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Abstract

Large Language Models (LLMs) have demon-
strated impressive capabilities in machine
translation, leveraging extensive pre-training
on vast amounts of data. However, this gener-
alist training often overlooks domain-specific
nuances, leading to potential difficulties when
translating specialized texts. In this study,
we present a multi-domain test suite, collated
from previously published datasets, designed
to challenge and evaluate the translation abil-
ities of LLMs. The test suite encompasses di-
verse domains such as judicial, education, lit-
erature (specifically religious texts), and noisy
user-generated content from online product re-
views and forums like Reddit. Each domain
consists of approximately 250-300 sentences,
carefully curated and randomized in the final
compilation. This English-to-Hindi dataset
aims to evaluate and expose the limitations
of LLM-based translation systems, offering
valuable insights into areas requiring further
research and development. We have submit-
ted the dataset to WMT24 Break the LLM
subtask. In this paper, we present our find-
ings. We have made the code and the dataset
publicly available at https://github.com/
sohamb37/wmt24-test-suite.

1 Introduction

Machine translation (MT) (Bahdanau et al., 2016)
has witnessed significant advancements with the
advent of Large Language Models (LLMs) (et al.,
2024a,b), which leverage extensive pretraining
on massive datasets to achieve high performance
across various language pairs (Alves et al., 2024;
Zhu et al., 2024; Zhang et al., 2023). Despite their
remarkable generalization capabilities, LLMs of-
ten struggle with domain-specific texts due to a
lack of targeted training on such specialized con-
tent (Robinson et al., 2023; Jiao et al., 2023; Hendy
et al., 2023). Some LLMs (Workshop et al., 2023)
generate good translation involving low-resource

language when the target language is English but
not the other way around (Bawden and Yvon,
2023). These challenges are amplified when the do-
mains involved are different from those of training
data. This limitation poses a challenge for deploy-
ing MT systems in real-world applications where
domain-specific accuracy is crucial.

To address this gap, we participated in the "Help
us break LLMs" subtask at the Workshop on Ma-
chine Translation (WMT) 2024 (Kocmi et al.,
2024). The primary objective of this subtask is to
create a dataset that exposes the difficulties faced
by LLM-based MT systems when dealing with
domain-specific content. Our approach involves
collating a multi-domain dataset that includes sen-
tences from judicial, educational, religious litera-
ture, and noisy user-generated content from online
product reviews and forums like Reddit.

Each domain-specific subset comprises approxi-
mately 250-300 sentences, which are then random-
ized to form the final dataset. This dataset, focus-
ing on the English-to-Hindi translation direction,
aims to rigorously test the robustness and adapt-
ability of LLM-based MT systems. By identifying
the translation challenges specific to each domain,
our study provides valuable insights for improving
domain adaptation techniques in machine transla-
tion, ultimately contributing to more reliable and
accurate MT solutions for specialized applications.
Our contributions to the paper are as follows:

* We participate in the Break the LLM chal-
lenge in WMT?24 for English-Hindi language
direction, where we submit diverse data con-
sisting of six domains.

e We calculate the standard BLEU score as well
as the state-of-the-art metric XCOMET-XXL
to evaluate the translation quality.

* We perform a tiny scale manual evaluation of
the translation outputs.
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2 Related Works

Neural Machine Translation has achieved signifi-
cant advancements (Vaswani et al., 2017). How-
ever, translation of text involving low-resource lan-
guages remains a challenge. In low-resource lan-
guages, the translations of Indic languages like
Hindi is difficult due to the paucity of the high-
quality parallel corpus. Existing multilingual mod-
els like IndicTrans (Ramesh et al., 2022) and Indic-
Trans2 (Gala et al., 2023) achieved significant per-
formance gains compared to other models. How-
ever, English-Hindi machine translations still have
room for improvement.

Moslem et al. (2022) has previously used pre-
trained Language Models(LM) for domain specific
data augmentation for Machine Translation. They
simulated the characteristics of a small bilingual
dataset or monolingual source text and combined
it with back translation to create huge amounts of
synthetic in-domain data. Other works involving
low-resource languages include translation of chat-
based conversation by (Gain et al., 2022) where En-
glish Hindi translation was implemented on Chat
and question answers in chatbots. In the domain
of education, (Behnke et al., 2018) used crowd-
sourcing English texts to obtain translation into
11 languages for generating NMT data. Similarly,
Ramakrishna et al. (2023) introduced the EQuMT
dataset for improving the English-Hindi translation
for educational content.

