
Lost in the Middle: How Language Models Use Long Contexts

Nelson F. Liu1∗ Kevin Lin2 John Hewitt1 Ashwin Paranjape3,4
Michele Bevilacqua3 Fabio Petroni3 Percy Liang1

1Stanford University, USA 2University of California, Berkeley, USA
3Samaya AI, UK 4Samaya AI, USA

nfliu@cs.stanford.edu

Abstract

While recent language models have the abil-
ity to take long contexts as input, relatively
little is known about how well they use
longer context. We analyze the performance
of language models on two tasks that re-
quire identifying relevant information in their
input contexts: multi-document question an-
swering and key-value retrieval. We find that
performance can degrade significantly when
changing the position of relevant information,
indicating that current language models do not
robustly make use of information in long in-
put contexts. In particular, we observe that
performance is often highest when relevant in-
formation occurs at the beginning or end of the
input context, and significantly degrades when
models must access relevant information in
the middle of long contexts, even for explicitly
long-context models. Our analysis provides a
better understanding of how language mod-
els use their input context and provides new
evaluation protocols for future long-context
language models.

1 Introduction

Language models have become an important and
flexible building block in a variety of user-facing
language technologies, including conversational
interfaces, search and summarization, and collab-
orative writing (Shuster et al., 2022; Thoppilan
et al., 2022; Lee et al., 2022, inter alia). These
models perform downstream tasks primarily via
prompting: all relevant task specification and data
to process is formatted as a textual input context,
and the model returns a generated text comple-
tion. These input contexts can contain thousands
of tokens, especially when language models are

∗Work partially completed as an intern at Samaya AI.

used to process long documents (legal or scien-
tific documents, conversation histories, etc.) or
when language models are augmented with exter-
nal information (relevant documents from a search
engine, database query results, etc.; Petroni et al.,
2020; Ram et al., 2023; Shi et al., 2023; Mallen
et al., 2023; Schick et al., 2023, inter alia).

Handling these use-cases requires language
models to successfully operate over long se-
quences. Existing language models are generally
implemented with Transformers (Vaswani et al.,
2017), which require memory and compute that
increases quadratically in sequence length. As
a result, Transformer language models were of-
ten trained with relatively small context windows
(between 512 and 2048 tokens). Recent improve-
ments in hardware (e.g., faster GPUs with more
memory) and algorithms (Dai et al., 2019; Dao
et al., 2022; Poli et al., 2023; Rubin and Berant,
2023, inter alia) have resulted in language models
with larger context windows (e.g., 4096, 32K, and
even 100K tokens), but it remains unclear how
these extended-context language models make
use of their input contexts when performing
downstream tasks.

We empirically investigate this question via
controlled experiments with a variety of state-of-
the-art open (MPT-30B-Instruct, LongChat-13B
(16K)) and closed (OpenAI’s GPT-3.5-Turbo and
Anthropic’s Claude-1.3) language models in set-
tings that require accessing and using information
within an input context. In particular, our ex-
periments make controlled changes to the input
context size and the position of the relevant
information within the input context and study
their effects on language model performance. If
language models can robustly use information
within long input contexts, then their performance
should be minimally affected by the position of
the relevant information in the input context.

157

Transactions of the Association for Computational Linguistics, vol. 12, pp. 157–173, 2024. https://doi.org/10.1162/tacl a 00638
Action Editor: Luke Zettlemoyer. Submission batch: 8/2023; Revision batch: 10/2023; Published 2/2024.

c© 2024 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

mailto:nfliu@cs.stanford.edu
https://doi.org/10.1162/tacl_a_00638

Figure 1: Changing the location of relevant information
(in this case, the position of the passage that answers
an input question) within the language model’s input
context results in a U-shaped performance curve—
models are better at using relevant information that
occurs at the very beginning (primacy bias) or
end of its input context (recency bias), and per-
formance degrades significantly when models must
access and use information located in the middle of its
input context.

We first experiment with multi-document ques-
tion answering, which requires models to reason
over provided documents to find relevant informa-
tion and use it to answer a given question; this task
mimics the retrieval-augmented generation setup
underlying many commercial generative search
and question answering applications (e.g., Bing
Chat). In this setting, we control (i) the input
context length by changing the number of docu-
ments in the input context (akin to retrieving more
or less documents in retrieval-augmented genera-
tion), and (ii) control the position of the relevant
information within the input context by changing
the order of the documents to place the rele-
vant document at the beginning, middle or end of
the context.

