
Proceedings of the Ninth Conference on Machine Translation, pages 735–741
November 15-16, 2024 ©2024 Association for Computational Linguistics

Samsung R&D Institute Philippines @ WMT 2024 Indic MT Task

Matthew Theodore Roquea Carlos Rafael Catalana Dan John Velascoa

Manuel Antonio Rufinoa Jan Christian Blaise Cruza,b
aSamsung R&D Institute Philippines bMBZUAI

{roque.mt,c.catalan,dj.velasco,ma.rufino}@samsung.com
jan.cruz@mbzuai.ac.ae

Abstract

This paper presents the methodology devel-
oped by the Samsung R&D Institute Philip-
pines (SRPH) Language Intelligence Team
(LIT) for the WMT 2024 Shared Task on Low-
Resource Indic Language Translation. We
trained standard sequence-to-sequence Trans-
former models from scratch for both English-
to-Indic and Indic-to-English translation direc-
tions. Additionally, we explored data aug-
mentation through backtranslation and the ap-
plication of noisy channel reranking to im-
prove translation quality. A multilingual model
trained across all language pairs was also in-
vestigated. Our results demonstrate the effec-
tiveness of the multilingual model, with sig-
nificant performance improvements observed
in most language pairs, highlighting the po-
tential of shared language representations in
low-resource translation scenarios.

1 Introduction

This paper details our primary submission for the
WMT 2024 Shared Task on Low-Resource In-
dic Language Translation. Our submission cov-
ers the following language pairs: English ↔ As-
samese (en-as), English ↔ Mizo (en-mz), English
↔ Khasi (en-kh), and English ↔ Manipuri (en-
mn). Our approach builds upon the methodology
used in Samsung R&D Philippines’ WMT23 entry
(Cruz, 2023). We employed a standard sequence-to-
sequence Transformer architecture (Vaswani et al.,
2023), combined with data augmentation through
backtranslation (Sennrich et al., 2016), noisy chan-
nel reranking (Yee et al., 2019), and additionally
experiment with a multilingual model trained on
all language pairs.

bWork done while at Samsung R&D Institute Philippines

2 Methodology

2.1 Environment

For preprocessing, training, and generation, we
utilized PyTorch 2.0 and fairseq 0.12.2. All training
was conducted on NVIDIA P100 GPUs.

2.2 Data Analysis

We used the Indic dataset provided from WMT
2023 for all language pairs. First, we conducted
an exploratory data analysis for all the languages
to see if there were noteworthy patterns that could
guide us in our translation in the Indic and English
languages. We used various methods in this data
analysis such as finding N-most common words,
generating N-grams, and histograms of lengths of
sentences.

An interesting pattern emerged when generat-
ing the histograms of sentence lengths as seen in
Figure 1. For the English-Mizo pair, the distri-
butions almost completely overlap. However, for
the English-Assamese, English-Khasi, and English-
Manipuri pairs, the Indic languages generally ex-
hibit slightly longer sequences. We hypothesize
that these longer sequences may cause translation
errors in the Indic to English language directions.
The models might be driven to provide translations
that are driven more by length alignment, and so
may attempt to fill in additional tokens to produce
longer sequences even if it may not necessarily be
semantically accurate.

2.3 Data Preprocessing

We exclusively used the task dataset for all lan-
guage pairs. For the parallel data, we first removed
exact duplicates, then detokenized the text to cor-
rect spacing around punctuation. The statistics of
parallel data are summarized in Table 1. Following
this, we trained a BPE tokenizer (Sennrich et al.,
2015), applied BPE tokenization, and binarized
the data for use with fairseq. Each language pair
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source↔target Pairs Words (source) Words (target) Vocab Size
en↔as 50,000 969,626 825,063 31,448
en↔kh 21,000 729,930 875,545 9,312
en↔mz 50,000 981,468 1,062,414 30,432
en↔mn 21,687 390,730 330,319 30,736

Table 1: Statistics of parallel training data. Note that “Words” refers to word count estimated using the wc command
on the plaintext files.