In a recent study, (Briva-Iglesias et al., 2024)
showed that LL.Ms outperform Google translate
when it comes to the Legal domain. (Martinez-
Dominguez et al., 2020) implemented machine
translation in the legal domain for Italian to Swiss
language. For low-resource language, (Poudel
et al., 2024) introduced a custom-built dataset for
the legal domain for English Nepali language ma-
chine translation.

In the Literary domain, (Drobot, 2023) has stud-
ied the prospects of neural machine translation.
Earlier (Matusov, 2019) has used NMT for trans-
lating German literary works to English, and (Kuz-
man et al., 2019) implemented NMT for the literary
domain from English to Slovene. (Yirmibegsoglu
et al., 2023) has implemented NMT in the literary
domain for the low-resource language of English-
Turkish. (Thai et al., 2022) has also explored
document-level literary machine translation for
non-English languages. They have also shown
that there is a disparity between the automatic eval-

uation of these machine translations and human
evaluation, prompting further improvement of ma-
chine translation in this domain.

Noisy or non-standard input text can cause dis-
astrous mistranslations in most modern Machine
Translation (MT) systems.Khayrallah and Koehn
(2018) has shown in a study the impact of noise
on NMT systems. Michel and Neubig (2018) pro-
posed a benchmark dataset for machine translation
of noisy texts(MTNT). Herold et al. (2022) has
worked on filtering noise from machine transla-
tion data for improving the performance of NMT
systems.Bolding et al. (2023) has used LLMs
to remove noise from the MTNT dataset target
sentences and proposed C-MTNT dataset. Ma-
chine Translation of noisy text is mainly explored
through multimodal translation in English-Hindi
(Gain et al., 2021b; Laskar et al., 2021; Gain et al.,
2021a; Gupta et al., 2021c; Gain et al., 2023) where
images features were used to aid in machine trans-
lation from English to Hindi.

Product review is a translation task that is re-
lated to the field of e-commerce. (Gupta et al.,
2022) explores NMT with sentiment preservation
in this domain for the low-resource language of
the English-Hindi pair. (Gupta et al., 2021b) and
(Gupta et al., 2021a) are some of the other works
on online product review translation.

Some other notable works on low-resource lan-
guages include (Goyle et al., 2023), (Chowdhury
etal., 2022) and (Ranathunga et al., 2023) that have
implemented unique NMT techniques to comple-
ment the scarcity of data in these languages.

3 Dataset

Our proposed dataset includes English-Hindi bi-
text pairs from six critical domains, chosen for
their significance to both the machine translation
community and their difficulty of translation. We
provide a sample from each domain in Appendix D
and some statistics about the datasets in Table 4.
It can be noted that the size of each domain is
different. We had collected 500 sentences from
each domain in the beginning but after filtering out
sentences less than 5 words, we arrived at the final
size of the dataset.

3.1 Education domain

The education domain plays a crucial role in knowl-
edge dissemination. Enhancing machine transla-
tion in education promotes equal access to qual-
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Model Education General Judicial
BLEU COMET HUMAN BLEU COMET HUMAN BLEU COMET HUMAN
Aya23 36.40 0.71 2.00 14.13 0.70 3.33 17.07 0.70 4.00
Claude3.5 46.04 0.80 3.33 19.02 0.85 3.67 25.62 0.85 3.67
CommandR-plus 35.33 0.75 3.67 14.39 0.77 3.67 17.64 0.77 3.00
CycleL 0.38 0.72 1.33 1.21 0.15 0.79 1.33 0.14 1.00
GPT-4 40.90 0.68 2.67 14.68 0.75 2.67 18.45 0.75 2.67
IKUN-C 28.99 0.75 2.67 11.60 0.67 3.00 8.21 0.50 2.33
IKUN 28.62 0.76 1.33 11.99 0.66 2.33 6.95 0.47 1.00
IOL-Research 40.47 0.67 2.00 15.41 0.77 4.0 19.12 0.78 3.33
Llama3-70B 45.73 0.75 3.00 15.58 0.77 3.0 21.27 0.77 3.00
NVIDIA-NeMo 45.12 0.82 3.00 18.12 0.66 3.67 21.21 0.69 1.33
Online-A 50.27 0.73 3.00 19.84 0.75 4.0 25.02 0.73 3.33
Online-B 46.19 0.82 4.00 21.36 0.85 4.0 25.20 0.86 3.67
Online-G 46.19 0.73 2.67 16.49 0.67 3.67 27.33 0.73 2.67
TransmissionMT 46.70 0.82 3.67 21.39 0.85 4.67 25.25 0.86 4.00
Unbabel-Tower-70B  44.22 0.80 4.33 20.50 0.83 4.67 22.04 0.83 3.67
IMT 50.27 0.72 3.67 19.83 0.75 4.0 25.01 0.73 3.33

