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Abstract

In this paper, we discuss multilingual vo-
cabulary for neural machine translation mod-
els. Multilingual vocabularies should generate
highly accurate machine translations regard-
less of the languages, and have preferences
so that tokenized strings contain rare out-of-
vocabulary (OOV) tokens and token sequences
are short. In this paper, we discuss the char-
acteristics of various multilingual vocabularies
via tokenization and translation experiments.
We also present our recommended vocabulary
and tokenizer.

1 Introduction

In recent tasks that use neural models, including
neural machine translation, we usually fine-tune
pretrained models (e.g., Devlin et al. (2019); Liu
et al. (2020)). When a pretrained model is fine-
tuned, the training corpora are different from those
used for pretraining, in which the vocabulary must
be different. However, pretrained models deter-
mine their vocabulary in advance, and it is diffi-
cult to change the vocabulary during fine-tuning.
Therefore, it is important to discuss the first vo-
cabulary.!

On the other hand, it becomes common to pro-
cess multiple languages in machine translation
and large language models (LLMs) because neu-
ral models can be packed multiple languages into
a model (e.g., Johnson et al. (2017)). In this pa-
per, we discuss vocabularies appropriate for mul-
tilingual neural models. The target task is machine
translation that uses encoder-decoder models. Our
aim is to decide the vocabulary that is suitable for
our multilingual translation models.

Figure 1 illustrates the typical structure of an
encoder-decoder model (Vaswani et al., 2017). In
this structure, there are five modules related to vo-
cabulary: 1) source tokenizer, 2) target tokenizer,

'Tt is possible to only add words in the vocabulary (Tang
et al., 2020; Imamura and Sumita, 2022).
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Figure 1: Vocabulary-related modules in an encoder-
decoder model.

3) encoder embeddings, 4) decoder embeddings,
and 5) output projector. The tokenizers tokenize a
string into tokens, which consist of (sub-)words in
the vocabulary of each tokenizer, except for out-
of-vocabulary (OOV) strings. Neural models con-
vert them into dense representations by looking up
the tokens in the word embedding tables. Thus, the
vocabularies in the tokenizers and neural model
(the embedding tables and output projector) are
essentially identical. It is possible to use differ-
ent vocabularies between the encoder and decoder.
However, shared vocabulary is generally used in
multilingual models because both input and output
strings are multilingual (e.g., Liu et al. (2020); Fan
et al. (2020)). In this paper, we assume that the vo-
cabularies of the above five modules are identical,
unless otherwise specified.

We suppose that the preferences or require-
ments of the multilingual vocabulary for neural
models are as follows.

1. High accuracy is preferred in target tasks.
Because we use the machine translation task
in this paper, high translation quality is pre-
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ferred.

Token sequences, into which arbitrary strings
are tokenized using the vocabulary, do not
contain OOV tokens. This is a high prefer-
ence because the OOV tokens certainly re-
duce the accuracy of tasks (Sennrich et al.,
2016).

. Token sequences are short (i.e., the numbers
of tokens are small) because, generally, the
shorter the input, the better the output (Ari-
vazhagan et al., 2019).

Small models (i.e., the number of model pa-
rameters is small) are better for computa-
tion during training and inference. The num-
ber of parameters in the word embedding ta-
bles increases in proportion to the vocabu-
lary size and accounts for a large portion in
neural models. Therefore, a small vocabu-
lary size is better from the viewpoint of the
number of model parameters. However, it re-
sults in longer token sequences, and a trade-
off emerges between it and a preference for
No. 3. We determine the balance of the two
preferences using translation quality.

Regardless of the languages, strings with
the same meaning are tokenized into simi-
lar numbers of tokens. We presume that this
preference reduces complexity during trans-
lation.

The token sequences can be read by hu-
mans. Although this preference does not
affect translation quality, high readability is
better for debugging by humans.

In this paper, we discuss the vocabularies that
satisfy the above preferences for multilingual
models, which manage a mixture of various script
types. Note that we consider No. 1 to be the most
important preference, the second preference is No.
2, and the remaining preferences are optional.

The remainder of this paper is organized as fol-
lows: In Section 2, we explain related work, which
includes studies of multilingual models. Next, we
discuss preferred vocabulary via tokenization and
translation experiments in Sections 3 and 4, re-
spectively. In Section 5, we compare our exper-
imental results with findings of conventional vo-
cabulary studies, and we conclude the paper in
Section 6.
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2 Related Work
2.1 Multilingual Models

Table 1 shows the list of major multilingual (par-
tially monolingual) models and their vocabular-
ies/tokenizers.

Multilingual BERT (mBERT) (Devlin et al.,
2019) and XLM-RoBERTa (XLM-R) (Conneau
et al., 2020) are categorized as multilingual en-
coder models. These encoder models are applied
to various natural language understanding tasks.

For encoder-decoder models, which are used
for machine translation, multilingual BART
(mBART) (Liu et al., 2020; Tang et al., 2020),
M2M-100 (Fan et al., 2020), NLLB-200 (NLLB
Team et al., 2022), and mT5 (Xue et al., 2021)
are categorized as the multilingual models. Note
that mBART and XLM-R use the same tokeniza-
tion model.

Recent LL.Ms are resultantly multilingual, even
though they learn using English Web text, because
they contain other languages. Their vocabulary
sizes are rather small: the size of GPT2 (Radford
et al., 2019) is 50K and that of LlaMa2 (Touvron
et al., 2023) is 32K.

