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Abstract

Fine-tuning Large Language Models (FT-
LLMs) with parallel data has emerged as a
promising paradigm in recent machine trans-
lation research. In this paper, we explore the
effectiveness of FT-LLMs and compare them
to traditional encoder-decoder Neural Machine
Translation (NMT) systems under the WMT24
general MT shared task for English to Chinese
direction. We implement several techniques,
including Quality Estimation (QE) data filter-
ing, supervised fine-tuning, and post-editing
that integrate NMT systems with LLMs.

We demonstrate that fine-tuning LLaMA?2 on a
high-quality but relatively small bitext dataset
(100K) yields COMET results comparable to
much smaller encoder-decoder NMT systems
trained on over 22 million bitexts. However,
this approach largely underperforms on surface-
level metrics like BLEU and ChrF. We fur-
ther control the data quality using the COMET-
based quality estimation method. Our experi-
ments show that 1) filtering low COMET scores
largely improves encoder-decoder systems, but
2) no clear gains are observed for LLMs when
further refining the fine-tuning set. Finally, we
show that combining NMT systems with LLMs
via post-editing generally yields the best per-
formance for the WMT?24 official test set.

1 Introduction

Generative Large Language Models (LLMs) have
demonstrated significant capabilities across vari-
ous English-centric NLP tasks (Zhang et al., 2022;
Touvron et al., 2023a,b). However, they often un-
derperform in multilingual contexts, particularly
with low-resource languages (Hendy et al., 2023;
Stap and Araabi, 2023; Wang et al., 2023). To en-
hance the multilingual proficiency of LLMs, recent
studies have explored several strategies, including
vocabulary expansion (Lin et al., 2022; Liang et al.,
2023; Yang et al., 2023), continual training on mul-
tilingual data (Le Scao et al., 2023; Dubey et al.,

2024; Xu et al., 2024a), and instruction tuning (Zhu
et al., 2023; Alves et al., 2024; Stap et al., 2024).
These approaches have collectively improved LLM
performance on a variety of multilingual tasks,
such as understanding (Lai et al., 2023), reason-
ing (Ponti et al., 2020; Shi et al., 2022), summariza-
tion (Hasan et al., 2021; Bhattacharjee et al., 2023),
and machine translation (Kocmi et al., 2023).

Fine-tuning Large Language Models (FT-LLMs)
with parallel data largely enhances translation ca-
pabilities, but such approach relies heavily on high-
quality parallel data. For instance, prior research
often uses development and test datasets like WMT
and Flores (Alves et al., 2023; Xu et al., 2024a; Li
et al., 2024) for the training, limiting the scalabil-
ity to a broader range of languages. In this paper,
we explore the feasibility of mining high-quality
bi-texts from open-source corpora like OPUS. We
utilize COMET (Rei et al., 2020), an automated
Quality Estimation (QE) tool, to score sentences in
the WMT-24 Constraint track. Unlike Peter et al.
(2023), who found that selecting the highest quality
sentences using COMET improves translation qual-
ity, our findings show that while this QE-based data
filtering does not provide clear benefits for LLMs
when refining fine-tuning datasets, it significantly
enhances the performance of NMT systems when
applied to filter training samples with low COMET
scores.

Recent studies show that LLMs fine-tuned with
MT data can rival state-of-the-art NMT models
like NLLB (Costa-jussa et al., 2022). However,
such comparisons may be unfair, as NMT models
like NLLB typically support a broader range of
languages. For example, ALMA-13b (Xu et al.,,
2024a) outperforms NLLB-54b (Costa-jussa et al.,
2022) despite targeting only eight language pairs
versus 200. Additionally, expanding languages in
multilingual models often causes interference that
degrades performance (Tan et al., 2024; Shaham
et al., 2023). In this paper, we focus exclusively on
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the English-to-Chinese translation direction', inves-
tigating how FT-LLMs compare to NMT models
trained from scratch using the same parallel data
source. Specifically, we use the full WMT-24 con-
straint track data to train an encoder-decoder NMT
model, and we fine-tune LLaMA2-7B on a selected
high-quality subset of up to 300K sentences. we
found that, despite fine-tuned LLama2-7B being 17
times larger, it yields comparable COMET scores
and worse scores for BLEU and ChrF.

