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Abstract

Cross-lingual emotion detection faces chal-
lenges such as imbalanced label distribution,
data scarcity, cultural and linguistic differences,
figurative language, and the opaqueness of pre-
trained language models. This paper presents
our approach to the EXALT shared task at
WASSA 2024, focusing on emotion transfer-
ability across languages and trigger word iden-
tification. We employ data augmentation tech-
niques, including back-translation and syn-
onym replacement, to address data scarcity and
imbalance issues in the emotion detection sub-
task. For the emotion trigger identification sub-
task, we utilize token and label mapping to cap-
ture emotional information at the subword level.
Our system achieves competitive performance,
ranking 13th, Ist, and 2nd in the Emotion De-
tection, Binary Trigger Word Detection, and
Numerical Trigger Word Detection tasks.

1 Introduction

Emotion detection in text has attracted significant
attention in recent years due to its diverse applica-
tions (Nandwani and Verma, 2021). The growing
presence of multilingual and code-mixed content
on social media has emphasized the need for cross-
lingual emotion detection systems (Balahur and
Turchi, 2014; Dashtipour et al., 2016).

However, developing accurate and interpretable
cross-lingual emotion detection models presents
several challenges, including the limited availabil-
ity of labeled data in many languages (Xue et al.,
2020), cultural and linguistic variations in emotion
expression (Hareli et al., 2015), the use of figurative
language and sarcasm in social media (Bouazizi
and Ohtsuki, 2019; Reyes et al., 2012), and the lack
of transparency in large pre-trained language mod-
els (PLMs) (Hase and Bansal, 2020; Feder et al.,
2021).

To tackle these challenges and foster research
on interpretable cross-lingual emotion detection,
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the EXALT shared task! was organized at WASSA
2024. EXALT focuses on the transferability of
emotion information across languages and the iden-
tification of emotion triggers, encouraging the de-
velopment of interpretable and explainable emotion
detection systems.

This paper presents our approach to the EXALT
shared task. The XLM-RoBERTa-XL (Goyal et al.,
2021) model with encoder-only architecture is se-
lected to better capture the emotion information
contained in the context. For the emotion detection
sub-task, we employ data augmentation techniques,
such as back-translation and synonym replacement,
to address the imbalanced and insufficient training
data. For the emotion trigger identification sub-
task, we utilize token and label mapping to align
subword-level predictions with word-level labels.

2 Related Work

2.1 Emotion Detection

Emotion detection aims to identify the emotional
states expressed in text, such as joy, sadness, anger,
and fear (Acheampong et al., 2020). Compared
to sentiment analysis, which focuses on the over-
all polarity of text (positive, negative, or neutral),
emotion detection provides a more fine-grained un-
derstanding of the affective information conveyed
in text.

Traditional approaches to emotion detection re-
lied on rule-based methods and machine learn-
ing algorithms, such as Naive Bayes, Support
Vector Machines (SVM), and decision trees (Al-
swaidan and Menai, 2020).Recently, deep learning
models, including Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), and
Transformers, have achieved state-of-the-art per-
formance on emotion detection tasks by learning
rich feature representations from text (Birjali et al.,
2021). However, the success of these models relies

"https://1t3.ugent.be/exalt/

528

Proceedings of the 14th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis, pages 528-533
August 15, 2024 ©2024 Association for Computational Linguistics


https://lt3.ugent.be/exalt/

heavily on large annotated datasets, which are time-
consuming and expensive to collect, especially for
low-resource languages and domains. Researchers
are exploring techniques such as transfer learning
(Hazarika et al., 2021), few-shot learning, and data
augmentation to address this challenge and improve
emotion detection performance in low-resource set-
tings.

2.2 Data Augmentation

Data augmentation techniques have been widely
adopted to address the issue of data scarcity in
various natural language processing tasks, aiming
to generate synthetic training data and improve
model performance (Pellicer et al., 2023). These
methods operate at different levels of granularity,
such as word-level, phrase-level, and document-
level.

At the word level, techniques like EDA (Wei
and Zou, 2019) generate new examples by manip-
ulating words or embeddings. Phrase-level aug-
mentation, e.g., PPDB Augmenter (Ganitkevitch
et al., 2013; Pavlick et al., 2015), uses paraphrase
databases to replace phrases with semantic equiva-
lents, adding linguistic diversity. Document-level
techniques include back-translation (Mallinson
et al., 2017), paraphrasing with models like T5
(Raffel et al., 2020) and BART (Lewis et al., 2019;
Dopierre et al., 2021), and text generation using
language models such as Llama (Touvron et al.,
2023) and GPT-4 (Achiam et al., 2023).

2.3 Cross-lingual Transfer Learning

Cross-lingual transfer learning has emerged as a
promising approach to overcome the data scarcity
issue in low-resource languages. Methods such
as machine translation (Demirtas and Pechenizkiy,
2013) and multilingual PLMs (Lewis et al., 2019;
Xue et al., 2020) have been used to transfer
knowledge from high-resource to low-resource lan-
guages.