source→target Unfiltered Pairs Filtered Pairs Words (source) Words (target)
en→as 2,624,715 279,956 3,200,053 3,444,809
en→mz 1,900,848 1,637,838 21,534359 26,367139
en→kh 160,128 19,358 363,441 490,257
en→mn 298,608 10,837 97,418 145,928

Table 2: Statistics of generated backtranslated parallel data. Note that “Words” refers to word count estimated using
the wc command on the plaintext files.

has a shared vocabulary between English and the
respective Indic language. The preprocessed par-
allel data was used to train our translation models.
The same preprocessing steps were applied to the
monolingual data for training the language models.
As no monolingual data was provided for English,
we used the combined English sides of the parallel
data to train the English language model.

2.4 Augmenting Data with Backtranslation

Due to time and data constraints, data augmenta-
tion via backtranslation was applied only in the
English-to-Indic direction. Backtranslated data
was generated by translating the monolingual Indic
data into English using the trained Indic-to-English
models. After generating the backtranslations, we
applied ratio-based filters (Cruz, 2023) to remove
low-quality parallel data, filtering based on sen-
tence length, token length, character-to-token ratio,
pair token ratio, and pair length ratio. For more de-
tails, please refer to the original paper. The dataset
statistics for the backtranslated data are presented
in Table 2.

2.5 Model Training

For each of the four language pairs, we trained
four models: two Translation Models, one for
each translation direction, and two Language Mod-
els, one for each language. The specifics of these
models are described in the following subsections.
Three of these four models were combined for
noisy channel reranking in one direction, as de-
tailed in Section 2.7. Additionally, we experi-
mented with a Multilingual Model using the same

architecture as our translation models, but trained
across all language pairs.

2.5.1 Translation Models
For the translation models (English→Indic, In-
dic→English), we trained encoder-decoder Trans-
former architectures (Vaswani et al., 2023) from
scratch using parallel data. Separate models were
trained for each language pair and for each trans-
lation direction. We used the large variant of the
Transformer model with 213M parameters, train-
ing for 100,000 steps, with the first 10,000 be-
ing warmup steps (Gotmare et al., 2018), with a
maximum of 8,000 tokens per step. The learn-
ing rates varied across language directions, as fol-
lows: en→as (9e-5), en→kh (5e-4), en→mizo (9e-
5), en→mn (9e-5), as→en (5e-4), kh→en (5e-4),
mizo→en (5e-4), and mn→en (5e-4). All other
hyperparameters are detailed in Table 3.

These translation models were not only used as
direct translation models but also served as chan-
nel translation models for noisy channel reranking,
further discussed in Section 2.7.

2.5.2 Language Models
We trained monolingual language models for each
language from scratch using the decoder-only com-
ponent of the original Transformer architecture, as
described by (Vaswani et al., 2023). We used the
base variant of the Transformer, which contains
65M parameters. For the Indic language models
(Assamese, Mizo, Khasi, Manipuri), we trained on
the provided monolingual data. For the English
language model, we concatenated the English side
of the parallel data for training.
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Figure 1: Histogram of Sentence Lengths

All models were trained using the Adam opti-
mizer (Kingma and Ba, 2017) with β1 = 0.90 and
β2 = 0.98. Training was conducted for a maxi-
mum of 100,000 steps, with the first 10,000 steps
as a warmup (Gotmare et al., 2018). The learning
rate started at 1e-7, peaked at 5e-4, and decayed fol-
lowing an inverse square root learning rate sched-
ule. The batch size was set to 32,000 tokens, and a
dropout rate of 0.1 was applied. These models were
later used in noisy channel reranking, as detailed
in Section 2.7.