Many multilingual models use SentencePiece
(Kudo and Richardson, 2018) as their tokeniz-
ers. In this paper, we use SentencePiece for
our experiments. Note that byte pair encoding
(BPE) (Sennrich et al., 2016) and unigram models
(Kudo, 2018) are known as major subword encod-
ing methods. We use the unigram models in this

paper.
2.2 Byte-level BPE / Byte Fallback

If an input string contains OOV characters, there
are two behaviors of tokenizers (Table 2).

1) The tokenizer decomposes the OOV parts
into characters. In this case, the word embed-
dings become unknown (indicated by <UNK>).

2) The tokenizer decomposes the OOV parts
into byte sequences (Radford et al., 2019).
This method is called byte-level BPE in the
byte-pair encoding and byte fallback in Sen-
tencePiece. They assume that input strings
are encoded in UTF-8. If the vocabulary
of the neural models includes all bytes (256
bytes), no OOV tokens occur. However, read-
ability decreases because humans cannot un-
derstand the string. Additionally, the decoder
may generate invalid byte sequences that are



Type Model Tokenizer #Langs. Vocab. size  Byte fallback
Encoder only mBERT WordPiece 104 120K
(Schuster and Nakajima, 2012)
XLM-R¥ SentencePiece/Unigram 100 250K
(Kudo and Richardson, 2018)
Encoder-decoder mBARTY} SentencePiece/Unigram 100 250K
M2M-100  SentencePiece/BPE 100 128K
NLLB-200  SentencePiece/BPE 200 256K
mT5 SentencePiece/Unigram 101 250K v
Decoder only GPT2 Byte-level BPE 1 50K v
(Radford et al., 2019)
LlaMa2 SentencePiece/BPE 1+1 32K v

Table 1: Tokenizer and vocabulary of major multilingual models. 1XLM-R and mBART use the same tokenizer
with the same vocabulary. § 90% of the training corpus of LlaMa2 is in English, and the rest is multilingual.

Method Example

Source BERDPEAREL £ LT,

1) Character FEL<UNK> LS B RS LE L7z,
2) Byte fallback  f_<0xE8>_<0xA1>_<0x86>_7%%_

R LELEL

Table 2: Example of byte fallback. Japanese character

‘4% is fallbacked if it is not contained in the vocabu-

lary.

not decoded into UTF-8 if byte fallback is ap-
plied to the decoder. The detokenizer must
address this problem.

We also confirm the effects of byte fallback.

2.3 Flores+ Dataset

The Flores+ dataset (NLLB Team et al., 2022;
Goyal et al., 2021)? is an evaluation dataset that
covers 200 languages. It was created by translat-
ing sentences that were sampled from articles in
English Wikinews, Wikijounior, and Wikivoyage
into other languages. Therefore, the sentences are
parallel among languages other than English. A
total of 997 and 1,012 sentences are published as
the development (dev) and development-test (de-
vtest) sets, respectively.?

The dataset contains the language and its script
type in the filenames. We use the categories (lan-
guage names and script types) of Flores+ in this

paper.
3 Tokenization Experiments

In this section, we evaluate tokenization using var-
ious vocabularies/tokenizers. We evaluate transla-

2https ://github.com/openlanguagedata/flores
3The test set is not published.
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tion in Section 4.

3.1 Experimental Settings

Target Languages We selected 98 languages
(26 script types) from the Flores+ dataset for
which there were more than 100K lines in the CC-
100 corpus (a set of monolingual corpora) (Con-
neau et al., 2020; Wenzek et al., 2020).

Considering the script types of Flores+, 55 out
of 98 languages use a Latin script, such as English,
and 20 languages use scripts unique to each lan-
guage, such as Greek, (simplified and traditional)
Chinese, Japanese, and Thai. The list of languages
and script types is shown in Table 6 in Appendix
A.

Tokenizer/vocabulary We evaluated M2M-
100, XLM-R/mBART, NLLB-200, mT5, and
LlaMa2 for existing models. For our origi-
nal models, we evaluated unigram models of
SentencePiece learned under various conditions.

Training Corpus for SentencePiece We ran-
domly selected the training sets for each language
from the CC-100 corpus.* We selected 20 million
lines in total. The mean number of lines was ap-
proximately 200 thousand per language, but we
controlled the sampling size using a temperature
coefficient, as we describe later.

Other Settings for SentencePiece We used
0.9995 for character coverage, and the number of
seed pieces was 100 times the vocabulary size.

Evaluation We evaluated the tokenization re-
sults of the 98 devtest sets in Flores+ using the
following metrics.

*The largest set in CC-100 is 1.8 billion lines of English
and the smallest set is 120 thousand lines of Lingala.


https://github.com/openlanguagedata/flores

* average number of tokens and variance (stan-
dard deviation) for all languages.

* total number of OOV tokens.

» number of fallbacked bytes when we applied
byte fallback.

We preferred a small number of tokens (i.e., short
token sequences) and a small number of OOV to-
kens. The low variance of the number of tokens in-
dicated that sentences with the same meaning were
tokenized in close number of tokens, regardless of
the languages.

Comparison Methods We compared tokeniz-
ers/vocabularies under various conditions as fol-
lows.

* Vocabulary Size:
We compared the vocabulary sizes 250K and
64K (or 100K). The vocabulary size affects
the length of token sequences and neural
model size.

Byte Fallback:

We compared cases with and without byte
fallback. This condition influences the num-
ber of OOV tokens.