However, these methods often fail to capture
language-specific nuances in emotion expression
and may suffer from translation errors. Adversarial
training (Chen et al., 2018) and contrastive learn-
ing (Lin et al., 2023) have been proposed to learn
language-invariant representations, but they often
require parallel data or emotion lexicons.
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Figure 1: The overview of our work. The yellow and
green dashed boxes represent the methods used in Task
1 and Tasks 2/3, respectively.

2.4 Interpretability in Natural Language
Processing

Interpretability has gained significant attention in
natural language processing, particularly with the
increasing complexity of deep learning models
(Danilevsky et al., 2020). Various approaches have
been proposed to provide explanations for model
predictions, such as attention mechanisms (Bibal
et al., 2022), saliency maps (Wallace et al., 2020),
and post-hoc explanations (Madsen et al., 2022).

However, most existing methods focus on pro-
viding explanations at the input feature level and
may not offer fine-grained interpretability at the to-
ken level. In the context of emotion detection, iden-
tifying the specific words or phrases that trigger the
predicted emotions is crucial for understanding the
model’s behavior.

3 Methods

This section illustrates our approach and main
work, as shown in Figure 1. We focus on describ-
ing our data augmentation and token and label map-
ping methods. The details of the shared task can
be found in this work (Maladry et al., 2024).

Briefly, Task 1 is sequence-classification task,
where there are 6 possible emotion classes in the
datasets. Task 2 and 3 are token-classification tasks
that are focused on explaining which words are
used to express the emotion. The training dataset
contains only English data, while the test dataset
contains five languages, i.e. Dutch, Russian, Span-
ish, English, and French.

3.1 Data Augmentation

The dataset for Task 1 includes 5,000 training sam-
ples, 500 development samples, and 2,500 test sam-
ples. For Tasks 2 and 3, the dataset consists of
3,000 training samples, 300 development samples,
and 832 test samples.
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Label Raw  Back-translation Synonym
Anger 1,028 192 1,028
Fear 143 576 143
Joy 1,293 239 1,290
Love 579 144 578
Neutral 1,397 259 1,396
Sadness 560 658 560

Table 1: Statistics of the labels distribution on the train-
ing set for Task 1.

The original data presents the characteristics of
imbalanced label distribution, as shown in Table
1. For example, the proportion of Fear class is less
than 3%. In order to mitigate this characteristic
and enhance the diversity of the data to improve
the generalisation of the model, we apply two data
augmentation methods as detailed as follows. Other
data augmentation methods would break sentence
syntax, such as random deletion, or change emotion
information, such as text generation with PLMs,
and are therefore not considered in this work.

Back-translation: The original training sam-
ples are translated into other languages, in this case
Dutch, French, Spanish and Russian, and then back
into English to generate new instances. We adopted
a stratified sampling approach to mitigate the imbal-
ance in label distribution. Notably, back-translation
may alter the position of trigger words, causing
misalignment with their corresponding labels.

Synonym replacement: Words are randomly se-
lected in the original samples and then replaced
with their synonyms. In this paper, we imple-
mented synonym replacement using the NLTK
WordNet corpus (Loper and Bird, 2002). Notably,
synonym replacement may alter the number of
words, which lead to misalignment of the aug-
mented data with the original labels.

We use DeepL to complete the back-translation.
In Task 1, 2,068 new instances are added via back-
translation, while 4,995 instances are added via
synonym replacement. The details are shown in
Table 1. In Task 2 and 3, 2,291 instances are added
through synonym replacement.

3.2 Token and Label Mapping

The mapping between each subword and its corre-
sponding input word is recorded when the tokenizer
processes the input data. The label of the subword
is assigned to be the same as the label of its cor-
responding word. During prediction, the label of
each word is set to the maximum value among the
predictions of all its corresponding subwords. Fig-

ure 2 illustrates the configuration of token and label
mapping.
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Figure 2: Configuration of token and label mapping.

By applying labels at the subword level, the emo-
tional information of the text is captured more fine-
grained. During the prediction phase, taking the
maximum value of the subword predictions as the
label of the corresponding word effectively inte-
grates the emotional information at the subword
level. Moreover, this method is easy to implement
and compatible with various PLMs.

For Task 3, we map the output of the classifier
layer of the fine-tuned language model to word-
level numerical results. For Task 2, we compute the
softmax of the classifier layer output, then map it
into word-level numerical probabilities and finally
convert it to a binary result using a threshold.

We have shared the main scripts of this paper on
Github? for other researchers.

4 Experiments

We conducted experiments on NPU training ma-
chines, equipped with 8 Ascend 910B 64G NPUs,
to compare the performance of multiple PLMs and
investigate the impact of hyperparameter settings,
data augmentation strategies on cross-lingual emo-
tion detection.

