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Abstract

Many contemporary NLP systems rely on neu-
ral decoders for text generation, which demon-
strate an impressive ability to generate text ap-
proaching human fluency levels. However, in
the case of neural machine translation networks,
they often grapple with the production of repet-
itive content, also known as repetitive diction
or word repetition, an aspect they weren’t ex-
plicitly trained to address. While not inherently
negative, this repetition can make writing seem
monotonous or awkward if not used intention-
ally for emphasis or stylistic purposes. This pa-
per presents our submission to the WMT 2024
Non-Repetitive Translation Task, for which
we adopt a repetition penalty method applied
at learning inspired by the principles of label
smoothing. No additional work is needed at
inference time. We modify the ground-truth
distribution to steer the model towards discour-
aging repetitions. Experiments show the ability
of the proposed methods in reducing repeti-
tions within neural machine translation engines,
without compromising efficiency or translation
quality.

1 Introduction

The Non-Repetitive Translation Task of the ninth
Conference on Machine Translation (WMT24) fo-
cuses on lexical choice in machine translation, espe-
cially choice regarding repeated words in a source
sentence. Generally, the repetition of the same
words can create a monotonous or awkward im-
pression in English, and it should be appropriately
avoided. Typical workarounds in monolingual writ-
ing are to

1) remove redundant terms if possible (reduc-
tion) or

2) use alternative words such as synonyms as
substitutes (substitution).

These techniques are also observed in human trans-
lations. The goal of this task is to study how these

techniques can be incorporated into machine trans-
lation systems to enrich lexical choice capabilities.
From a practical standpoint, such capability would
be important, for example, in news production,
where high quality text that goes beyond robotic
word-by-word translation is required.

In addition, repetitions do not always have a neg-
ative impact on readability. Without aiming to be
exhaustive : 1) repetitions play a role when sum-
marizing information or reinforcing a concept ; ii)
common expressions are formed using word rep-
etitions, and altering them to eliminate repetition
would alter their intended meaning ; iii) in highly
specialized domains, expressions convey precise
meanings that disallow being reformulated. The
following examples illustrate these observations :

i) once closed, the door stays closed
ii) over and over ; to be or not to be ; step by step

iii) the congenital muscular dystrophy in new-
borns presenting with muscular hypotonia

As previously introduced, finding suitable alter-
natives without altering the meaning of a sentence
can be a challenging task.

Participants are required to control a machine
translation system using reduction or substitution
so that it does not output the same words for certain
repeated words in a source sentence. The transla-
tion direction is Japanese to English.

2 Related Work

The fluency levels achieved by LLMs are widely
acknowledged to be high, primarily owing to the ex-
tensive availability of monolingual datasets, which
surpasses that of standard neural machine transla-
tion (NMT) models trained solely on parallel texts.
To the best of our knowledge, no dedicated research
has been conducted on addressing the repetition
issue tackled in this work within NMT systems.
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Closely related, Welleck et al. (2019) describe a
method to train neural language models that in addi-
tion to maximizing likelihood to model the overall
sequence probability distribution, also includes an
unlikelihood term in the loss function to correct
known biases such as repeated tokens. Li et al.
(2020) use the same approach to control copy ef-
fect and repetitions observed in dialogue tasks. Su
et al. (2022) present a contrastive solution to en-
courage diversity while maintaining coherence in
the generated text.

Various studies have addressed diversity in neu-
ral MT systems, which is a closely related topic.
Sampling predictions from the output distribution
can be an effective decoding strategy for back-
translation, as described by Edunov et al. (2018),
or sampling from less likely tokens Holtzman et al.
(2020). Results show that such techniques en-
large diversity and richness of the generated trans-
lations when compared to data generated by beam
or greedy search, but introduce semantic inconsis-
tency in translations. In Lin et al. (2022) is pro-
posed a multi-candidate optimization framework
for augmenting diversity. The authors propose to
guide an NMT model to learn more diverse trans-
lations from its candidate translations based on
reinforcement learning. During training, the model
generates multiple candidate translations, of which
rewards are quantified according to their diversity
and quality.