While small NMT systems are resource-efficient
in production, LLMs in practice, generate less lit-
eral translations (Vilar et al., 2023). In this paper,
we integrate NMT and LLM systems by prompting
LLMs to post-edit (PED) NMT outputs. Addition-
ally, we implement a QE-guided PED system that
selects the final outputs based on the higher QE
score, as determined by COMET, between NMT
and post-edited outputs. Our experiments show
that the QE-guided PED system delivers the best
performance on the WMT?24 en-zh official test set,
improving ChrF up to +3.7 over pure NMT outputs
and +2.1 than direct translations by LLMs. Surpris-
ingly, this approach brings negative performance
gains on the Flores-devtest and Ntrex.

2 Data Preprocessing

In this section, we provide an overview of the data
sources and the cleaning strategy. We use all the
available data from the constrained track of the
WMT-24 shared task for all three directions in
which we participate, including English—Chinese,
English—Japanese, and Japanese—Chinese. Fol-
lowing Wu et al. (2023), we perform a thorough
preprocessing phase involving three key steps to
enhance the data quality, as outlined below.

* Character-level Cleaning

— Deescaping special characters in XML.
— Removing non-printable characters.

— Segmenting Chinese sentences with
Jieba? and tokenizing Japanese data using
KyTea (Neubig et al., 2011).

* Sentence-level Cleaning

— Filtering out sentences longer than 256 to-
kens.

'We investigate FT-LLM for en-zh, and explore the data
filtering for en-zh, en-ja, and ja-zh diretcions.
*https://github.com/fxsjy/jicba

— Eliminating sentences where over 75% of
the words on both the source and target sides
are identical.

— Removing sentences with a source-to-target
token ratio exceeding 3.0.

— Eliminating duplicated sentences.

* Language-level Cleaning

— Removing off-target sentences using the
FastText language identification tool (Joulin
etal., 2016).

— Excluding sentences exhibiting one-to-
many or many-to-one mappings, for exam-
ple, a single source sentence having multi-
ple different target sentences.

In specific, we use the Moses toolkit®(Koehn
et al., 2007) for all procedures in cleaning step 1
and use FastText (Joulin et al., 2016) for the lan-
guage identification step. As shown in Table 1
(Cleaned), we removed 29%, 22%, and 45% of the
data for en—zh, en—ja, and ja—zh directions.

Directions ‘ Raw Cleaned QE-filtered
en—zh | 55,346,004 39,354,051 22,606,804
en—ja 33,875,162 26,415,631 14,507,351
ja—zh 22,642,553 12,560,471 6,679,265

Table 1: Number of parallel sentences for three datasets.

3 Systems
3.1 NMT Systems

MMT baseline In this section, we describe the
backbone architecture and adjustments made to
our baseline systems. We train a multilingual-
Transformer-large (mT-large) model for all three
en—zh, en—ja, ja—zh directions. The mT-large is
a 12-layer Transformer (Vaswani et al., 2017) archi-
tecture with specific modifications, including pre-
norm for both the encoder and decoder, and layer-
norm for embedding. To enhance stability and
performance, we tie the parameters of encoder em-
bedding, decoder embedding, and decoder output.
We also introduce dropout and attention dropout
with a probability of 0.1, along with label smooth-
ing at a rate of 0.1. In addition, to specify the
translation directions, we prepend the source lan-
guage tags in the source, and target language tags
in the target side, e.g.: en2zh.

