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Abstract

Taxonomies of scientific research seek to de-
scribe complex domains of activity that are
overlapping and dynamic. We address this chal-
lenge by combining knowledge curated by the
Wikipedia community with the input of subject-
matter experts to identify, define, and validate a
system of 1,110 granular fields of study for use
in multi-label classification of scientific publi-
cations. The result is capable of categorizing re-
search across subfields of artificial intelligence,
computer security, semiconductors, genetics,
virology, immunology, neuroscience, biotech-
nology, and bioinformatics. We then develop
and evaluate a solution for zero-shot classifica-
tion of publications in terms of these fields.

1 Introduction

Organizing and categorizing scholarly literature is a
salient challenge for researchers, funding organiza-
tions, and data providers. Developing a comprehen-
sive yet efficient classification system that captures
the breadth and depth of the scholarly literature
is a problem that has both captivated and vexed
researchers. Thorough taxonomic assignment of
fields would provide great value via searching and
indexing capabilities, for use in research, policy,
and the public good. But manual categorization is
slow, expensive, and can be error-prone. The cost
of manual assignment also scales with the num-
ber of fields assigned; the more comprehensive
the solution, the more difficult it is for annotators
to apply it. Without automation, ideally with a
technique efficient and affordable enough to han-
dle the constantly-increasing flow of scholarly data
available, a broadly-usable solution will never be
realistic.

This doesn’t mean there is no place for manual
or tailored solutions within the space of topical
classification; however, manual work is best used in
tandem with automated solutions. In our paper, we
introduce a solution that begins with the curation
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of custom field taxonomies, developed with the
aid of Wikipedia, existing academic taxonomies,
and subject matter experts. The result is a field of
study model that creates automated zero-shot field
relevance scores based on Wikipedia and Wikipedia
citation data. This solution combines the best of
both worlds from the manual and the automated.
Leveraging quality existing knowledge bases like
Wikipedia ensures that fields are clearly defined
and fit into well-organized hierarchies, while use
of embeddings and similarity scores to produce
final results allows the actual training and labeling
process, the most expensive component, to be fast
and automatic.

Our methodology takes the Wikipedia text of our
chosen fields and the text of the page’s citations
and represents it in embedding form; using these
embeddings allows us to compute cosine similari-
ties between the resultant embedding and the text
embedding of any given publication, creating field
scores. This allows us to determine which fields
are the most similar to any given publication. This
methodology is fast and affordable, as we are using
low-cost embedding methods, and cosine similarity
is easy to calculate. Our field definitions are also
highly extensible. We use a slightly modified ver-
sion of Shen et al. (2018)’s field hierarchy for the
top two levels (LO and L1) of our hierarchy, adding
and cleaning up fields through manual review. This
yields a set of fields that are broad and complete
at higher levels, and cover the full scope of the sci-
entific literature. However, at the lower two levels
(L2 and L3), we focus on specific research areas
of particular interest to us, curating our subfields
with support from existing academic taxonomies,
Wikipedia, and subject matter experts. This means
that anyone with interest in particular research ar-
eas could define their own taxonomies following
the same process and use the identical method to
produce field embeddings and scores for their own
subfields of interest.
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Another advantage of our methodology is the
use of multi-label classifications. Most scientific
research publications may not naturally fall into
only one field, but will instead be relevant to mul-
tiple areas; this is particularly true as the relevant
fields become more granular. Multi-label classifica-
tions accommodate this nuance, while the inclusion
of scores allows us to step back and limit to top
fields where that is preferred, or set our threshold
of similarity at any given point of interest.

As our technique is unsupervised, and we do not
have a ground-truth dataset, we instead evaluate
our results through a variety of other mechanisms,
including an examination of the embedding space,
“silver” label matching of our fields to narrowly
focused topic-specific venues, and a comparison
of our results to a ground-truth dataset whose field
taxonomy only partially aligns with ours.