A different approach attempts to condition the
decoding procedure with diverse signals. Typically,
Shu et al. (2019) use syntactic codes to condition
the translation process. Lachaux et al. (2020) re-
place the syntactic codes with latent domain vari-
ables derived from target sentences. Similarly,
Schioppa et al. (2021) use prefix-based control
tokens and vector-based interventions for control-
ling output translations from a NMT system. In
the context of paraphrase generation Vahtola et al.
(2023) propose a translation-based guided para-
phrase generation model that learns useful features
for promoting surface form variation in generated
paraphrases.

3 Adjusting the ground-truth distribution

Throughout the training process, at every time-step
t, neural machine translation networks generate
predictions over the target-side vocabulary based
on the input x and previous predictions y«¢:

pi=pyilT,y<t), i € [1,..., V]

where V' indicates the size of the target vocabulary.

The loss function evaluates the neural network’s
capacity to model the training data by compar-
ing its predictions to a reference target vector
r = [r1,r2,...,r7], where T" denotes the sequence
length. This loss is utilized to update the network’s
parameters, aiming to minimize the observed error
in the model. The loss at time-step ¢ is usually
computed as the cross-entropy between the model
predictions p; = [p}, ..., p{’ ] and the ground-truth
distribution ¢; = [q}, ..., ¢} ]:

y
i=—>_q; log(p}) €]
=1

Note that the vector ¢; is a one-hot encoding
representation of r;, with all entries set to 0 except
for the token indicated by 7, which is set to 1.
Addressing the over-fitting risk illustrated by the
previous ¢; distribution, label smoothing Szegedy
et al. (2015); Miiller et al. (2019) (LS) is widely
employed to achieve a smoother distribution:

€
¢ =(1-e)q + v 2)

with € being a commonly small hyper-parameter. !

t|1 2 3 4 5 6

r | I | like | cookies | and | cookies
10| 0 0 0 0 0
I{0| O 0 0 0 0
and | 0| O 0 0 0 0
like [ O] O 0 0 0 0
cookies | O | O 0 0 1 0

Figure 1: Matrix for the ground-truth r =1 like cook-
ies and cookies.”. Rows t and r represent respectively
the time-step and the corresponding ground-truth token.
A reduced model vocabulary (matrix rows) is used to
facilitate reading.

LS can be interpreted as penalizing the probabil-
ity of the ground-truth class by a factor of 1 — €,
while evenly distributing the removed probability
mass among all classes, €/V. Building upon a strat-
egy akin to label smoothing, we make additional
adjustments to the ground-truth distribution and
reduce the likelihood of repeated tokens, with the

'e = 0 yields the initial distribution q;, whereas ¢ = 1
implies a uniform distribution.
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Ground-truth distributions (¢=0,1 0=0,99)
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Vocabulary and like cookies
Figure 2: Ground-truth distributions for the 5th time-step of our example: the original one-hot encoding ¢; adjusted
with label smoothing ¢“““; and further adjusted with repetitions ¢“-*.

goal of enabling the model to learn to predict repe-
titions with lower probability. We introduce a ma-
trix, denoted as 1«7, which indicates whether the
ground-truth token r; is also present in the preced-
ing time-steps.” Figure 1 illustrates an example of
matrix with ground-truth / like cookies and cookies.
as translation of the Japanese sentence 7 */ % —
& ATy k& with a model vocabulary of
5 tokens (matrix rows). Both Japanese terms 7
X — [cookies] and & A7~ ~ [biscuits] are cor-
rectly translated into English as cookies, yet this
choice clearly reduces the fluency and clarity of the
translation. As it can be seen, only ;—5 ;—5) is set
to 1 since only r5 =’cookies’ occurs in a preceding
time-step (t = 3).