3https://github.com/moses-smt/mosesdecoder/
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Similar to the approach described by Vaswani
et al. (2017), we employ the Adam optimizer
with a learning rate of 5e-4, implementing an in-
verse square root learning rate schedule with 4,000
warmup steps. We set the maximum number of
tokens to 10,240, with gradient accumulation every
21 steps to facilitate large-batch training in Tang
et al. (2021). We train all of our systems with 4
NVIDIA A6000 Gpus, and to expedite the training
process, we conducted all experiments using half-
precision training (FP16). Additionally, we save
checkpoints every 2000 steps and implement early
stopping based on perplexity, with a patience of 5
epochs.

Quality-Estimation Filtering. Due to data
scarcity in the machine translation community, a
large amount of Machine Translation data is mined
from web-crawled data such as CCAligned (El-
Kishky et al., 2020). Nonetheless, recent research
found that there are many misaligned data exist in
such web-crawled datasets, which impair perfor-
mance when training models on it (Khayrallah and
Koehn, 2018; Ranathunga et al., 2024). In addi-
tion, incorrect language and non-linguistic contents
could affect the model in generating off-target or
hallucinated outputs (Kreutzer et al., 2022). Sim-
ilarly, recent studies on instruction fine-tuning of
LLMs have shown that increasing data quality is
more effective than data quantity (Du et al., 2023;
Pan et al., 2024; Zhou et al., 2024), especially in
inducing instruction-related capabilities (Xia et al.,
2024). Additionally, Peter et al. (2023) shows that
using QE metrics is not as effective at detecting
translation noises like untranslated sentences, but is
much better at identifying more fine-grained prob-
lems in the data, like small translation or grammat-
ical errors.

Motivated by that, we investigate the feasibil-
ity of extracting high-quality parallel data using
an automated Quality Estimation (QE) tool. We
utilize the COMETKiwi model and apply this data-
filtering phase to the cleaned data that we discussed
in Section 2. Figure 1 presents the COMET score
distributions for three directions. We found that
for both English—Chinese and English—Japanese,
the distributions are quite similar, that is, nearly
half of the data falls into the poor quality range
(0-80% Comet scores). For Japanese— Chinese,
approximately half dataset ranges from 0% to 65%
of COMET score. According to this observation,
we filtered out parallel data that has smaller than

80% Comet scores for both English— Chinese and
English—Japanese, and set the threshold at 65%
for Japanese—Chinese. As a result, we show the
number of parallel sentences after Quality Estima-
tion filtering in Table 1.

Directional Fine-tuning. Lastly, to encourage
the MMT model to gradually narrow down the data
distribution to focus on task-specific data, we fur-
ther fine-tune the MMT model on direction-specific
data. Note that the direction-specific data, i.e., En
— Zh, En — Ja, and Ja — Zh are the same data
that included in the MMT baseline training data.

3.2 LLM Systems

We use LLaMA2-7B as the backbone because it is
permitted for the constraint track of WMT24. We
reuse the framework of ALMA (Xu et al., 2023) to
conduct fine-tuning, however, we discard their first
stage of monolingual continue training.

We set the training batch as 32 and accumulated
4-step gradients. The learning rate is set as 2e-5.
The model was trained for one epoch using bf16
precision. The beam size is set as 5 for inference.

For the fine-tuning dataset, we further apply the
quality estimation method described in Section 3.1
to filter out data with a QE score below a certain
threshold. Then, we sample a certain number of
bitext from the filter dataset. For example, in Ta-
ble 4, the number of samples with a score above 89
is 53k, all of which are used for fine-tuning. Addi-
tionally, we sample data with scores higher than 87
at various levels, such as 53k, 100k, and 300k. We
fine-tune LLaMA?2 with different kinds of data to
show the impact of data qualities.