2 Related Works

We extend a line of research on topical classifi-
cation for scientific publications from Shen et al.
(2018), who proposed zero-shot classification of
papers with a taxonomy of over 200K fields follow-
ing automatic hierarchical taxonomy construction
per Sanderson and Croft’s (1999) earlier work on
subsumption. The authors reported cleaning up
the top two levels of the taxonomy by hand based
on their qualitative evaluation. The result of this
work was available in Microsoft Academic Graph
(Wang et al., 2020) before its shutdown at the end
of 2021. Our work extends manual curation into a
third and fourth level of this taxonomy, adding 813
new lower-level fields identified by SMEs.

Methodologically we follow Toney and Dunham
(2022), who used Wikipedia page content and the
text from pages’ academic references to create field
embeddings using a FastText (Bojanowski et al.,
2017) model pre-trained on a corpus of scientific
literature.

Other research has extended the approach devel-
oped by Shen et al. in different ways. OpenAlex
(2022) adopted the full taxonomy from Shen et al.,
excluding fields with fewer than 500 tagged publi-
cations, and then trained a supervised model using
the publications and field scores labeled by MAG
for use in their publication dataset; essentially they
considered the previous results from Shen et al.
ground truth and trained a model to allow continued
inference. A team at Semantic Scholar (MacMillan
and Feldman, 2023) also developed a field classi-
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fication model largely based on the taxonomy of
Shen et al., with targeted additions based on user
feedback, using a linear SVM running on charac-
ter n-gram TF-IDF representations and trained on
data selected by identifying venues likely to pub-
lish within a relatively narrow set of fields — an
approach we use here for validation rather than as
a training method.

The Field of Research Classification Shared
Task at the Natural Scientific Language Processing
Workshop 2024 (Ahmad et al., 2024b) addressed
the problem of multi-label field classification with
submissions evaluated against human labels. This
task had a much narrower focus, as its taxonomy
was focused specially on natural language process-
ing rather than the whole of the scientific literature
and gold data was available to train on and evaluate
against, but the methodology used is still illustra-
tive. The winning submission for the shared task,
by the Bashyam and Krestel team, described in Ah-
mad et al. (2024a), as well as in their own paper
(Bashyam and Krestel, 2024), treated the task as an
extreme multi-label classification problem, extend-
ing the labeled data using weak supervision with a
TF-IDF model, and then leveraging the larger set of
weakly labeled data to fine-tune an X-transformer
model. They applied hierarchical restrictions only
after running the model, which is the same choice
we ultimately make. We also evaluate our results
against the gold dataset produced for the shared
task.

3 Methodology

Our model was designed using three data sources.
First, we identified hierarchical field taxonomies,
starting with a base of the taxonomy developed
by Shen et al. (2018) for Microsoft Academic
Graph and then developing our own lower-level
taxonomies using topic-specific resources, subject
matter experts, and Wikipedia’s own Category and
List pages. We then used Wikipedia as a knowledge
base from which to derive the individual fields of
study and their definitions and to extract text, cita-
tions, and linkages for building model embeddings.
Finally, we employed these resulting fields of study
and their embeddings to classify a large corpus
of academic publications drawn from a variety of
datasets: Clarivate’s Web of Science, Semantic
Scholar, OpenAlex, The Lens, Papers with Code,
and arXiv. Our corpus contains 207,231,266 publi-
cations overall.



As we developed our taxonomies, we began with
a base of the high-level taxonomies curated by Mi-
crosoft Academic Graph (MAG) in their original
version of the fields of study. We used their tax-
onomies for both our level zero (LO) fields and
for the vast majority of our level one (L1) fields.
The LO and L1 fields in MAG were derived from
the Science-Metrix classification scheme and re-
fined manually by Shen et al. (2018), so they are
generally of high quality, whereas the lower-level
MAG fields were derived automatically, and we
found them to be less intuitive. (They omitted sig-
nificant areas of research and included ones that
weren’t clearly distinguishable from each other.)
After consultation with subject matter experts, we
refined some of the L1 fields to better reflect a more
consensus view of how certain subject areas are or-
ganized. Otherwise we largely retained MAG’s
structure.