2.6 Multilingual Model

We trained a large variant of the Transformer model
with 213M parameters on all four language pairs,
in both the English-to-Indic and Indic-to-English
directions, following the approach of last year’s
entries (Zhang, 2023). Given the low-resource na-
ture of each individual pair, we aimed to enable the
language pairs to leverage cross-linguistic knowl-
edge (Aharoni et al., 2019). The training process
spanned 50,000 steps, with the first 5,000 steps
serving as warmup (Gotmare et al., 2018; Neubig
and Hu, 2018). We used 8 P100 GPUs for a max-
imum of 51,200 tokens per step and a learning
rate of 1e-4. The remaining hyperparameters were
consistent with those used in the other translation
models as shown in Table 3.

Curriculum learning has been shown to improve
generalization by introducing tasks progressively,

allowing the model to build on prior knowledge
(Wang et al., 2019). For our multilingual translation
model, we aimed to apply a form of curriculum
learning by training on different language pairs
one at a time. We prepended source and target
language tokens and trained the model sequentially
on one language pair at a time. This structured
training approach, inspired by Bengio et al. (2009),
could help the model learn each language faster and
transfer learned knowledge across language pairs.
Similar to the benefits seen in multi-task learning
by Niehues and Cho (2017), we hypothesized that
this sequential training will enhance the model’s
ability to share representations across languages,
ultimately leading to improved performance.

2.7 Noisy-Channel Reranking (NCR)

We experimented with Noisy Channel Reranking
(Yee et al., 2019) to reevaluate and improve the
translations. For brevity, we refer to this as NCR.
This method utilizes three different models: a di-
rect translation model (source→target), a channel
model (target→source), and a monolingual lan-
guage model (target only). These models are com-
bined to rescore each candidate translation token
during beam search decoding. The score for a can-
didate token ŷ(T )

i at timestep T is recomputed using
the linear combination of the outputs from all three
models:
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Training Hyperparameters
Vocab Size 31,960
Tied Weights Yes
Dropout 0.3
Attention Dropout 0.1
Weight Decay 0.0
Label Smoothing 0.1
Optimizer Adam
Adam Betas β1=0.90, β2=0.98
Adam ϵ ϵ=1e-6
LR Schedule Inverse Sqrt
Batch Size 8,000 tokens

Table 3: Fixed hyperparameters for direct translation
models.

P (ŷ
(T )
i |x; ŷ(T−1))

′
=

1

t
log(P (y|x̂(T−1))

+
1

s
[δchlog(P (x|ŷ(T−1))

+δlmlog(P (ŷ(T−1)))]

(1)

Here, t represents the length of the target sen-
tence y, and s represents the length of the source
sentence x, both of which serve as debiasing terms.
The weights δch and δlm control the influence of
the channel model and the language model, respec-
tively, on the final score.

2.8 Decoding and Noisy-channel Reranking
Hyperparameter Tuning

We determined the optimal length penalty values
by sweeping across four values: 0.5, 1.0, 1.5, and
2.0. This was done for each language direction,
and the length penalty that resulted in the highest
BLEU score on the provided test data was selected.
The optimal length penalties for each direction are
as follows: en→as (1.5), en→kh (2.0), en→mizo
(1.0), en→mn (1.5), as→en (2.0), kh→en (1.5),
mizo→en (0.5), and mn→en (2.0). These values
were then used to tune the channel and language
model weights for NCR.

We applied a similar approach to find the op-
timal values for the channel weight, δch, and the
language model weight, δlm. For the English-to-
Indic models, we fixed δch at 0.1 and varied δlm
across 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. For the Indic-
to-English models, we reversed the setup by fixing
δlm at 0.1 and varying δch across the same values.

These configurations were chosen due to time
constraints, which limited our ability to perform

more exhaustive evaluations of various combina-
tions of δlm and δch. Additionally, based on our
initial evaluation of the translation models, the
English-to-Indic models exhibited stronger perfor-
mance, so we focused on evaluating their impact as
channel models in NCR. Conversely, the Indic lan-
guage models were trained on significantly more
data than the English language model, making it
essential to assess their influence in the reranking
process.

3 Results and Discussion

In this section, we present the results of our ex-
periments and provide an in-depth discussion of
our findings. Tables 4 and 5 summarize the BLEU
and chrF scores for each model and method on last
year’s test set, respectively. Table 6 summarizes
the hyperparameters used for training the models.

