
limitations:

• We did not perform effective filtering on the
pseudo-parallel corpus, and we did not per-
form iterative back-translation. This may be
the reason why our back-translation did not
achieve the expected results.

• We believe that we have not made enough use
of monolingual data. Next, we need to explore
other ways to use monolingual data, such as
using other pre-training tasks.

• We did not leverage any existing LLMs be-
cause we were not sure whether they were

trained on languages other than English in-
cluded in the task. This will also be a future
exploration mission.
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