To define L2 and L3 fields, we began by focus-
ing on a subset of fields of particular interest to us,
and ones in which we had access to subject matter
experts. Our methodology should translate to any
similar subfields. For each subfield of interest, we
identified existing taxonomies of relevance, often
created by local conferences or journals for orga-
nizing their own work, or used at universities to
describe course structures. We linked these tax-
onomies to their corresponding Wikipedia pages,
and supplemented those using Wikipedia pages of
relevance identified from Category and List pages
about our subfields. We enlisted the aid of sub-
ject matter experts to expand on, clean up, and
check the resulting fields. On occasions where a
topic was of sufficient relevance but did not have
a single specific Wikipedia page of its own, we
identified sections of Wikipedia pages or combined
multiple Wikipedia pages that could substitute. We
created L2 and L3 fields beneath the following
L1 fields: artificial intelligence, computer security,
semiconductors, genetics, virology, immunology,
neuroscience, biotechnology, and bioinformatics.

For each field of study we identified, we ex-
tracted the Wikipedia text of the page itself, as
well as all of its citations. We then linked as many
citations as possible to their titles and abstracts;
these links could be established using the citations’
DOI, Semantic Scholar ID, PubMed ID (PMID),
or PubMed Central ID (PMC) and our dataset of
scholarly literature. This gave us access to the
cited publications’ titles and abstracts, which we
included in the ultimate text for each field. We also
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extracted each field of study mention in the text to
use in our entity embeddings.

Using the extracted text, we then followed the
algorithm described in Toney and Dunham (2022)
to compute our document and entity embeddings
for each field of study. With these embeddings,
we were able to use cosine similarity to calcu-
late a similarity score between each document
in our corpus and each field of study. With
207,231,266 publications, and 1,110 fields, this
gave us 230,026,705,260 initial scores.

However, while it is reasonable to have scores
for all publications for all LO and L1 fields, the
same is not true for our L2 and L3 fields. This is
because our LO and L1 fields are comprehensive,
and our L2 and L3 fields are not. If a publication
receives its highest score for a particular L1 field,
we can be reasonably confident it is related to that
field, because our L1 fields are intended to broadly
cover the scope of the scientific literature; the topic
the publication discusses should be among our L1
fields and so its most similar embedding should be
something actually relevant to it. But for our L2
and L3 fields, the field most similar to a publication
may still not be similar at all. This is the challenge
of building a non-comprehensive hierarchy; how-
ever, the alternative is to build a comprehensive hi-
erarchy by hand — which is difficult and potentially
unrealistic — or build a comprehensive hierarchy
in an automated fashion — which leads to less intu-
itive results and is prone to error. Instead, we have
chosen to create a method to eliminate unrelated
results from our L2 and L3 scores.

After evaluation, our technique here is to rely on
the LO and L1 hierarchy. While one of the advan-
tages of fields of study is their flexibility — publica-
tions can fall under multiple L.O and L1 fields — we
ultimately believe most publications are unlikely
to directly fall under more than a small number of
disciplines. For that reason, we require any publi-
cation assigned an L2 or L3 field to have that L2
or L3 field’s parent LO field as one of their top
two LO fields, and its parent L1 field as one of
their top three L1 fields. To provide an example,
if a publication’s highest-scoring L2 and L3 fields
were “cryptography” and “differential privacy,” we
would expect that one of its two top-scoring LO
fields was “computer science” and one of its three
top-scoring L1 fields was “computer security.”



4 Results

Our final dataset included 1,110 fields, with 19
at LO, 280 at L1, 107 at L2, and 706 at L3. The
smaller number of L2 fields as compared to L1
fields is explained by the narrowed scope at L2 — L2
fields don’t cover the full scientific literature. The
207,231,266 publications over which fields were
calculated were primarily in English, as the model
was built based on English-language Wikipedia
articles and their citations, but we also imputed
scores for publications that had enough citation-
based neighbors whose field scores we were able
to calculate.

Our fields were generally based directly on indi-
vidual, full Wikipedia articles and their linked cita-
tions. However, in certain cases where Wikipedia
articles didn’t align directly to the field in the tax-
onomy we wanted to cover, or the Wikipedia article
included information that was likely to overlap mul-
tiple fields, we combined multiple articles or took
specific sections of articles to develop our scores
instead. In these cases we still used the article’s
citations, but limited ourselves to the citations of
the portions of the articles we used. There were five
fields that combined multiple articles and fifteen
that used specific sections of articles.