Table 1: Performance of different models across education, general and judicial domains

ity learning, supports multilingual environments,
and empowers non-native speakers to engage with
content. This helps reduce educational dispari-
ties and fosters cultural exchange. For this study,
330 English-Hindi language pairs were collected
from the EduMT dataset, which focuses on edu-
cational content in Indian languages (Appicharla
et al., 2021).

3.2 General domain

The general domain in our dataset is sourced from
the IIT Bombay English-Hindi Parallel Corpus
(Kunchukuttan et al., 2018), which includes a di-
verse range of parallel and monolingual Hindi texts
compiled by the Center for Indian Language Tech-
nology. It features content from various sources
such as news articles, TED Talks, government web-
sites, and Wikipedia. For our study, we randomly
selected 500 English-Hindi language pairs from
this domain. Improving machine translation in the
general domain enhances the accuracy of transla-
tions across diverse content, making information
more accessible for Hindi-speaking audiences.

3.3 Judicial domain

The judicial domain in our dataset is sourced from
the IIT Patna Hindi-English Machine Aided Trans-
lation (HEMAT) training corpora, which is specifi-
cally designed for legal and judicial content. For
this domain, we have included 325 sentences in our
proposed dataset. Enhancing machine translation
performance in the judicial domain is crucial, as
it ensures that legal documents, court rulings, and

other judicial materials are accurately translated.
This can have a significant impact by improving ac-
cess to legal information, supporting multilingual
legal proceedings, and ensuring that individuals
who speak Hindi can fully understand and engage
with the judicial system.

3.4 Religious Literature domain

The religious literature domain in our dataset con-
sists of 300 pairs: 150 Quran verses from the Tanzil
Project ! and 150 Bible verses from the Bible Eu-
din Project, both sourced from the OPUS collec-
tion (Tiedemann, 2012). These texts pose unique
challenges due to their religious significance and
archaic language.

3.5 Noisy domain

The noisy user-generated data domain in our
dataset is sourced from the benchmark dataset
for Machine Translation of Noisy Text (MTNT)
(Michel and Neubig, 2018). This domain includes
350 English sentences from MTNT, consisting of
informal and often error-prone comments made by
users on Reddit. Our annotators translated these
sentences into Hindi retaining the tone and nature
of the input sentences. However, they got rid of
some noise based on their own discretion. This
domain captures the informality of online commu-
nication. Improving machine translation in this
domain will help models better handle slangs, ty-
pos, and non-standard language use, in turn making

1https: //tanzil.net/docs/tanzil_project
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Model Literature Noisy Review
BLEU COMET HUMAN BLEU COMET HUMAN BLEU COMET HUMAN