Additional Characters:

We added approximately 52K characters,
which are U+0000 to U+D7FF in the basic
multilingual plane of Unicode and have char-
acter names in the Python unicodedata mod-
ule. Adding characters to the vocabulary en-
ables us to control OOV tokens using an al-
ternative to byte fallback.

Note that we can also control OOV tokens by
changing the character coverage setting dur-
ing SentencePiece training. In this study, we
used the additional character method to con-
trol OOV tokens.

Language Balance:

How to determine the sampling size of the
training corpus for each language. We eval-
uated the following two methods, one is
based on language distribution in the cor-
pus, and another is based on the script types.
The methods changed the importance of low-
resource languages and languages that use
the unique scripts. Both methods control the
corpus size using the inverse temperature co-
efficient 1/7 (temperature sampling) (Lam-
ple and Conneau, 2019; Arivazhagan et al.,
2019).
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a) This case follows the distribution of
the CC-100 corpus (hereafter, ‘Cor-
pus’). This means that the size of high-
resource languages becomes large. The
training corpus size s; of language [ is
determined by the following equation.

l

1/7
S; X , (D
l (zf )

where ¢; denotes the number of CC-100
lines of language [, and L denotes the
number of languages (= 98).

G

b) This case uses the script types (here-
after, ‘Script’). The training size of each
language is uniform for a script type.
Smoothing is based on the number of
languages in a script type. The size of
the languages that use unique scripts be-
comes large and that of the languages
using the Latin script becomes small

even though we apply temperature sam-
pling.

(1/ns)"/"
SF(1/ns)V

where ns; denotes the number of lan-
guages in the script type to which lan-
guage [ belongs (e.g., 55 languages be-
long to the Latin script type, and one
language belongs to the Japanese script

type).

(@)

8] X

3.2 Result 1: Language Balance

Before the comparison experiments, we deter-
mined the optimal inverse temperature coefficient
1/7 by changing the training corpus size for Sen-
tencePiece. We evaluated the 250K vocabulary
with byte fallback without additional characters.

Figure 2 shows the change of the number of to-
kens in the Flores+ devtest set when we changed
the inverse temperature coefficient from 0.0 to 1.0.
It includes the average of all languages, the aver-
age of the languages that use the unique script (20
languages; represented as ‘Single’ languages), and
the average of the languages of the Latin script (55
languages; ‘Latin’ languages).

a) When we used the Corpus method, the num-
ber of tokens and the difference between the Sin-
gle and Latin languages became the smallest when
1/7 =0.0.
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b) Script: Using the script types.

Figure 2: Number of tokens of Flores+ according to the
inverse temperature coefficient 1/7.

b) When we used the Script method, the num-
ber of tokens in the Latin languages increased as
1/7 increased. Conversely, that of the Single lan-
guages decreased as 1/7 increased and they were
balanced when 1/7 = 0.2.

These results show that it was effective to bal-
ance languages by changing the training corpus
size of each language using the inverse tempera-
ture coefficient. In subsequent experiments, we
used the optimal inverse temperature coefficient
that balanced all languages, that is, the standard
deviation of the number of tokens became the
smallest.

3.3 Result 2: Tokenization

Table 3 shows the tokenization results for the Flo-
res+ devtest set using various tokenizers and vo-
cabularies. ‘Avg. #tokens’ is the average number
of tokens in all languages, and its standard devi-
ation indicates the variance among languages. If
the standard deviation is small, differences among
languages must also be small. ‘#OOV’ indicates
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the total number of OOV tokens, and ‘#Fallbacked
bytes’ is the total number of fallbacked bytes in all
languages.

First, we confirmed the tokenization results of
the baselines. The mBART/XLM-R and NLLB-
200 tokenizers generated the least number of to-
kens, and mBART/XLM-R generated the least
OOV tokens of the two tokenizers, even though
it does not use byte fallback. From the viewpoint
of OOV tokens, mT5, which uses byte fallback,
was the best; however, the number of tokens was
more than that of mBART/XLM-R. We consider
that mBART/XLM-R was the most suitable tok-
enizer/vocabulary for our preferences (c.f., Sec-
tion 1).

Next, we compared our SentencePiece unigram
models, referring to the preferences. We confirm
the translation quality in the next section.

First, the number of OOV tokens became zero
using byte fallback.

The average number of tokens was most af-
fected by the vocabulary size. The tokenizers
with the 250K vocabulary became a similar num-
ber of tokens regardless of the other conditions.
Although not shown in the table, the vocabulary
size also affected the number of model parameters.
When we used a Transformer big model (Vaswani
et al., 2017), the number of model parameters was
approximately 430 million for the 250K vocabu-
lary and 240 million for the 64K vocabulary. The
vocabulary size is a trade-off between the number
of tokens and the number of parameters, and we
determined the optimal size using translation qual-
ity.

The standard deviation of the number of tokens
indicates the variance of languages. However, it
was less affected by the language balance and byte
fallback because all deviations of the 250K tok-
enizers were less than 3,700. It was most influ-
enced by the size of the training corpus, as shown
in Section 3.2.

Finally, focusing on the number of fall-
backed bytes, the number decreased when there
were additional characters. For example, 5,848
bytes in 250K_S+B decreased to 48 bytes in
250K_S+B+C52K. Adding characters is a solution
to improve readability if translation quality is the
same.

Tokenization examples of several languages are
shown in Tables 8 to 10 in Appendix C.