When extracting references from articles, we
focused on identifiable and linkable references in
the scientific literature, ones with identifiers that we
could connect to our dataset of scholarly literature.
Of the 1,110 fields in our dataset, 949 of them had
at least one such reference; for the others, we used
just the Wikipedia text itself. The average length of
the Wikipedia text for fields was 16,478 characters.
The average length of the combined reference text,
for fields with references, was 41,087 characters.

The distribution of our dataset among our level
zero fields can be seen in Figure 1.

4.1 Field Representation Evaluations

As in Toney and Dunham (2022), we evaluate the
resulting field representations by comparing their
pairwise cosine similarities, with the expectation
that vectors for closely-related fields should be
proximal in the embedding space. Figure 2 shows
the cosine similarity for each pair of level-zero
fields of study. We expect, for example, that fields
like computer science and engineering or business
and economics should have relatively high cosine
similarities, and they do; fields that are less related
like biology and political science have relatively
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Figure 1: Counts of publications by their top level zero
field.

low cosine similarities.

In Figure 3, we inspect the relative position of
fields in the embedding space using t-Distributed
Stochastic Neighbor Embedding (t-SNE) to locate
the 250-dimensional field embeddings in a 2-D
plane. After dimensionality reduction, we can
see that among subfields of computer science, the
closest subfield to artificial intelligence is human-
computer interaction. Meanwhile the related sub-
fields of computer security, computer networks,
and operating systems all appear near each other
in the t-SNE plot. Similarly intuitive clusterings
can be found in the t-SNE plot for the L2 and L3
subfields under artificial intelligence. For example,
the nearest subfield to computer vision is gesture
recognition, and we observe a clustering of neural
networks, bio-inspired computing, and neuromor-
phic engineering.

4.2 Venue Matching

As one of our methods to evaluate our resulting
fields, we produced field score outputs for a set
of paper selected from conferences and journals
that were focused on specific topics that were the
same as or nearly identical to the fields themselves.
So, for example, for our “human-robot interaction”
field we looked at the ACM/IEEE International
Conference on Human Robot Interaction, and for
our “biometrics” field we examined publications
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from the International Joint Conference on Biomet-
rics (IJCB).

This gave us a set of publications that we be-
lieved, with relatively high probability, should get
high scores in specific fields of study. Directly
matching conferences or journals did not exist for
every field in our taxonomy, but we created an ex-
ample subset, which enabled us to examine our
results across a range of our new fields. Ultimately
this subset included 55 conferences or journals cov-
ering 41 of our fields of study, at both level two and
level three.

We then evaluated the fields of study scores on
publications from those venues, looking to see how
high our expected fields scored. We didn’t antic-
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ipate that our expected field would always be the
highest-scoring field; many of our fields have heavy
overlap and many publications submitted to venues,
even focused ones, touch on multiple areas. For
example, one of the fields we selected to evaluate
was “ethics of artificial intelligence,” looking at the
Artificial Intelligence, Ethics, and Society (AIES)
conference. However, many publications there, not
surprisingly, received their highest scores instead
in “algorithmic bias,” “fairness,” “regulation of ar-
tificial intelligence,” “explainable artificial intelli-
gence,” or even “Al safety.” These are different but
related topics, and ones that can all show up at the
same venue, even if its top-level theme matches our
field. Similarly, it was not uncommon for cross-
topic publications to appear with their other topic
(i.e. not the one from the venue they were in) as
the top score, but to have the venue-relevant field
be one of their other highest-scoring fields. One
example would be a publication like “On Demo-
graphic Bias in Fingerprint Recognition” (Godbole
et al., 2022), which appeared in a biometrics venue,
but was marked as a paper about digital forensics.
This overlap is actually one of the advantages of
field scores, and of multi-label scoring systems in
general, as it allows us to identify publications that
naturally fall into multiple categories rather than
just one.