We find that changing the position of relevant
information in the input context can substantially
affect model performance, indicating that current
language models do not robustly access and use
information in long input contexts. Furthermore,
we observe a distinctive U-shaped performance
curve (Figure 1); language model performance
is highest when relevant information occurs at
the very beginning (primacy bias) or end of its

input context (recency bias), and performance
significantly degrades when models must access
and use information in the middle of their in-
put context (§2.3). For example, when relevant
information is placed in the middle of its in-
put context, GPT-3.5-Turbo’s performance on the
multi-document question task is lower than its per-
formance when predicting without any documents
(i.e., the closed-book setting; 56.1%). Further-
more, we find that models often have identical
performance to their extended-context counter-
parts, indicating that extended-context models are
not necessarily better at using their input context
(§2.3).

Given that language models struggle to re-
trieve and use relevant information in the
multi-document question answering task, to what
extent can language models even retrieve from
their input contexts? We study this question with
a synthetic key-value retrieval task, which is de-
signed to be a minimal testbed for the basic ability
to retrieve matching tokens from the input con-
text. In this task, models are given a collection of
JSON-formatted key-value pairs and must return
the value associated with a specific key. Simi-
lar to the multi-document QA task, the key-value
retrieval task admits controlled changes to the in-
put context length (adding more key-value pairs)
and the position of relevant information. Although
some models perform the synthetic key-value re-
trieval task perfectly, other models struggle to
simply retrieve matching tokens that occur in the
middle of their input context and continue to
exhibit a U-shaped performance curve.

To better understand why language models
struggle to robustly access and use information
in their input contexts, we study the role of model
architecture (decoder-only vs. encoder-decoder),
query-aware contextualization, and instruction
fine-tuning (§4). We find that:

• Encoder-decoder models are relatively ro-
bust to changes in the position of relevant
information within their input context, but
only when evaluated on sequences within its
training-time sequence length. When eval-
uated on sequences longer than those seen
during training, we observe a U-shaped
performance curve (§4.1).

• Query-aware contextualization (placing the
query before and after the documents or

158

key-value pairs) enables near-perfect perfor-
mance on the synthetic key-value task, but
minimally changes trends in multi-document
QA (§4.2).

• Even base language models (i.e., without
instruction fine-tuning) show a U-shaped per-
formance curve as we vary the position of
relevant information in the input context.

Our results indicate that prompting lan-
guage models with longer input contexts is a
trade-off—providing the language model with
more information may help it perform the down-
stream task, but it also increases the amount
of content that the model must reason over,
potentially decreasing accuracy. To better un-
derstand this trade-off in practice, we perform
a case study with retriever-reader models on
open-domain question answering (§5). In con-
trast to our controlled multi-document QA task,
where the context always contains exactly one
document that answers the question, none or
many of the top k documents may contain the
answer in the open-domain QA setting. When
retrieving from Wikipedia to answer queries
from NaturalQuestions-Open, we find that model
performance saturates long before retriever re-
call saturates, indicating that current models
fail to effectively use additional retrieved doc-
uments—using 50 documents instead of 20
retrieved documents only marginally improves
performance (∼1.5% for GPT-3.5-Turbo and
∼1% for claude-1.3).

Our analysis provides a better understanding
of how language models use their input context
and introduces new evaluation protocols for fu-
ture long-context models; to claim that a language
model can robustly use information within long
input contexts, it is necessary to show that its
performance is minimally affected by the position
of the relevant information in the input context
(e.g., minimal difference in best- and worst-case
performance). To facilitate further work on un-
derstanding and improving how language models
use their input context, we release our code and
evaluation data.1

2 Multi-Document Question Answering

Our goal is to better understand how language
models use their input context. To this end, we

1nelsonliu.me/papers/lost-in-the-middle.

analyze model performance on multi-document
question answering, which requires models to find
relevant information within an input context and
use it to answer the question. In particular, we
make controlled changes to the length of the input
context and the position of the relevant informa-
tion and measure changes in task performance.