We consequently update the ground-truth distri-
bution following:

€
|4
where « is a hyper-parameter, and « is used as a
penalty, much like € in the case of LS. Note that
only the label smoothing probabilities discounted
are distributed among all classes. As a result, time-
steps with repeated tokens (such as ¢t = 5 in our
example) do not constitute proper probability dis-
tributions, as their sum does not add to 1. Fig-
ure 2 illustrates ground-truth distributions for our
example at time-step ¢ = 5: the original one-hot
encoding ¢; the original distribution adjusted using
label smoothing ¢¢*, and further adjusted using
repetitions ¢“/5® 3 A significant challenge with the
aforementioned techniques that modify ¢ distribu-
tion with repetitions is their limited impact on the
training process, primarily caused by the scarcity

g = (1—e)(1— ) ¢t + (3)

Note that repetitions are computed over words while ma-
trix refers to tokens r € V for each time-step ¢ € 7.

3 As previously discussed, distribution g% does not form
a proper distribution since probabilities do not add to 1 (0, 02+
0,02+0,0240,02+0,0092 = 0,0892). We leave for future
experiments the normalization of the output scores in order to
allow for a valid probability distribution.

of repeated tokens in datasets. In the following sec-
tion, we present alternative approaches to address
this challenge.

4 Gathering Examples with Repetitions

As previously depicted, our intention is to instruct
the model to minimize certain repetitions while pre-
serving others deemed necessary for an accurate
translation. To achieve this, we must compile a rel-
atively large dataset of examples that demonstrate
this behavior to the model. We initially focus on
repetitions of content words such as nouns, adjec-
tives, verbs, and adverbs. Function words, which
serve a distinct grammatical role in a sentence, are
excluded from this analysis. Current MT networks
reliably generate these words based on their under-
standing of grammatical correctness.

We back-translate the Japanese side of the JiJi
corpus (further detailed in Section 5.1) into English
and annotate word (or sequence) repetitions of con-
tent words based on automatic morpho-syntactic
annotations performed by Spacy*. We employ
word-alignments between Japanese and English
words performed by the Giza++ Och and Ney
(2003) toolkit’ in order to consider only repetitions
of English content words aligned to Japanese con-
tent words (Verbs, Nouns, Adjectives and Adverbs).
The resulting set of examples with repetitions from
src/tgt training pairs will be regarded as instances
that the model needs to learn to discourage. Con-
sequently, we utilize them for training after anno-
tating the repeated target words in their respective
matrices.

It’s worth noting that the presented approach
does not require any alterations to the network ar-
chitecture and maintains the same training and in-
ference efficiency.

4https: //spacy.io/
5ht’cps: //github.com/moses-smt/giza-pp.
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Jap JEMAOHHLF I IHYFKEICO>W T, [FEAEZ AR - 7= (VAR . =5 ilAS 724 ks
RERLGL & U] Lk~ Tw 5.

Eng "Shipments have been robust for both low-priced models with reduced functions and expen-
sive high-spec products," a JEMA official said.

Jap JEMAOFH L EITHY) FEIC DWW T, | <target id=0 ref=0 type=s>f%HE<\target>7%
- 7= Xl i <target id=1 ref=0 type=s>il il <\target>. = {llit& 7% Fi<target id=0 ref=1
type=s>Hh&fE<><target id=1 ref=1 type=s>Hl il <\target> & L 72 | kXT3,

Eng "Shipments have been robust for both low-priced <target id=1 ref=0 type=s>models<\target>

with reduced <target id=0 ref=0 type=s>functions<\target> and expensive <target id=0 ref=1
type=s>high-spec<\target> <target id=1 ref=1 type=s>products<\target>," a JEMA official

said.

Table 1: example of Japanese-English translation: raw translation is shown at the top, and the tagged translation to

annotate repetitions is shown at the bottom.