4.1 Comparison of Pre-trained Language
Models

Although many current PLMs adopt the decoder-
only architecture, this architecture has limited sup-
port for natural language understanding tasks. In
our tasks, we consider the information in the subse-
quent text to be equally important as the preceding
text. Therefore, we compared multiple encoder-
only models pre-trained on Dutch, Russian, Span-
ish, English, and French corpora to better under-
stand the contextual content and cross-lingual emo-
tion information.

We fine-tuned these models on the original data
without data augmentation and tried different pa-
rameter freezing strategies. Figure 3 demonstrates
that that larger models achieved better cross-lingual

https://github.com/QQJellyy/
CTcloud-EXALT-WASSA2024
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Figure 3: F1 on test dataset of each PLM for Task 1. All
parameters of each PLM are fine-tuned using a learning
rate of 4e-5 and a batch size of 128.
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Figure 4: F1 of XLM-RoBERTa-large on eval dataset
of each parameter freezing strategies for Task 1. Full,
Encoder and Classification represent parameters of all
layers, parameters of encoder layers and parameters of
output layer are trainable, respectively.

emotion detection ability. In the meanwhile, Figure
4 suggests that the PLMs lack emotion detection
capabilities, as the results by training only on the
classification layer are significantly lower than the
other training strategies.

Training on the English dataset significantly
improves emotion detection abilities on five lan-
guages, indicating that emotion information has
been effectively transferred across languages. We
explain this phenomenon with a task analogy the-
ory, e.g., ’Queen = King + (Woman-Man)’ (Etha-
yarajh et al., 2018), where cross-lingual capabili-
ties are inherent in PLMs, and emotion detection
capability is attained through fine-tuning. The fine-
tuned models integrate these capabilities and ex-
hibit cross-lingual emotion detection abilities.

4.2 Hyperparameter Optimisation

We conduct hyperparameter optimisation on XL.M-
RoBERTa-large and employ an orthogonal ap-
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Rank Learning Rate F1

1 2e-6 0.3221
2 Se-6 0.4676
3 le-5 0.4821
4 2e-5 0.5284
5 3e-5 0.5318
6 4e-5 0.5705
7 5e-5 0.4676

Table 2: F1 of XLM-RoBERTa-large on eval dataset for
Task 1 after being fine-tuned without augmented dataset
for 10 epochs. The batch size is 128.

Task  Augmentation F1

Taskl Null 0.5242
Taskl Synonym 0.5420
Taskl Translation 0.5393
Taskl Synonym + Translation 0.5432
Task2 Null 0.6042
Task2 Synonym 0.6158
Task3 Null 0.6833
Task3 Synonym 0.6972

Table 3: F1 of XLM-RoBERTa-XL on test dataset with
different data augmentation. All parameters of each
scenario are fine-tuned using a learning rate of 4e-5 and
a batch size of 64.

proach to optimize each hyperparameter. As shown
in Table 2, a learning rate of 4e-5 achieves the best
classification results for Task 1. Learning rates that
are too large or too small can be less effective. Sim-
ilarly, we find that a batch size of 64 yields the best
detection results.

For Task 1, we train the XLM-RoBERTa-XL
model on the augmented data using the optimal
hyperparameters described above. For Tasks 2 and
3, we use the same hyperparameters and further
train the model saved from Task 1. When making
predictions, we use the default value of 0.1 as the
threshold for identifying trigger words.

4.3 Data Augmentation

Table 3 demonstrates that both synonym replace-
ment and back-translation improve the model’s per-
formance. Synonym replacement enriches the train-
ing corpus, while back-translation implicitly intro-
duces information about the target test language
without altering the language of the training data.



5 Conclusion

In this paper, we address the label imbalance issue
and enhanced data diversity in the training data
by employing data augmentation techniques, in-
cluding back-translation and synonym replacement.
The augmented data is used to fine-tune the XLM-
RoBERTa-XL model, achieving competitive results
in all three tasks: 13th, 1st, and 2nd places in Task
1, Task 2, and Task 3, respectively. These results
demonstrate the effectiveness of our methods for
the transferability of emotion information across
languages and the identification of emotion trig-
gers.

The reason why we choose XLLM-RoBERTa-XL
model is that the encoder architecture is able to
capture the context of the data, making it well-
suited for token-level tasks. Furthermore, we select
PLMs that have been trained on five languages to
ensure that the models have the transferability of
emotion information across languages, potentially
contributing to the improved performance of our
proposed system.

6 Limitations

In this paper, we assume that different models be-
have similarly, e.g., the optimal hyperparameters
of XLM-RoBERTa-XL and XLM-RoBERTa-large
are similar. However, this may not be the case in
practice.

We use the default value of 0.1 as the thresh-
old for identifying the trigger word in Task 2 and
apply two data augmentation techniques, i.e. back-
translation and synonym replacement. In the future,
we can explore the impact of different classifica-
tion threshold on model performance and try other
data augmentation methods. Moreover, we can
also go deep into model enhancing techniques on
cross-lingual emotion detection task, such as task
analogy and model fusion.
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