3.3 NMT+LLM Systems

Previous studies have shown that leveraging Large
Language Models (LLMs) to post-edit the out-
puts of supervised Neural Machine Translation
(NMT) models can reduce translationese and en-
hance translation quality (Chen et al., 2023). This
strategy has proven effective with LLMs such
as ChatGPT (Chen et al., 2023), GPT-4 (Rau-
nak et al., 2023), PaLM (Xu et al., 2024b), and
LLaMA-2 (Ki and Carpuat, 2024). Specifically,
post-editing utilizes LLMs either to refine the out-
puts of supervised NMT models or to perform
"Self-Refinement" on their own outputs. Further-
more, Ki and Carpuat (2024) demonstrate that tun-
ing LLMs with error-annotated translations can
further enhance performance.
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Figure 1: Comet score distributions for WMT-24 constraint training data on en—zh, en—ja, and ja—zh directions.

In this paper, we explore the effectiveness of
Post-Editing (PED) in improving translation qual-
ity for the English-to-Chinese direction. We fo-
cus on a training-free PED approach due to com-
putational constraints, utilizing pre-trained open
LLMs to edit the outputs of our supervised NMT
models. Given the limited Chinese capability of
LLaMA?2, we employ Tower-LLMs (Alves et al.,
2024) (Tower-Instruct 7B and 13B), which have
been continuously pre-trained on monolingual cor-
pora including Chinese. Additionally, we imple-
ment a Quality Estimation-guided Post-Editing
(QE-based PED) approach, where the NMT out-
puts and post-edited outputs are selected based on
the higher QE score using COMETKiwi (wmt22-
cometkiwi-da).

4 Experimental Setups

4.1 Systems

In this section, we briefly describe the systems we
implemented. It is important to note that some
of our implementations were focused only on the
English-to-Chinese direction, specifically for FT-
LLaMA2, Tower-Instruct, the PED system, and the
QE-based PED system.

mT-large. A multilingual Transformer-large
model trained in many-to-many directions using
the "Cleaned" data (see Table 1 and Section 3.1 for
details). It consists of 12 layers with 16 attention
heads, d = 1,024, and dg = 4,096.

mT-large + QE. This model shares the same ar-
chitecture and hyper-parameter settings as the m7-
large model but is trained using the "QE-filtered"
data outlined in Table 1.

mT-large + QE + FT. The mT-large + QF model
was further fine-tuned on direction-specific data.

FT-LLaMA2. We use supervised fine-tuning to
fine-tune LLaMA?2. Detailed settings can be found
in Section 3.2.

Tower-Instruct. We directly evaluate the perfor-
mance of the Tower-Instruct models for compari-
son with our systems.

Self-Refined PED. We prompt the Tower-
Instruct model to post-edit the translations they
originally generated.

PED system. We prompt Tower-Instruct models
to post-edit the outputs generated by our supervised
NMT system (m71-large + QE + FT).

QE-guided PED system. We determined the fi-
nal outputs by selecting between the NMT outputs
and the post-edited outputs, based on the higher
QE score as determined by COMETKiwi.

4.2 Data

For training, we utilize both the "Cleaned" and
"QE-filtered" datasets, see details in section 2. For
evaluation, we employ previous WMT validation
and test sets as our validation set, and Flores, Ntrex
as our test set.

4.3 Implementation and Evaluation

For our Neural Machine Translation (NMT) sys-
tems, we utilize the Fairseq toolkit (Ott et al., 2019)
for both training and inference. For Large Lan-
guage Model systems, we employ the Transform-
ers toolkit for training and inference. To evaluate
our models, we report detokenized SacreBLEU?,
ChrF++(Popovié, 2017), and COMET (Rei et al.,
2020) (wmt22-comet-da) scores.