5 Experimental Framework

5.1 Datasets

We evaluate the proposed methods in a Japanese-to-
English translation task. Thus, we utilize Japanese-
English parallel corpora freely obtained from the
WMT?24 for Non-Repetitive Translation Task web-
site®. The corpus is compiled by Jiji Press Ltd in
collaboration with the National Institute of Infor-
mation and Communication Technology (NICT)
with various categories, including politics, econ-
omy, nation, business, markets, sports, etc., for use
in machine translation, in particular for previous
the Workshop on Asian Translation (WAT)’.
Table 2 presents various statistics of the corpora
used in this work, including the total number of sen-
tences, vocabularies, words, and average sentence
length. Statistics are computed after performing a
light tokenization aiming to split-off punctuation.
For testing, we use the supplied Japanese-English
datasets made available by the task organizers.

Lang #Sents #Vocab Words Length
Training-set

Jap 49K 6.9M 4.46

Eng 200k 118K 4.5M 24.64

Repetition-set

Jap 470 3,297 23,472 4.22

Eng 4,341 13,814 1191

Table 2: Corpora statistics. M and K stand for millions
and thousands respectively.

Due to the poor alignment quality of the
Japanese-English parallel sentences present in the
6https://www2.statmt.or‘g/wmt24/

non-repetitive-translation-task.html
7https ://lotus.kuee.kyoto-u.ac. jp/WAT/

provided dataset (sentence pairs are coupled us-
ing an automatic cross-lingual sentence similarity
score) we decided to back-translate the English side
using an in-house English-Japanese model. Then,
using the resulting Japanese®-English dataset we
fine-tune our baseline Japanese-English model.

In addition, we use a test set of repetitions also
provided by the challenge, consisting of reference
English machine translations and their correspond-
ing Japanese machine translations that include at
least one word repeated on the target (English) side
for a more nuanced analysis of repetition. Among
the files corresponding to the test datasets are those
containing tagged files in which repeated words and
their translations in each sentence pair are marked
with tags <target> and </target>. Marked words
indicate that they are evaluated repetitions. Three
labels, ‘id‘, ‘ref* and ‘type‘ are embedded within
the tags. Table 1 illustrates an example, where:

id indicates IDs of repated words. In the above
example, two tagged repeated words are in-
cluded, i.e., F¥HE (id=0) and 5}, (id=1). The
number of instances including multiple id’s,
such as the above example, are limited.

ref indicates IDs of pairs of source/target words,
such as 1 i/models (id=1, ref=0) and
ii/products (id=1, ref=1).

type indicates whether they are substituted (s) or
reduced (r).

The Repetition-set is mainly used to evaluate the
performance of our models in handling repetition
problems, as well as to assess overall translation
accuracy.

8Back-translated from English.
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5.2 NMT Models

Our NMT model is built using an in-house im-
plementation of the state-of-the-art Transformer
architecture Vaswani et al. (2017). Details of the
network hyper-parameters emplooy for training are
given in Table 3.

size of word embedding 512

size of hidden layers 512

size of inner feed forward layer 2,048
number of heads 8
number of layers 6

batch size 4,000 (tokens)
batch accumulation 25 (batches)

Table 3: Network hyperparameters.

For optimization work we use the lazy Adam
algorithm Kingma and Ba (2014). We set warmup
steps to 4, 000 and update learning rate for every
8 iterations. All models are trained using a single
NVIDIA V100 GPU.

We limit the source and target sentence lengths
to 150 tokens based on BPE Sennrich et al. (2016)
preprocessing. A total of 28 K BPE merge opera-
tions are separately computed for each language.
We finally use a joint Japanese and English vocab-
ulary of 58 K tokens. In inference we use a beam
size of 5.

Our baseline English-to-Japanese model is
trained during more than 3 million iterations using
all the parallel data available in the Opus website”.

6 Results

To evaluate the method presented in this paper we
consider the previous baseline model that we up-
date with 15K additional iterations for two different
configurations of the ground-truth distribution:

g% follows the same configuration than our base-
line model with label smoothing set to € =
0.1.

gL further penalizes the ground-truth distribu-
tion with repetition penalties as detailed in
Section 3 with € = 0.1 and for different val-
ues of a.