3.1 Baseline

Our baseline consists of standard Transformer mod-
els trained from scratch for each language pair,
without any backtranslation, length penalty tun-
ing, noisy channel reranking, or multilingual setup.
These models were trained using the parallel data
provided, with a shared BPE vocabulary between
English and each respective Indic language.

For the English-Khasi pair in particular, we set
the target vocabulary size to 10,000, while for the
other three language pairs, we retained a target of
32,000. Initially, we aimed for a 32,000 vocabu-
lary size across all language pairs, but English-
Khasi’s vocabulary only reached approximately
20,000. Given that this was our worst-performing
pair, we reduced the target size to 10,000, resulting
in a BLEU score improvement of about 3 points.

As shown in Table 4, the baseline models per-
formed adequately for most language pairs, with
BLEU scores ranging from 4.2 (Khasi→English)
to 34.1 (English→Manipuri). Notably, the English-
to-Indic models generally outperformed the Indic-
to-English models across all language pairs.

3.2 Data Augmentation Using Backtranslation

The number of pairs in the backtranslated data, as
shown in Table 2, was greatly reduced after filter-
ing. This reduction most likely stems from the
poor performance of the Indic-to-English models
used for backtranslation. These models may have
produced low-quality translations, leading to a sub-
stantial number of backtranslated pairs being dis-
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source→target BLEU Scores
Baseline w/ BT Data Tuned lenpen NCR Multilingual

en→as 13.8 3.0 14.0 14.0 3.5
as→en 9.5 - 9.8 9.8 10.1
en→mz 29.7 18.6 29.7 28.5 30.2
mz→en 19.9 - 21.3 19.2 19.1
en→kh 8.8 6.5 9.6 10.2 16.1
kh→en 4.2 - 4.4 4.3 7.9
en→mn 34.1 1.1 35.2 34.9 36.4
mn→en 16.7 - 17.0 17.0 21.4

Table 4: BLEU Scores on WMT2023 Indic MT test data. The use of BT Data (training on backtranslated data)
showed a decline in performance. The tuned lenpen (length penalty) generally improves BLEU score while NCR
(Noisy Channel Reranking) yielded mixed results. The multilingual setting outperforms all other settings in all
language pairs except en→as, where tuned lenpen and NCR showed the same score, and mz→en, where tuned
lenpen was best.

source→target chrF Scores
Baseline w/ BT Data Tuned lenpen NCR Multilingual

en→as 26.1 14.8 25.2 25.2 6.9
as→en 27 - 26.3 26.8 28.4
en→mz 44.4 34.5 44.4 42.8 45.2
mz→en 34.4 - 35.4 34.1 35.6
en→kh 29.9 27.9 30 30.4 34.7
kh→en 23.7 - 23.4 23.3 27.8
en→mn 45 11 43.8 43.5 45.1
mn→en 35.3 - 34.2 34.7 44.2

Table 5: chrF Scores from the WMT2023 Indic MT test data. The use of BT Data (training on backtranslated
data) showed a decline in performance. The tuned lenpen (length penalty) and NCR (Noisy Channel Reranking)
was tuned for the BLEU scores and yielded mixed results for chrF. The multilingual setting outperformed all other
settings in all language pairs except en→as, where the baseline was best.

carded during the filtering process. The pairs that
remained after filtering likely were still not of the
best quality, which diminished the overall quality
of the training. As a result, the models trained on
this backtranslated data performed worse, as re-
flected in their BLEU scores in Table 4 and their
chrF scores in Table 5.

3.3 Length Penalty
Our tuning of the length penalty, as shown in Table
6, revealed that most language directions, with the
exception of English-to-Mizo and Mizo-to-English,
preferred shorter translation sequences. As shown
in Figure 1, the distribution of sentence lengths
across the language pairs indicates a reasonable
amount of overlap, though the Indic languages tend
to have slightly longer sequences.