*nrefs: 1 lcase:mixedleff:noltok: 1 3alsmooth:explversion:2.3.1
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D Methods #Param | FLORES-Devtest NTREX | WMT-24 Official
| BLEU ChrF COMET BLEU ChrF COMET | BLEU ChrF
English— Japanese (NMT Systems Only)
(1D mTlarge 419M | 359 390 8948 269 338 8579 | 298 262
@ (O+QE 419M | 366 398 90.00 273 345 8695 | 342 296
3 @+FT 419M | 37.1 403 9024 283 351  87.18 347 30.1
Japanese— Chinese (NMT Systems Only)
(4) mT-large 419M | 339 292  86.64 275 249 8226 | 225 216
B @+QE 419M | 340 291 87.04 276 250 8277 | 227 220
® ()+FT 419M | 340 29.1 87.00 278 250 8253 | 229 216

Table 2: Translation quality on NTREX, FLORES, and WMT test sets for the English—Japanese and
Japanese—Chinese directions. 'FT” denotes directional Fine-Tuning, and 'QE’ represents using QE-filtered

training data. We use percentage for COMET scores.

D Methods #param | FILORES-Devtest NTREX | WMT-24 Official
| BLEU ChrfF COMET BLEU ChifF COMET | BLEU ChrF

NMT Systems

(1 mT-large 419M | 422 350 8494 333 287  79.20 -

@ @DO+QE 419M | 438 360 8621 347 297 8121 - -

3 @+QE+FT 419M | 439 362 8612 350 297 8095 | 335 316
LLM Systems

(4) FT-LLama2 7B | 346 312  86.60 - - - - -

(5) Tower-Instruct 7B | 423 374 8809 352 31.1 8542 | 362 332

(6) Tower-Instruct 13B | 432 380 8812 362 320 8536 | 385 353

NMT + LLM Systems

(D Self-Refined PED ((5)) 7B | 403 361 8561 341 304 8379 | 360 33.0

PED (3)+(5) 742B | 397 358 8368  31.3 283 7880 | 381 349

(© QE-based PED (3)+(5) 7.42B | 407 361 8622 325 292 8140 | 382 353

Table 3: Translation quality on NTREX, FLORES-200, and WMT-24 test sets for the English—Chinese direction.
For WMT-24, we report BLEU and ChrF scores as returned by the OCELoT submission system.

5 Results and Analyses

In this section, we present the final results of our
experiments and discuss the findings. Table 3
and 2 show the results of English—Chinese and the
other two directions (en—ja and ja—zh) on Flores-
devtest, Ntrex, and WMT24 official test sets.

5.1 Quality-Estimation Filtering improves
NMT systems

Our key finding is that implementing Quality-
Estimation (QE) Filtering effectively reduces low-
quality data samples, leading to improved NMT
system performance. Specifically, we observed
BLEU score improvements of +4.4 and +0.2 for
the English—Japanese and Japanese—Chinese di-
rections, respectively, on the WMT?24 official test
sets. For the English—Chinese direction, we ob-

served BLEU gains of +1.6 on the Flores-devtest
and +1.4 on the Ntrex test sets. Similar positive
performance improvements were also noted across
other metrics, such as ChrF and COMET. These
results indicate that filtering training samples with
low COMET scores enables our supervised NMT
system to generate higher-quality translations.

5.2 Fine-tuned LLaMA2 and Data Quality

We conduct experiments on LLaMA2-7B in En-
glish to Chinese translation direction, where we
collect 300K parallel samples from the training
set, controlling the QE scores are all higher than
87. In Table 3, (4) shows the results. It is easy
to see that the fine-tuned LLaMA?2 results in the
best COMET performance (86.60) on the Flores
benchmark. However, the results on surface-level
metrics, such as BLEU and ChrF, significantly lag
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Language ‘ Data ‘ BLEU COMET
LLama2-7B 10k (Cleaned) 28.0 82.7
LLama2-7B 100k (Cleaned) 35.7 85.6
LLama2-7B | 53k (COMET >87) | 36.1 86.1
LLama2-7B | 53k (COMET > 89) 335 84.3
LLama2-7B | 100k (COMET >87) | 35.5 85.7
LLama2-7B | 300k (COMET >87) | 34.6 86.6

Table 4: Evaluation results of fine-tuned LLama2-
7B models for the English—Chinese direction on the
Flores-devtest set. *Cleaned’ indicates random sampling
from the *Cleaned’ training dataset, while ’‘COMET>x’
refers to the sampling of data with COMET scores
greater than x.

behind encoder-decoder-based NMT systems by
7.6 and 3.8 points, respectively.