Aya23 8.34 0.75 2.67 31.76 0.51 3.00 30.82 0.78 3.00
Claude3.5 15.11 0.90 3.33 42.49 0.71 4.33 36.45 0.89 3.33
CommandR-plus 10.32 0.83 3.33 31.35 0.62 3.67 26.49 0.85 3.33
CycleL 0.21 0.14 1.00 0.82 0.14 1.00 0.33 0.14 1.00
GPT-4 7.95 0.80 2.67 35.43 0.60 3.67 33.66 0.84 2.33
IKUN-C 4.85 0.68 2.0 19.99 0.54 2.33 19.09 0.69 1.33
IKUN 4.80 0.70 1.33 18.89 0.54 2.00 16.48 0.60 1.33
IOL-Research 6.82 0.82 3.00 39.79 0.62 3.33 33.23 0.84 2.67
Llama3-70B 9.51 0.83 2.67 34.73 0.61 3.67 33.16 0.82 2.67
NVIDIA-NeMo 16.65 0.72 1.0 37.32 0.38 2.33 41.07 0.61 2.00
Online-A 20.34 0.81 2.0 52.55 0.49 3.00 46.78 0.74 3.00
Online-B 26.21 0.91 3.33 51.51 0.72 2.67 41.55 0.88 3.00
Online-G 8.56 0.69 1.67 44.13 0.44 3.33 55.29 0.72 4.00
TransmissionMT 26.27 0.91 3.33 51.71 0.72 3.67 41.58 0.88 3.33
Unbabel-Tower-70B  20.03 0.90 2.67 40.86 0.68 3.00 35.42 0.90 4.00
ZIMT 20.34 0.81 1.67 52.55 0.49 2.67 46.78 0.74 3.00

Table 2: Performance of different models across literature, noisy, and review domains

them more robust.

3.6 Online User Review domain

The final domain in our dataset consists of user
product reviews from the e-commerce site Flipkart
(Gupta et al., 2021b). We included 300 English-
Hindi text pairs from this corpus. This domain
presents challenges like grammatical errors and
code-mixing, where users blend English and Hindi
within a sentence. Similar to MTNT, overcoming
the challenges in this domain will make the MT
systems more robust.

4 Evaluation

In this section, we outline the various evaluation
techniques employed to assess the performance of
the models based on their outputs. The evalua-
tion metrics considered in this study are the BLEU
(Papineni et al., 2002; Post, 2018) score, COMET
(Rei et al., 2020; Guerreiro et al., 2023) score, and
human evaluation score. We have shared the candi-
date translations from 3 models, Online-B, Nvidia-
Nemo, and INKUN-C in Appendix D. Online B
is one of the consistently best performing models
across all the domains and metrics among all the
submissions. Whereas, Nvidia-Nemo and IKUN-C
translations are of lower quality. This table gives
us a comparison of the quality of translations by
these models.

Model BLEU COMET HUMAN
Aya23 23.53 0.69 3.00
Claude3.5 31.63 0.83 3.61
CommandR-plus 23.28 0.76 3.44
CycleLL 0.78 0.14 1.11
GPT-4 25.98 0.74 2.78
IKUN-C 16.70 0.63 2.28
IKUN 16.44 0.61 1.56
IOL-Research 26.79 0.76 3.06
Llama3-70B 26.18 0.76 3.00
NVIDIA-NeMo 29.81 0.62 2.22
Online-A 36.21 0.84 3.06
Online-B 35.92 0.71 3.44
Online-G 32.79 0.66 3.00
TransmissionMT 35.94 0.84 3.78
Unbabel-Tower-70B  31.30 0.82 3.72
ZMT 36.20 0.71 3.06

Table 3: Performance of models on the full dataset

4.1 BLEU Scores

The BLEU score measures the quality of machine
translations by comparing the output to reference
translations based on n-gram similarity. A higher n-
gram match leads to a higher score, with a brevity
penalty to discourage overly short translations. The
score ranges from 0 to 100, with higher values
indicating better alignment with the references. We
calculate the BLEU score with sacrebleu (Post,
2018) and report corpus_score for the dataset.
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Figure 2: COMET scores in the General Domain

4.1.1 Domain wise Overview

The average BLEU scores in the general, judicial,
and literature domains are significantly lower, with
scores of 15.97, 19.14, and 12.89, respectively. In
the literature domain, the frequent use of ornamen-
tal language often leads to subjective translations
Table 5, causing notable differences between the
machine translations and the reference texts. The
general domain, encompassing diverse subdomains
and characterized by longer sentence lengths and
larger data size Figure 17, also contributes to lower
BLEU scores, as models struggle with both factors.
Similarly, the judicial domain presents challenges
due to its specialized terminology and formal tone,
which are difficult for models to translate accu-
rately. Additionally, in all three domains, translit-
eration instead of translation in many cases further
impacts the models’ performance.