This preference for shorter sequences coincides
with a known issue in Neural Machine Transla-
tion (NMT) models when handling long input se-

quences. NMT models typically rely on absolute
positional encodings, which use fixed sine and co-
sine functions to assign vector positions. This ap-
proach tends to struggle with longer sequences due
to the limitations of these fixed encodings, resulting
in less precise representations as sentence length
increases (Neishi and Yoshinaga, 2019). This is
likely contributing to the models’ difficulty in gen-
erating coherent longer translations, particularly
for underperforming language pairs like English-
Assamese and English-Khasi. As sequence length
increases, the models are more prone to generating
irrelevant or erroneous tokens, leading to a degra-
dation in translation quality.

It is interesting to note that despite the Indic lan-
guages generally having longer sequences, a length
penalty greater than one was found to be optimal
for both directions, even in English-to-Indic transla-
tion. This indicates that the models may be biased
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source→target Hyperparameters
lenpen ch_wt lm_wt

en→as 1.5 0.1 0.2
as→en 2.0 0.6 0.1
en→mz 1.0 0.1 0.1
mz→en 0.5 0.4 0.1
en→kh 2.0 0.1 0.1
kh→en 1.5 0.2 0.1
en→mn 1.5 0.1 0.1
mn→en 2.0 0.3 0.1

Table 6: Final length penalty (lenpen), channel model
weight (ch_wt), and language model weight (lm_wt).

towards shorter outputs across most language pairs,
potentially as a safeguard against these positional
encoding limitations. While this behavior aligns
with our expectations for the English-Assamese
pair based on its performance, the similar tenden-
cies in the English-Khasi pair were more surprising,
given the closer alignment of sentence lengths be-
tween these languages.

3.4 Noisy Channel Reranking
The BLEU scores obtained with NCR, as shown
in Table 4, yielded mixed results. After tuning
the length penalty, we observed that NCR im-
proved performance for only one model out of
eight, specifically English-to-Khasi. The chrF
scores, as shown in Table 5, also indicate slightly
improved performance with NCR solely for the
English-to-Khasi pair. For all other language pairs,
there was either no change in BLEU and chrF
scores or a slight decrease. It is crucial to high-
light that these results reflect the best combination
of hyperparameters we identified; alternative hy-
perparameter settings would have resulted in even
more pronounced variations in scores.

One notable finding is that the optimal language
model weight was consistently around 0.1 across
most language pairs. This suggests that the lan-
guage model contributed minimally to improving
translation quality. This issue may stem from ei-
ther data quality or data quantity limitations. In-
vestigating data quality issues would be valuable,
but addressing them poses a significant challenge
due to the already low-resource nature of the Indic
languages. Further filtering could exacerbate data
scarcity, making it difficult to maintain sufficient
training data.

Conversely, the channel model weights were
found to be more effective, with optimal values

varying by language pair but generally falling in
the mid-range. For the best-performing Indic-
to-English pairs with NCR, specifically Mizo-
to-English and Manipuri-to-English, the channel
model weights were 0.4 and 0.3, respectively.
These language pairs also had the best direct trans-
lation models and channel models, suggesting a
stronger alignment between model quality and
channel model effectiveness for these particular
languages.

3.5 Multilingual Model

The multilingual model trained on all language
pairs demonstrated considerable improvements
over the baseline models, achieving the best per-
formance in 6 out of the 8 language pairs. We
attribute this success to the model’s ability to learn
from a broader context across all five languages,
allowing for the creation of shared language repre-
sentations. This approach is especially beneficial
given the small size of the training datasets, as the
multilingual model can leverage cross-linguistic
knowledge to enhance translation quality.

However, due to time constraints, we were un-
able to explore the potential of using the multi-
lingual model as a channel model within NCR.
This remains a promising avenue for future re-
search. Further studies could also investigate pre-
training on the available monolingual data before
fine-tuning for translation tasks. Additionally, fine-
tuning the multilingual model for language model-
ing could further improve its utility in NCR, poten-
tially acting out all three functions in NCR, lever-
aging shared linguistic knowledge on all languages
and tasks, enhancing performance in low-resource
language pairs.