Because of this natural tendency of publications
to fall into multiple categories, we did not eval-
uate publications based solely on whether their
highest-scoring field matched our expected venue,
but instead considered whether one of their top five
fields matched. With this evaluation, we found
that 56.4% of our top five assigned fields matched
their expected field based on their venue. We also
identified highly-similar and overlapping fields (e.g.
“algorithmic bias” and “fairness”) and determined
that 81.1% of our top five assigned fields matched
either the expected field or one of its comparable
fields.

In addition to looking at venues whose work
aligned with our new fields, we also identified some
venues whose work did not, selecting publications
on art history, architecture, theology, sociology,
chemistry, psychology, and statistics. We picked
these fields to provide a variety that would give
us areas with both greater and lower likelihood of
plausible cross-disciplinary overlap with our new
fields. We then manually labeled a sample of the
publications that were assigned L2 and L3 fields
within these disciplines to better understand if these



assignments made sense or were in error, selecting
ten publications from each field, or all publications
in the field if there were fewer than ten assigned.
This gave us a sample of 56 total publications, of
which 38 (or 67.9%) were assessed as correctly
assigned to our L2 and L3 fields. These cross-
disciplinary publications are some of the most dif-
ficult to identify.

4.3 Comparisons to Other Work

The Field of Research Classification (FoRC)
Shared Task at the Natural Scientific Language
Processing Workshop (NSLP) 2024 (Ahmad et al.,
2024b) provides another source of ground-truth
labels for evaluation purposes. The shared task
provides two datasets, one of which is a good ana-
logue for our work: 1,500 papers from the ACL
Anthology annotated using Taxonomy4CL, which
defines 170 topics and subtopics of computational
linguistics.

To evaluate our classifier against the labels for
the shared task, we created a crosswalk from Tax-
onomy4CL to our own fields of study. In Taxon-
omy4CL, there are 44 top-level, 105 level-two, and
21 level-three topics. Among these, 33 have direct
counterparts in our fields of study taxonomy, most
of which have identical names. We subsetted the
ACL Anthology papers from the FoRC shared task
to those receiving any of our 33 intersecting labels,
and then compared their top-scoring fields to their
Taxonomy4CL labels.

In this evaluation, we found (micro) precision
of 0.60 and recall of 0.60. For reference, the top-
scoring submission for the shared task (Bashyam
and Krestel, 2024) scored the evaluation set with
(micro) precision of 0.44 and recall of 0.76. These
metrics are not directly comparable to ours, after
our restriction of the evaluation set to a subset of
papers, but our purpose in evaluating against the
Taxonomy4CL labels was only to assess the valid-
ity of our field labels, not to attempt the shared task.
Relatively high performance against the ground
truth from the shared task provides some evidence
of our predictions’ validity.

5 Conclusion

Extending our fields of study methodology to en-
able the creation of granular fields in subject-
specific areas allows for much more detailed biblio-
metric analysis of publication data. Our methodol-
ogy for doing so is repeatable, extensible, and relies
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on public resources like Wikipedia, citations from
Wikipedia to publication data, and publicly avail-
able taxonomies from academic conferences and
journals, as well as the expertise of the academic
community. Our zero-shot approach requires no
annotation or training data, making it extremely
accessible, and uses fast, cheap embedding tech-
niques and similarity metrics that can be run on a
personal computer. Nonetheless it produces high-
quality results across hundreds of fields.

One limitation of our current approach is our
focus on English-language results. We have ex-
plored using Wikipedia pages in other languages
to produce the same results, but more thorough
evaluation is needed to properly assess the impact
of using alternative pages, embedding models, and
citation sets. In the future, we would like to extend
to at least some of the most common languages
in use in the publication literature. In the mean-
time, we have imputed scores for a subset of non-
English publications that have direct citation links
to English-language works.

It is possible that the most cutting-edge or niche
fields may not appear in Wikipedia, either because
they do not meet the notability guidelines or be-
cause no volunteer has yet written them up. In fu-
ture work, it may be worth exploring whether bring-
ing in external field definitions and citations from
other locations, like journal subcategories, might
produce additional fields to fill in gaps. Perhaps
quality results from such an approach could even
be contributed back to Wikipedia as new pages.
Despite these limitations, our approach provides
a valuable new technique for focused bibliometric
analysis. The taxonomy, classifications, and code
are available on GitHub.!
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