For the education domain, the sentences are rela-
tively straightforward and easier to translate. Inter-
estingly, the models also achieved relatively high
BLEU scores for the user-generated data domains,
including noisy texts and product review texts.

4.1.2 Model wise Overview

Here we can see the average performance of the
models based on all the domains. Models Online-

Figure 4: COMET scores in the Literature Domain

A and ZMT have the best performance, closely
followed by Online-B and TransmissionMT, while
CycleL has the worst BLEU scores across all the
different domains. Note that BLEU is calculated
based on N-gram overlaps. Therefore, transliter-
ations of some tokens, even if they are relevant,
are not considered. This results in lower BLEU
scores in certain models, even if translation quality
is acceptable.

4.2 COMET Scores

The COMET score evaluates machine translations
using pre-trained language models, focusing on
both adequacy (preserving meaning) and fluency
(naturalness). It compares machine translations to
references and human translations through a regres-
sion model trained on human judgments, capturing
language nuances that other metrics may miss. The
score reflects how closely the machine translation
aligns with human preferences. We use xCOMET-
XXL to calculate the scores.

4.2.1 Domain wise Overview

The COMET scores of judicial, general, and ed-
ucation domains are the highest. It is easier to
retain the adequacy and fluency for these domains
compared to the other domains. They have a for-
mal tone to them, and the COMET score does not
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Figure 6: COMET scores in the Product Review Do-
main

penalize the MT models much for paraphrasing
sentences since it is a more robust metric.

Likewise, the worst COMET scores are obtained
for the domains of user-generated data for noisy
and product review texts. These texts are more
informal in nature and ridden with both spelling
and grammatical errors. There could be multiple
possible reasons: a) LLMs struggle to translate the
noisy texts, resulting in poor quality hypotheses
and lower COMET score. b) COMET metric is cal-
culated through embeddings. Here, the source side
is noisy, which can lead to unreliable embeddings
and, therefore, an unreliable COMET score.

4.2.2 Model wise Overview

The best-performing models in terms of COMET
scores are Online-B and TransmissionMT, closely
followed by Claude-3.5 and Unbabel-Tower-70B.
However, the worst-performing model is still Cy-
cleL.

4.3 Human Evaluation

The next evaluation method employed is human
evaluation. We enlisted the expertise of a linguist
in our lab, who randomly selected 3 sentences from
each of the 6 domains. For each sentence, the cor-
responding machine translations from the 16 sub-

mitted model outputs were collected, resulting in
288 sentences. These sentences were then rated on
a scale from 1 to 5, where 1 indicates the poorest
translation, and 5 represents the best possible trans-
lation compared to the reference texts. Note that
due to such a low number of samples, the results
in manual evaluation are very unreliable. However,
due to resource constraints, we could not perform
a large-scale manual evaluation. Nonetheless, we
hope this rating will provide some ideas about the
competence of the models when observed along
with scores from automated metrics.

4.3.1 Domain wise Overview

According to the human evaluation, the general
domain showed the highest faithfulness to the ref-
erence translations. This outcome is expected, as
general domain texts are typically easier to trans-
late due to their formal and unambiguous nature,
with fewer grammatical, lexical, and spelling er-
rors. Conversely, the noisy domain demonstrated
the lowest faithfulness to the reference translations.
This is largely attributed to the informal nature of
these texts, which often include profanities and in-
ternet acronyms like "lol" and "idk" as well as a
higher prevalence of errors.

4.3.2 Model wise Overview

Almost consistent with the COMET metrics,
we can see that the TransmissionMT, Unbabel-
Tower-70B, and Claude-3.5 have the best human-
evaluated scores, whereas CycleL again scored the
least favorably.

5 Conclusion

This paper presents a comparison of various model
submissions for the WMT Shared Task 2024. We
proposed a dataset with domain-wise segregation
and conducted a domain-specific analysis of the
submitted models. Our comprehensive evalua-
tion using BLEU, COMET, and human assess-
ments of the machine-translated hypotheses identi-
fied Claude 3.5, TransmissionMT, Unbabel Tower
70B, Online-A, and Online-B as some of the top-
performing models for machine translation using
LLMs. The analysis revealed that the formal do-
mains of general and education are the easiest for
models to handle, whereas the noisy and review
domains proved to be the most challenging. This
study highlights that while LLMs show proficiency
in machine translation, there is still significant
room for improvement.
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A Opverall Scores

We report the overall BLEU and COMET scores
in Figure 13 and Figure 14. Further, we provide
the domain-wise and model-wise average rating by
human annotators in Figure 15 and Figure 16.