Note that for both configurations, we use the same
training corpus detailed in Table 2 (Training-set).

We also assess the effectiveness of two large lan-
guage models (LLM) with translation capabilities
to overcome the repetition issue:

9https ://opus.nlpl.eu/

GPT3.5 consists of the GPT3.5-turbo version of
the OpenAl LLM. Built upon the Generative
Pre-trained Transformer architecture Radford
and Sutskever (2018) which employs only
a transformer decoder. Following an auto-
regressive approach, the model ensures that
the generated text maintains coherence and
relevance to the context provided by the in-
put text. Translations are conducted using the
OpenAl API, while emphasizing the impor-
tance of minimizing word repetitions through
the provided prompt: Translate the follow-
ing text from English to Japanese, ensuring
that the translated output maintains coher-
ence and fluency while minimizing the repe-
tition of words or phrases. Pay attention to
using synonyms, varied sentence structures,
and appropriate linguistic devices to enhance
the overall quality of the translation. Feel free
to creatively adapt the language to achieve a
natural and engaging tone in the target lan-
guage. I want you to only reply the translation,
do not write explanations.

NLLB is a family of machine translation models
based on the Transformer encoder-decoder
architecture, enabling translation between any
of the 202 language varieties NLLB Team
et al. (2022). We use the nllb-200-distilled-
600M'° version and perform translations with
the efficient CTranslate2!! inference toolkit.

To evaluate the presented methods, we re-
port BLEU results computed by sacrebleu!? Post
(2018) respectively over test sets. We also report
the number of word repetitions that hinder fluency,
Degrading, after a human evaluation performed on
translation hypotheses. Table 4 summarize results
obtained by different system configurations.

Models fine-tuned from the baseline network ex-
hibit nearly identical quality scores across the test
set. This suggests that training with the method pre-
sented to adjust the ground-truth distribution does
not compromise translation quality. On the con-
trary, unlike Configuration ¢, Configurations
qP5® demonstrate a significant decrease in the
number of repetitions that degrade fluency over the
Repetition-set, while retaining most of the accept-
able repetitions in the translated output.

10https://huggingface.co/facebook/
nllb-200-distilled-600M

11https: //github.com/OpenNMT/CTranslate2
12https: //github.com/mjpost/sacrebleu
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Results from both LLMs demonstrate a reduced
number of repetitions, suggesting an elevated level
of diversity and fluency of such models. However,
the translation quality scores of LLMs do not align
with those achieved by the models presented in this
study in either of the test sets, especially transla-
tions obtained by GPT-3.5. These findings are con-
sistent with those presented by Bawden and Yvon
(2023) where the authors note the challenge of con-
trolling translations performed by BLOOM!, a
multilingual LLM.

Configuration BLEU Degrading
g 28.41 77
g5 1 —a=10"% | 28.91 60
GPT3.5 19.29 64
NLLB 16.12 74

Table 4: Translation accuracy results and number of
repetitions present in translations performed by models
under different configurations. € is always set to 0.1.

7 Conclusions and Further Work

We presented SYSTRAN submission to the
WMT24 Non-Repetitive Translation Task. Our
NMT systems introduce a method to reduce the
occurrence of repetitions in translation hypothe-
ses, which significantly affects the readability of
the generated texts. The method is solely imple-
mented during fine-tuning at the conclusion of the
training phase, without any modifications to the
inference process. Experiments indicate the ability
of our proposed methods in reducing the repetition
problem.

We aim to further study the impact of the ratio
between the number of reference sentences and
synthetic translations that include repetitions dur-
ing the training process. Additionally, we plan to
analyze the influence of the distance (measured in
number of words) between repetitions and explore
the possibility of replacing the binary penalty in
matrix with a softer approach.
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