Tokenizer/ Vocab. Byte Additional  Lang. Avg. #tokens # Fallbacked
vocabulary size fallback  characters balance (std. dev.) #0OOV bytes
Baselines
M2M-100 128K Corpus 42,196 (8,542) 38,942 N/A
mBART/XLM-R 250K Corpus 37,632 (6,246) 30 N/A
NLLB-200 256K Corpus 37,579 (4,900) 16,739 N/A
mT5 250K N4 Corpus 45,365 (9,979) 0 81
LlaMa2 32K Vv = 96,836 (75,630) 0 2,989,581
SentencePiece/Unigram
250K_C+B 250K N4 0 Corpus 35,562 (3,510) 0 11,601
250K_S 250K 0 Script 35,900 (3,422) 1,873 N/A
250K_S+B 250K N4 0 Script 35,948 (3,367) 0 5,848
250K_S+B+C52K 250K Vv 52K Script 37,095 (3,602) 0 48
64K_S+B 64K Vv 0 Script 45,504 (4,294) 0 4,745
100K_S+B+C52K 100K Vv 52K Script 47,410 (4,676) 0 48

Table 3: Tokenization results. The tokenizer/vocabulary names of SentencePiece are combinations of the vocab-
ulary size, language balance (‘C’ and ‘S’ represent ‘Corpus’ and ‘Script,’ respectively), byte fallback (‘B’), and

additional characters (C52K).

4 Translation Experiments

4.1 Experimental Settings

We evaluated the translation quality as follows:

Tokenizer/vocabulary From the tokeniz-
ers/vocabularies used in Section 3, we selected all
SentencePiece vocabularies and mBART/XLM-R
and mT5 as the baselines.

Translation Languages We selected the follow-
ing eight out of 98 languages and trained a multi-
lingual translation model in all directions (8 X 7 =
56 directions) for each vocabulary:

¢ Latin Languages:
English, Spanish, and Vietnamese: We se-
lected one European language and one Asian
language other than English.

Single Languages:

Japanese and Mandarin Chinese (Standard
Beijing): Although their characters have the
same origin, they use different glyphs (i.e.,
different character codes), in most cases.

Other Languages:

Modern Standard Arabic, Hindi, and Rus-
sian: These are the other script types of the
above languages.

Parallel Corpus We sampled 1 million sen-
tences for each language pair from the NLLB-200
corpus as the parallel corpus to train the translation

5This vocabulary does not balance languages because the
model is not precisely multilingual.
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models. We sampled sentences independently for
each language pair. Therefore, the importances of
the languages are the same in this experiment.

Translation Models We used the Transformer
big models (Vaswani et al., 2017) (1,024 embed-
ding and 4,096 FFN dimensions, six layers for
the encoder and decoder) implemented by FairSeq
(Ott et al., 2019), and learned multilingual mod-
els in 56 (8 x 7) directions. Like the M2M-100
model (Fan et al., 2020), the multilingual mod-
els were trained while we supplied language tags
(e.g., ‘__en__" for English) at the head of the
source and target sentences.

Hyperparameters The details of the hyperpa-
rameters are shown in Appendix B.

Evaluation We evaluated the translation qual-
ity using the average scores of 56 directions of
ChrF++ (Popovié, 2017) and COMET (Rei et al.,
2022) (using the wmt22-comet-da model) imple-
mented in SacreBLEU (Post, 2018). For the statis-
tical test, we used binomial testing with 56 trials,
in which a trial indicated a direction (p < 0.05).

4.2 Results

Table 4 shows the translation quality for each vo-
cabulary. Among all vocabularies, nBART/XLM-
R achieved the highest scores. This is because it
contained (not zero, but) very few OOV tokens and
the number of tokens was low.

Next, we focused on the results of our Senten-
cePiece unigram models. Regarding the vocab-
ulary size, the translation qualities of the 250K



Vocab. Byte Additional  Lang. Avg. score
Tokenizer/vocabulary size fallback  characters balance ChrF++ COMET
Baselines
XLM-R/mBART 250K Corpus 41.13 8237
mT5 250K Vv Corpus 40.44 .8176
SentencePiece/Unigram
250K_C+B 250K Vv 0 Corpus 40.93 8211
250K_S 250K 0 Script 40.72 .8167
250K_S+B 250K Vv 0 Script 40.93 .8212
250K_S+B+C52K 250K v 52K Script 40.89 .8208
64K_S+B 64K Vv 0 Script 40.21 .8139
100K_S+B+C52K 100K Vv 52K Script 40.09 .8127

Table 4: Translation quality for each tokenizer/vocabulary. The tokenizer/vocabulary names of SentencePiece
consisted of the vocabulary size, language balance (‘C’ is Corpus, and ‘S’ is Script Type), byte fallback (B), and
additional characters (C52K). The bold scores indicate the highest score, and the underlined scores indicate the

second-best scores.

vocabularies were better than those of the 64k
(or 100K) sizes. For example, the ChrF++ and
COMET scores of 250K_S+B were higher than
those of 64K_S+B (p = 1.6 x 107'9), and the
scores of 250K_S+B+C52K were higher than those
of 100K_S+B+C52K (p = 5.6 x 10717).

The translation quality with byte fallback was
significantly higher than that without byte fall-
back when comparing 250K_S and 250K_S+B (p =
2.5 x 107?), even though the difference was small.