We further control the fine-tuning data quality to
show the impact. We select 10K and 100K samples
from the cleaned dataset (See Table 1). To further
improve the quality of parallel semantic alignment,
we score all of the 39M cleaned training samples
using COMET, and then we construct fine-tuning
sets under the following settings:

* We selected all 53k samples with very high
COMET scores, using a threshold of 89.

¢ We then lowered the score threshold to 87 and
selected another 53k samples.

* We extend the number of samples with scores
higher than 87 to 100k and 300k.

Table 4 shows the corresponding results after
fine-tuning using datasets with different qualities.
We observe that: 1) Simply extending the fine-
tuning set from 10k to 100k largely improves the
resulting performance. 2) However, no clear im-
provements can be observed when further raising
the fine-tuning data QE quality. E.g., using 100k
trivial samples (after data cleaning, QE score lower
than 80) achieves comparable performance to that
of using 100k samples with a QE score higher than
87. Additionally, fine-tuning with samples that
have extremely high QE scores (COMET > 89)
even resulted in a decline in translation quality com-
pared to using 53k samples with relatively lower
QE scores (COMET > 87). 3) Further extending
the fine-tuning size from 100k to 300k yields no
clear improvements.

Our experiments suggest that simply enhancing
the quality of fine-tuning data for LLMs, at least
when using COMET as the central measure of qual-
ity, is not a promising approach.

5.3 Post-Editing Enhances Translation
Quality

As shown in Table 3, using the Tower-Instruct 7B
LLM to post-edit the outputs of our strongest su-
pervised NMT model (PED (@ + @)) resulted in
large improvements, with BLEU and ChrF gains of
+4.6 and +3.3, respectively, over the NMT model
alone on the WMT24 official test set. Notably,
this post-editing approach also outperformed di-
rect translation with Tower-Instruct 7B, achieving
additional gains of +1.9 BLEU and +1.7 ChrF. In
contrast, applying the Tower-Instruct model to post-
edit its own generated translations (self-refined
PED) resulted in negative improvements across
all test sets. These findings suggest that integrating
supervised NMT models with LLMs is a promis-
ing strategy for enhancing translation quality by
leveraging the strengths of both systems.

Furthermore, Table 3 demonstrates that the QE-
guided PED system (QE-based PED ((3) +(5))) can
further improve translation quality, as evidenced by
the positive performance gains across the Flores-
devtest, Ntrex, and WMT24 official test sets. In
particular, the QE-guided PED system, utilizing
Tower-Instruct 7B as the LLM backbone, achieved
performance on par with Tower-Instruct 13B in the
ChrF metric on the WMT24 official test set.

Despite the promising results on the WMT-24
Official test set, we found this Post-Editing ap-
proach delivered negative performance improve-
ments on Flores and Ntrex sets (Table 3).

6 Conclusions

In this paper, we investigate three aspects of us-
ing LLMs for translation: 1) Comparison with
Encoder-Decoder NMT Systems: directly fine-
tuning LLaMA?2 on a relatively small bitext dataset
(100K) yields COMET results comparable to those
of strong encoder-decoder NMT systems trained
on over 50 million parallel sentence pairs. How-
ever, this approach significantly underperforms in
surface-level metrics such as BLEU and ChrF. 2)
Impact of Data Quality: properly filtering samples
with low COMET scores largely improves encoder-
decoder systems, however, no clear improvements
can be observed for LLMs when further controlling
the fine-tuning set with higher COMET scores. 3)
Combining NMT Systems with LLMs: lastly, we
show that combining NMT systems with LLMs via
post-editing generally yields the best performance
in our experiments.
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