4 Conclusion

In this paper, we presented our approach to the
WMT 2024 Shared Task on Low-Resource Indic
Language Translation. Our experiments demon-
strated that the multilingual model trained across
all language pairs performed exceptionally well,
particularly in comparison to the baseline models,
achieving the highest BLEU scores in 6 out of 8
language pairs and the highest chrF scores in 7
out of 8 language pairs. This indicates that lever-
aging shared language representations, especially
when dealing with small datasets, can significantly
enhance translation performance by utilizing cross-
linguistic knowledge.
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Despite some success, our attempts to improve
results through data augmentation using backtrans-
lation and noisy channel reranking yielded mixed
outcomes. The poor quality of the Indic-to-English
backtranslated data led to performance degradation,
emphasizing the importance of both data quality
and quantity in low-resource scenarios. Addition-
ally, while noisy channel reranking provided bene-
fits in isolated cases, its overall impact was limited,
potentially due to suboptimal language model and
channel model contributions.

The promising performance of our multilingual
model suggests that further research could explore
its integration within noisy channel reranking, pos-
sibly utilizing it as both a translation and a channel
model. Additionally, future work should focus on
enhancing the quality of backtranslated data and in-
vestigating pre-training strategies on monolingual
data to boost the performance of low-resource lan-
guage pairs.

References
Roee Aharoni, Melvin Johnson, and Orhan Firat. 2019.

Massively multilingual neural machine translation.
arXiv preprint arXiv:1903.00089.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th annual international confer-
ence on machine learning, pages 41–48.

Jan Christian Blaise Cruz. 2023. Samsung R&D insti-
tute Philippines at WMT 2023. In Proceedings of the
Eighth Conference on Machine Translation, pages
103–109, Singapore. Association for Computational
Linguistics.

Akhilesh Gotmare, Nitish Shirish Keskar, Caiming
Xiong, and Richard Socher. 2018. A closer
look at deep learning heuristics: Learning rate
restarts, warmup and distillation. arXiv preprint
arXiv:1810.13243.

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A
method for stochastic optimization.

Masato Neishi and Naoki Yoshinaga. 2019. On the
relation between position information and sentence
length in neural machine translation. In Proceedings
of the 23rd Conference on Computational Natural
Language Learning (CoNLL), pages 328–338, Hong
Kong, China. Association for Computational Linguis-
tics.

Graham Neubig and Junjie Hu. 2018. Rapid adapta-
tion of neural machine translation to new languages.
arXiv preprint arXiv:1808.04189.

Jan Niehues and Eunah Cho. 2017. Exploiting linguistic
resources for neural machine translation using multi-
task learning. arXiv preprint arXiv:1708.00993.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 86–96,
Berlin, Germany. Association for Computational Lin-
guistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2023. Attention is all
you need.

Wei Wang, Ye Tian, Jiquan Ngiam, Yinfei Yang, Isaac
Caswell, and Zarana Parekh. 2019. Learning a multi-
task curriculum for neural machine translation. ArXiv,
abs/1908.10940.

Kyra Yee, Yann Dauphin, and Michael Auli. 2019.
Simple and effective noisy channel modeling for
neural machine translation. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5696–5701, Hong Kong,
China. Association for Computational Linguistics.

Wenbo Zhang. 2023. Iol research machine translation
systems for wmt23 low-resource indic language trans-
lation shared task. In Proceedings of the Eighth Con-
ference on Machine Translation, pages 978–982.

741

https://doi.org/10.18653/v1/2023.wmt-1.6
https://doi.org/10.18653/v1/2023.wmt-1.6
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/K19-1031
https://doi.org/10.18653/v1/K19-1031
https://doi.org/10.18653/v1/K19-1031
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1009
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.18653/v1/D19-1571
https://doi.org/10.18653/v1/D19-1571