Regarding additional characters, although we
could not find a significant difference between
250K_S+B and 250K_S+B+C52K, the scores of
64K_S+B were significantly higher than those of
100K_S+B+C52K (p = 6.1 x 10~%). Additional
characters were not effective. We suppose that this
was because multi-character subwords reduced in
the vocabulary or characters that were not learned
remained when we added 52K characters.

4.3 When Different Vocabulary Sizes are
Used between the Encoder and Decoder

In the preceding discussion, we assumed that a
shared vocabulary was used in the encoder and
decoder. However, the optimal vocabularies of
the encoder and decoder may not be the same be-
cause the encoder is responsible for natural lan-
guage understanding, and the decoder is respon-
sible for generation. Therefore, in this subsection,
we confirm the translation quality if we change the
vocabulary between the encoder and decoder.
Specifically, we performed a translation exper-
iment by changing the vocabulary sizes between
the encoder and decoder. We used 250K_S+B and
64K_S+B (i.e., the language balance was the script
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Vocab. size
Encoder Decoder ChrF++ COMET
250K 40.93 8212
250K 64K 40.73 .8192
64K 250K 40.82 .8203
64K 40.21 .8139

Table 5: Translation quality (average scores in the 56
directions) when changing the vocabulary sizes of the
encoder and decoder.

type, with byte fallback, and the vocabulary sizes
were 250K and 64K).

Table 5 shows the result. Regardless of whether
we changed the vocabulary size of the encoder
or decoder, the scores were intermediate between
those of 250K and 64K. The shared vocabulary of
the encoder and decoder was suitable to achieve
high translation quality.

S Comparison with Conventional
Vocabulary Studies

There have been various vocabulary studies us-
ing multilingual neural models. The findings of
these studies, in comparison with the results of our
study, can be summarized as follows:
Arivazhagan et al. (2019) built multilingual
models covering 103 languages using various con-
ditions. They also investigated vocabularies for
the models and reported the following findings.

1. Translation quality is better when a large vo-
cabulary is used.

2. Changes to the language balance of the vo-
cabulary using temperature sampling do not



significantly affect translation quality.

In our experiments, a large vocabulary resulted in
better translation quality. In addition, the language
balance was not observed to have a significant ef-
fect on quality.

Gowda and May (2020) investigated the opti-
mal vocabulary size for multiple languages (using
only single-directional translation models). They
reported that the optimal vocabulary size depends
on the training corpus size for the translation
models. Namely, a large vocabulary is better in
high-resource languages and a small vocabulary is
preferable low-resource languages. As described
in Section 4, our experiments indicate that a large
vocabulary is better because we use 1,000,000 par-
allel sentences for each direction, which is re-
garded as a high-resource condition.

Zhang et al. (2022) constructed multilingual vo-
cabularies for eight languages with different En-
glish ratios in the training corpora, and investi-
gated the impact on the translation quality. In
addition to the findings of conventional studies,
they investigated the effects of byte fallback and
showed that this feature does not significantly af-
fect the translation quality. In our experiments,
in addition to eliminating OOV tokens, byte fall-
back was found to enhance the translation quality.
Therefore, we consider it preferable to use byte
fallback.

6 Conclusions

In this paper, we discussed multilingual vocabu-
lary for neural machine translation models. Our
findings are summarized as follows:

1. Among all vocabularies, mBART/XLM-R
was the best in the machine translation task.
Although the tokenizer of mBART/XLM-R
did not use byte fallback, the number of
OOV tokens was small and, consequently, the
translation quality became high.

Among the vocabularies of our Sentence-
Piece models, the vocabularies of 250K with
byte fallback achieved high quality.

Byte fallback was effective for eliminating
OOV tokens, and the translation quality was
better than that without byte fallback.

. The vocabularies of the 250K size generated
the smallest number of tokens (the shortest
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length of token sequences). These vocabular-
ies had the disadvantage that the number of
model parameters increased. However, trans-
lation quality was better than that for the 64K
vocabulary.

. To tokenize multilingual sentences into a
similar (close) number of tokens, it was effec-
tive to control the training data size of each
language. It could be controlled using a tem-
perature coefficient.

Readability increased when the number of
fallbacked bytes was low. However, trans-
lation quality decreased when we increased
character coverage by adding characters into
the vocabulary.

Recommended Vocabulary/Tokenizer Based
on the vocabulary of mBART/XLM-R, we rec-
ommend using a tokenizer with byte fallback. In
future work, we will build multilingual transla-
tion models using the multilingual vocabulary dis-
cussed in this paper.

Limitations

The results in this paper were a case study because
our experiments were not comprehensive.

Ethics Statement

Our vocabularies were created automatically from
corpora, and we did not check the contents. There-
fore, they may contain inappropriate words.
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paper, which is organized by script type.
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Experiments

Table 7 shows the list of hyperparameters used in
the experiments in Section 4.