B Participants

The WMT24 General Translation Task showcased
diverse approaches to machine translation. Sev-
eral teams explored the potential of Large Lan-
guage Models (LLMs) for translation tasks. IKUN
demonstrated the effectiveness of LLMs in multi-
lingual translation, achieving top rankings in mul-
tiple language directions (Liao et al., 2024). The
IOL Research team leveraged LLMs for continued
pretraining and synthetic data generation (Zhang,
2024).

Some teams focused on improving existing neu-
ral machine translation (NMT) architectures. HW-
TSC combined NMT and LL.M-based models us-
ing Minimum Bayesian Risk (MBR) decoding (Wu
et al., 2024). UvA-MT compared fine-tuned LLMs
with traditional encoder-decoder NMT systems
(Tan et al., 2024). The DLUT and GTCOM team
emphasized back-translation and multilingual mod-
els (Zong et al., 2024).

Novel approaches were also presented. Cy-
cleGN introduced a cycle-consistent approach
for non-parallel datasets (DREANO et al., 2024).
Hyper-SNMT proposed embedding sentences in
hyperbolic space to better capture language hierar-
chies (Zhou et al., 2024).

Several teams explored domain-specific adapta-
tions. Team-J incorporated document-level LLM
reranking for improved context-aware translations
(Kudo et al., 2024). NTTSU focused on speech
domain translation for Japanese to Chinese (Kondo
et al., 2024).

The Yandex team demonstrated significant im-
provements using human evaluation data for LLM
fine-tuning (Elshin et al., 2024). CUNI explored
various techniques including QLoRA, CPO, and
model merging (Hrabal et al., 2024).

Multimodal approaches were also explored,
with researchers integrating visual information to
enhance translation for low-resource languages
(Hatami et al., 2024).

These diverse approaches highlight the ongo-
ing innovation in machine translation, with a no-
table trend towards leveraging LLMs and exploring

novel architectures to improve translation quality
across various language pairs and domains.

C Dataset Statistics

Here, we have shared the summary statistics of
the lengths of different sentences in each domain.
Further we have also shared the harmonic mean of
ratio of source to reference text sentence in each
domain. From this graph it is evident that general
domain has the most disparity in terms of source
and reference sentence length. Also, it has the
longest sentences compared to the other domains.

D Dataset Example

In Table Table 5, we present examples from the
religious domain. This table showcases various
outputs relevant to religious texts, highlighting key
themes and interpretations.

Table ?? provides examples from the judicial
domain. The Online-B model has the best qual-
ity of translation. The output from the model
Nvidia_Nemo and IKUN_C is inadequate. The
original text conveys a universal message about
divine provision and the consequences of human
actions, while the translation introduces specificity,
making it feel more direct and personal.
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file min_nword max_nword average_nword

education_source. txt 5 79 25
education_reference. txt 5 80 29
general_source. txt 16 222 29
general_reference. txt 5 195 30
judicial_source.txt 11 39 21
judicial_reference. txt 9 56 24
literature_source. txt 11 38 21
literature_reference. txt 9 63 24
noisy_source. txt 21 49 31
noisy_reference. txt 20 74 38
review_source. txt 11 48 21
review_reference. txt 9 59 25

Table 4: Statistics of the domain-wise files

Domain wise Average Human Scores out of 5

BLEU Score on full Dataset

35 348 -=- Mean: 2.88
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Figure 13: BLEU Score on the Full Dataset
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Minimum Number of Words Maximum Number of Words Average Number of Words

Figure 17: Maximum Minimum and Average Words in File

Model/Text Model Output

Source And made the cloud spread shade over you, and sent for you manna and quails
that you may eat of the good things We have made for you. No harm was done
to Us, they only harmed themselves.
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Table 5: Example of Religious domain output
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