2.1 Experimental Setup

In the multi-document question answering task,
the model inputs are (i) a question to answer and
(ii) k documents (e.g., passages from Wikipedia),
where exactly one of the documents contains the
answer to the question and k − 1 ‘‘distractor’’
documents do not. This task requires the model
to access the document that contains the answer
within its input context and use it to answer the
question. Figure 2 presents an example.

We instantiate this task with data from
NaturalQuestions-Open (Lee et al., 2019;
Kwiatkowski et al., 2019), which contains
historical queries issued to the Google search
engine, coupled with human-annotated answers
extracted from Wikipedia. In particular, we take
the 2655 queries where the annotated long answer
is a paragraph (as opposed to a list or a table).
We use passages (chunks of at most 100 tokens)
from Wikipedia as documents within our input
contexts. For each of the queries, we need a
document that contains the answer and k − 1
distractor documents that do not contain the
answer. To obtain a document that answers the
question, we use the Wikipedia paragraph that
contains the answer from the NaturalQuestions
annotations.

To collect k − 1 distractor documents that do
not contain the answer, we use a retrieval system
(Contriever, fine-tuned on MS-MARCO; Izacard
et al., 2021) to retrieve the k−1 Wikipedia chunks
that are most relevant to the query and do not
contain any of the NaturalQuestions-annotated
answers.2,3 In the input context, the distractor

2Ambiguity in NaturalQuestions-Open means that a small
number of distractor passages may contain a reasonable
answer. We additionally run experiments on subset of unam-
biguous questions, finding similar results and conclusions;
see Appendix A.

3We also explored using random documents as distractors,
see Appendix B for more details.

159

https://nelsonliu.me/papers/lost-in-the-middle

Figure 2: Example of the multi-document question answering task, with an input context and the desired model
answer. The document containing the answer is bolded within the input context here for clarity.

Figure 3: Modulating the position of relevant informa-
tion within the input context for the multi-document
question answering example presented in Figure 2.
Re-ordering the documents in the input context does
not affect the desired output.

documents are presented in order of decreasing
relevance.4

To modulate the position of relevant infor-
mation within the input context, we adjust the
order of the documents to change the posi-
tion of the document that contains the answer
(Figure 3). To modulate the input context length
in this task, we increase or decrease the number
of retrieved documents that do not contain the
answer (Figure 4).

Following Kandpal et al. (2022) and Mallen
et al. (2023), we use accuracy as our primary
evaluation metric, judging whether any of the cor-

4Since there might be a prior over ‘‘search results’’
appearing in ranked order, we explored randomly ordering
the k − 1 distractor documents and mentioning that the
documents are randomly ordered in the task description, but
found the same trends. See Appendix C for more details.

Figure 4: Modulating the input context length of the
multi-document question answering example presented
in Figure 2. Adding documents that do not contain the
answer increases the length of the input context, but
does not affect the desired output.

rect answers (as taken from the NaturalQuestions
annotations) appear in the predicted output.

Our experimental setup is similar to the
needle-in-a-haystack experiments of Ivgi et al.
(2023), who compare question answering per-
formance when the relevant paragraph is placed
(i) at the beginning of the input or (ii) a ran-
dom position within the input. They find that
encoder-decoder models have significantly higher
performance when relevant information is placed
at the start of the input context. In contrast, we
study finer-grained changes in the position of
relevant information.

2.2 Models
We analyze several state-of-the-art open and
closed language models. We use greedy decoding

160

Figure 5: The effect of changing the position of relevant information (document containing the answer) on
multi-document question answering performance. Lower positions are closer to the start of the input context.
Performance is highest when relevant information occurs at the very start or end of the context, and rapidly
degrades when models must reason over information in the middle of their input context.

when generating outputs and leave exploration of
other decoding methods to future work. We use a
standard set of prompts for each model (Figure 2).

Open Models. We experiment with MPT-
30B-Instruct, which has a maximum context
length of 8192 tokens. The model was ini-
tially pre-trained on 1 trillion tokens using
2048-token sequences, followed by an additional
sequence length adaptation pre-training phase on
50 billion tokens using 8192-token sequences.
MPT-30B-Instruct uses ALiBi (Press et al., 2022)
to represent positional information. We also eval-
uate LongChat-13B (16K) (Li et al., 2023), which
extends the LLaMA-13B (Touvron et al., 2023a)
context window from 2048 to 16384 tokens by
using condensed rotary positional embeddings
before fine-tuning with 16384-token sequences.