C Tokenization Examples
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by each tokenizer. Depending on the tokenizers,
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tokens on average.


https://aclanthology.org/2022.wmt-1.52
https://aclanthology.org/2022.wmt-1.52
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://arxiv.org/abs/2008.00401
https://arxiv.org/abs/2008.00401
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://aclanthology.org/2020.lrec-1.494
https://aclanthology.org/2020.lrec-1.494
https://aclanthology.org/2020.lrec-1.494
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://aclanthology.org/2022.amta-research.8
https://aclanthology.org/2022.amta-research.8
https://aclanthology.org/2022.amta-research.8

Script type #Langs. Languages

Arabic 6 Modern Standard Arabic, Southern Pashto, Western Persian, Sindhi, Urdu,
Uyghur

Armenian 1 Armenian

Bengali 2 Assamese, Bengali

Cyrillic 9 Belarusian, Bulgarian, Kazakh, Kyrgyz, Macedonian, Halh Mongolian, Russian,
Serbian, Ukrainian

Devanagari 4 Hindi, Marathi, Nepali, Sanskrit

Ge’ez 1 Ambharic

Georgian 1 Georgian

Greek 1 Greek

Gujarati 1 Gujarati

Gurmukhi 1 Eastern Panjabi

Hebrew 2 Hebrew, Eastern Yiddish

Hungul 1 Korean

Japanese 1 Japanese

Kannada 1 Kannada

Khmer 1 Khmer

Lao 1 Lao

Latin 55 Afrikaans, Tosk Albanian, North Azerbaijani, Basque, Norwegian Bokmal,
Bosnian, Catalan, Haitian Creole, Croatian, Czech, Danish, Dutch, English, Es-
peranto, Estonian, Finnish, French, Scottish Gaelic, Galician, Ganda, German,
Hausa, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Javanese, North-
ern Kurdish, Standard Latvian, Lingala, Lithuanian, Plateau Malagasy, Standard
Malay, West Central Oromo, Polish, Portuguese, Romanian, Slovak, Slovenian,
Somali, Spanish, Sundanese, Swahili, Swedish, Tagalog / Filipino, Tswana, Turk-
ish, Northern Uzbek, Vietnamese, Welsh, Wolof, Xhosa, Zulu

Malayalam 1 Malayalam

Myanmar 1 Burmese

Odia 1 QOdia

Simplified Chinese 1 Mandarin Chinese (Standard Beijing)

Sinhala 1 Sinhala

Tamil 1 Tamil

Telugu 1 Telugu

Thai 1 Thai

Traditional Chinese 1 Mandarin Chinese (Taiwanese)

Total 98

Table 6: Script types and languages. #Langs. indicates the number of languages. The languages in bold were used
in the translation experiments.

Type Name Setting
Model Architecture Transformer big
Embedding dimension 1,024
FFN inner dimension 4,096
Training  Dropout 0.3
Loss function Label smoothed cross-entropy
Label smoothing e=0.1
Optimizer Adam (31 = 0.9, B2 = 0.98)
Learning rate Se-4
LR scheduler Inverse square root
Warm-up steps 4,000
Global batch size Roughly 128,000 tokens
Early Stopping No-update 9 epochs
Test Beam width 10

Table 7: Hyperparameters for the translation experiments.

32



Tokenizer/ English Spanish Vietnamese
vocabulary #Tokens Sample #Tokens Sample #Tokens Sample
M2M-100 15 _Local __media_ _reports_ _an 23  _La_ _prensa_ _local __inform 19  _Truyén _ _thong _ _dia

_ —air _ port _ _fire_ _vehicle
_roll _ed_ _over_ _while  _
respond _ ing

_60_ _que_ _una_ _patr_ulla
del

co

_ —de_ _bom_ ber_ os
_aerop _ uerto
mientras _ _presta_ ba _

servicio .
o

vol

—— — o —

phuong _ _dua _ -
phuong _ _tién _ _chita _ _chay
san _ _bay  _da_ _téi

khi_ _tra_

_tin _ _mot

_loi .

mBART/XLM-R 14 _Local __media_ _reports_ _an 20 _La_ _prensa_ _local __inform 19  _Truyén_ _thong _ _dia_ _
_ —airport _ _fire  _vehicle  _ 6_ _que_ _una_ _patru_lla_ phuong _ _dua _ _tin_ _mot_ _
rolle _ d_,_over_,_while  _ _de_ _bombe ros_ _del  _ phuong _ _tién _ _chita _ _chay
respond _ ing_ . aeropuerto_, _vol _c6_ _ _san _ _bay  _da_ _téi_ _
mientras _ _presta_ ba _ _ khi _ _tra _ _loi_ .
servicio_ .

NLLB-200 14 _Local _ _media_, _reports _ _an 22 _La_ _prensa_ _local _ _inform 20 _Tru_, yén _ _théng _ _dia_ _
_ —airport _ _fire  _vehicle  _ _6_ _que_ _una_ _patr_ ulla phuong _ _dwa _ _tin_ _mot_ _
rol _led _over ,_while  _ _ —de_ _bom_ beros_ _del  _ phuong _ _tién _ _chita _ _chay
respond _ ing aerop _ uerto_, _vol _co_ _ __san_ _bay  _da_ _t6i_ _

mientras _ _presta,_ ba _ _ khi _ _tra _ _loi_ .
servicio .

mT5 16 _Local _ _media_, _ _ reports 25  _La_ __ prensa_ _local _ _ 38 _Tr_uyén_ _th_ong_ _d_ia

_an _ _airport _ _fire  _vehicle inform _ 6 _ _que_,_una_ _ _-p_huong  _du_a__tin_
__ rolled  _over_ __ while patrul _la_ _de_ _ _ bomber _m_ 6t __p_huwong_ _ t_
_ respond _ ing os_, _del _ _aero_ puerto_ _vol ién_ _ch_@_a_ _cha_y_ _
_,co6_ _mi_ entras_, _presta _san_ _bay _d_a_ _ _t_

ba_ _servicio . 6i_ _khi_ _tr_a__ 1_oi_.

LlaMa2 14  _Local _ _media_ _reports  _an 27  _La_ _pr_ensa_ _local _ _ 53 _Tru_y_& n__th_o_ng_
_ —air_ port_ _fire  _vehicle inform _ 6 _ _que_ _una_ _patr —_d_i_a__ph_u_o_ng
_rolled __over_,_while  _ _ulla_ _de_ _bom_ ber_os_, & uw_a__tin__m_0_
respond _ ing . _del _ _aer _ op _ uerto_ _vol t_,_ph_u_o_ng__ti_é_n

c_,6_, _mientras_ _prest_ aba ¢ch_&_a__ch_4a_y__s

_ serv_ icio_ . _an_ _bay _ d_a__t_ ¢
ik hi__tr_a__1_o_
i,

250K S+B 16 _Local _ _media_, _report s _ 23 _La_ _prensa_ _local _ _inform 20  _Truyén _ thong _ _dia _ _
_an_ _air_ port  _fire  _ _6_ _que_ _una_ _patru_ lla phuong _ _dwa _ _tin_ _mot_ _
vehicle _ _rolle _d_ _over _ _ _ —de_ _bombe_ros_ _del  _ phuong _ _tién _ _chita _ _cha _
while _ _respond _ ing_ . aero_ pu_erto_ _vol _co_ _ y_ _san_ _bay _da_ _téi_ _

mientras _ _presta_ ba _ _ khi_ _tra _ _loi_,
servicio_ .

64K _S+B 19 _Lo_ cal _ _media_ _report_s 30 _La_ _pren_sa_ _local _ _ 27 _Tr_, uyén _ _théng _ _dia_ _
_ —an_ _air_ port_ _fire _ _ve inform _ 6 _ _que_ _una_ _pat phuong _ _dwa _ _tin_ _mot_ _
_hi_cle_ _rol _led_ _over _ru_lla_ _de_ _bo_ mber phuong _ _t_ién_ _ch_ @ _a
_while _ _respond _ ing os_, _del_ _a_ ero_pu_erto_ —_cha_y_ _s_an__bay_

_vol_c_6_ _ _ mien_tras_ _ _da_ _téi_ _khi_ _trd_ _1_oi
presta_ba _servicio

Table 8: Tokenization examples obtained from the dev set in Flores+ (1/3). The ‘)" and ‘" symbols indicate the
token delimiter and space character of SentencePiece, respectively.
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Tokenizer/ Japanese Chinese Arabic

vocabulary #Tokens Sample #Tokens Sample #Tokens Sample

M2M-100 27 __ Mt AT T 20 4 R RE L, 24 e Tl _de)
O _W_E HlJ: 5L — WK% W B B el _oe e )
L% W o b E W Rk G )l Gk
7 _FhE e *ﬁ W T T T N J A
rorwnsze T T i)

mBART/XLM-R 20 __ M m_AT4T _ D 17 _ 4 kdRE L, L — 20 _culel ey eyl _ddaa
ol _ kol . EE B L WB % e L _oe N _aa)
D VM) DY KR MRk nh T IR T -
[ S Oy NP A R LT b ek Y&l
ETT -

NLLB-200 18 M FELATAT O LH 22 M M R o E L, 30 i de T o Y
BolcknE L Lk oL LY L TR oY e R el _oe 0NN
LB A RS o B AE W Rk = e
CoM_EE L L 20 BB T % Aot e
RS TR N S Sl

mT5 18 __HOE_ATAT _D_# 18 MR il 31 el _d 5 ) | J
B leioe, . 2O A R % E oL e
B A RS RIS Wi k% m B R < R B e STl
B_i_Lk_twdoeT - s e e e Ca__ A e das
A T RS S i

LlaMa2 48 _ Eufu“;4u7 43 __ M M <OxE5> _<OxAA> 78 __0_0_Jd_ gt __w_s
D_W_E_WT_K_D_ _<0x92> _ {& _ <OxE6> _ Ao doe o d
&u\ 72 #Dk D W <O0x8A> _ <0xA5> JH _,, _, e s _Jd e d __ ¢
<OxE9>u<0x98>u<0xB2>_$ — _ <O0xE8> _ <OxBE>_| O o 1 Jd s o0
_ W8 _ <OXE5> _ <OxAF> _ <0x86> _HL _ ¥ _ i _ <OxE9> :_;:f_ C“_ 'u_:_‘: L:_;
<0xBE> _ <0xE5> _ <O0xBF> | _, <0x98> _ <0xB2> _ <OxE8> o1 5 1 G L1
<0x9C> _ *f 12 _ <OxE6> _ <0xBD> _ <0xA6> _{F _ B A E
<O0xA8> _ <OxAA>_ <OxE8> <OxE5> _ <0x93> _ <0x8D> _ T‘E“a“; . LTy
<OxBB>_ <0xA2>_ L 7= BL_ K _ <OXE8> _ <0XAD> _ SRS S STy
Ew_ o _z_ k_ T a‘ <0xA6> _ I _ <OXE7>_ STt T
e <O0xBF> _ <0xBB>_ T _ =

<OXE8> _ <0xBD> _ <0xA6> _

250K_S+B 20 __#_x, ATFAT iz 17 _ 4t SRR, 20 _cslel ey el sl
ﬁ JZZ)&_\ L E W R L F f_ i o7 G N> LN R I T
u(ﬁ%uﬁuﬁi_i?fﬁﬁ_qj Hx_%ik_ﬂj‘_é]]_ _E R - -
oM _Li_Ewnoz . b s ah Y & Al
LTI .

64K_S+B 2 _ M JE_ AT 7 20 _ MR _HOE L, 30 o Jd el _de s _J
D_W_E_ Tk — WU W 573 % el L J_ @l _oe
LzE ik o B CfE LW LRE Lk R T T S IALE Tagpee
AR W B R o Gh Y e aag
LE_rns e T, SHL T “E e WY 3T

Table 9: Tokenization examples obtained from the dev set in Flores+ (2/3). The ‘)" and ‘" symbols indicate the
token delimiter and space character of SentencePiece, respectively.
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Tokenizer/ Hindi Russian
vocabulary #Tokens Sample #Tokens Sample

M2M-100 28 _RHEQ _'Fﬁ%tﬂu_:\__ 26 _Me_cr_mee__CMM _ _coo
W_:%__ﬁau_w_\?u 6 _ma_or_, _4ro_ _B_ _a
anég_a»‘ﬁg_%g_ﬁ?ﬂg_ 5_,pomno _ pry _ _No_ _TyTH _
Wum?f__imu_&{_"[_ﬁ _Ha_ _BBl_ 30B_ _mepe_ Bep
RM_ "R | _dl _§1_ _9d_¢© Hy _ Jlach _ _TioXap _ Has _ _Ma
B O | B | MmMHa _ .

mBART/XLM-R 22 _®FlE__#fem A _ 22 _Mec_1_mse__CMHU_ _co
W_}__ﬁ;u_ﬁlﬁﬁ; _ _,obma_or_,  _4YTo_ _B_ _
aﬂﬁu_é?u_awu_wﬁ adporopT _y Mo _NyTH _ _
__W__&@_WHWH_ Ha _ _BBI30OB _ _Tiepe _ BEpHyac
qed__d_e_ % __T_ _ b _, _MOXap _ Has _ _MallkHa _ .
or_.

NLLB-200 23w _Hitsw | A 27 _Me_cr_mpe__C_M_U_
WH}H_%H_W__ _C0006 _ma_ 1T _,  _uTo_, _B
aﬂ‘i’ru_évu_‘cﬁwu_wu _, 3P0 _ TOpTY _, _INO _, _IyTH
uﬁ'c‘__w__ev@_‘m_w_ _, _Ha_ _BBI3_, OB_ _Tepe _ Bep
aed_ _d_e_o __Tr__ _ Hy _ JlaCh _ _TOXap _ Has _ _M
ar_. ammHa _ .

mT5 36 _WIT‘I__KTH _ﬁ"f__%m___ef‘_ 25 __Mecr_moe__C_MH_ _c
_qdr m_:%__ﬁ? PR _ oobur,_ alT_,,_ _4To_ _B_ _a
TI_IH'I%_‘_WH# _%H_?{H 3po _ TOpTY _ _NO _ _  TyTH _
_w__q_u?_ﬁﬁ'éu_w_ _Ha _ _BHI3 _ OB _ _Tiepe _ BEpHY
_G{Hfﬁugﬂurﬁgu_u_ﬂ%u _ Jlach _ _TIoXap _ Has _ _MallH
A _9d_ e_o __T_d__Or HA .

LlaMa2 102 _ 9 o 0 o 9T rT_q 35 _Me_ecr_moe__C_M_H_
__HI[E:TT_E'H](.\_HH':T_ _C000 _ma_ 10T _,  _4T0 _, _|
__T i_l_.a_ﬁ_. 1.9 _,-a_3_po_mop_Ty_ _IO_
R < ‘_‘__a?_f\u__ _l'[yHTl/[._‘_Ha._‘_BBI._‘ZZOBH_l'[
Dol X X g el epe _ Bep _ Hy _ Jlach _ _TO _ X
<O0xE0> _ <O0xA4> _ <0x88> _ _ _,ap_ Hag_ _Ma_ 1K _ Ha_
LB R A S w Y
_ & <O0xE0> _ <0xA5>
<0x8C>_X _ ol A _ __
<0XxE0> _ <0xA4> _<Ox8F>_ Y
R U A I o T _ @

LT T I A o
RN ol _H_PH___d_ol_%
T 9 5 <O0xE0>_|
<0xA4> _<0xA2>_o & _ _
T.9 of 0O o

250K_S+B 22 _RFEE__difsar A 23 _Mec_ 1_mbie__CMHU_ _coo
WTH:%H_%H_W - Omia _ 1T _ , , _4TO_ _B_ _a3p
aﬂﬁ__%\_,_aﬂ?‘_,_@?'ﬁ OmopT |y _, MO _ _TyTH _ _Ha _
__EHH_G@ LR HS _BbI _ 30B_ _Tiepe _ BEpHY _ Jac
dqed__d_e_o __Tar__ b_, _NOXap _ Has _ _MamuHa _ .
ar_.

64K_S+B 29 _®yFEl_ _HfEa A 30 _Me_cr_mpe__C_MHU__c

g & 5 &R

e _HH__H__GRA_ T

LR _we | _@mr o T

M AP _ _d1 &1 ___T_¢
% T 00

0obm _a_ 1T _,  _uTo

_a_,3p_,o0mo_ pry _, _mo _ _my
T_M_, _Ha_ _BBl_ 30B_, _Tiepe

_ BEpHY _ nach _,

H—BH

1o _ Kap _ Ha

5 MallvH __ a
—

Table 10: Tokenization examples obtained from the dev set in Flores+ (3/3). The ‘L)’ and ‘—=" symbols indicate

the token delimiter and space character of SentencePiece, respectively.
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