Closed Models. We use the OpenAI API to
experiment with GPT-3.5-Turbo and GPT-3.5-
Turbo (16K).5 GPT-3.5-Turbo has a maximum
context length of 4K tokens, and GPT-3.5-Turbo
(16K) is a version with an extended maximum con-
text length of 16K tokens. We evaluate Claude-1.3
and Claude-1.3 (100K) with the Anthropic API;
Claude-1.3 has a maximum context length of 8K
tokens, and Claude-1.3 (100K) has an extended
context length of 100K tokens.6

5We use the 0613 OpenAI model versions.
6We also evaluate GPT-4 (8K) on a subset of

multi-document QA experiments, finding similar results and
trends as other models (though GPT-4 has higher absolute
performance). Evaluating GPT-4 on the full multi-document
QA and key-value retrieval experiments would cost upwards
of $6000. See Appendix D for GPT-4 results and discussion.

Model Closed-Book Oracle
LongChat-13B (16K) 35.0% 83.4%
MPT-30B-Instruct 31.5% 81.9%
GPT-3.5-Turbo 56.1% 88.3%
GPT-3.5-Turbo (16K) 56.0% 88.6%
Claude-1.3 48.3% 76.1%
Claude-1.3 (100K) 48.2% 76.4%

Table 1: Closed-book and oracle accuracy of
language models on the multi-document question
answering task.

2.3 Results and Discussion

We experiment with input contexts containing 10,
20, and 30 total documents. Figure 5 presents
multi-document question answering performance
when varying the position of relevant information
within the input context. To contextualize model
performance, we also evaluate on the closed-book
and oracle settings (Table 1). In the closed-book
setting, models are not given any documents in
their input context, and must rely on their paramet-
ric memory to generate the correct answer. On the
other hand, in the oracle setting, language models
are given the single document that contains the
answer and must use it to answer the question.

Model performance is highest when relevant
information occurs at the beginning or end of
its input context. As illustrated in Figure 5,
changing the position of relevant information in
the input context leads to substantial decreases
in model performance. In particular, we see a
distinctive U-shaped performance curve—models

161

Figure 6: Example of the key-value retrieval task, with an input context and the desired model output. Given a
key, the goal is to return the associated value. All keys and values are 128-bit UUIDs. The relevant key-value pair
for answering the query is bolded here within the input context for clarity.

are often much better at using relevant information
that occurs at the very beginning (primacy bias)
and very end of contexts (recency bias), and suffer
degraded performance when forced to use infor-
mation within the middle of its input context. For
example, GPT-3.5-Turbo’s multi-document QA
performance can drop by more than 20%—in the
worst case, performance in 20- and 30-document
settings is lower than performance without any
input documents (i.e., closed-book performance;
56.1%). These results indicate that current models
cannot effectively reason over their entire context
window when prompted for downstream tasks.

Extended-context models are not necessarily
better at using input context. When the input
context fits in the context window of both a model
and its extended-context counterpart, we see that
performance between them is nearly identical. For
example, the 10- and 20-document settings both
fit in the context window of GPT-3.5-Turbo and
GPT-3.5-Turbo (16K), and we observe that their
performance as a function of position of relative
information is nearly superimposed (solid purple
and dashed brown series in Figure 5). These re-
sults indicate that extended-context models are
not necessarily better than their non-extended
counterparts at using their input context.

3 How Well Can Language Models
Retrieve From Input Contexts?

Given that language models struggle to retrieve
and use information from the middle of their input

contexts in the multi-document question answer-
ing task, to what extent can they simply retrieve
from input contexts? We study this question with
a synthetic key-value retrieval task, which is de-
signed to provide a minimal testbed for the basic
ability to retrieve matching tokens from an input
context.

3.1 Experimental Setup
In our synthetic key-value retrieval task, the inputs
are (i) a string-serialized JSON object with k
key-value pairs, where each of the keys and values
are unique, randomly generated UUIDs and (ii) a
key within the aforementioned JSON object. The
goal is to return the value associated with the
specified key. Thus, each JSON object contains
one relevant key-value pair (where the value is
to be returned), and k − 1 irrelevant ‘‘distractor’’
key-value pairs. Figure 6 provides an example
input context and its corresponding desired output.
We again measure accuracy by evaluating whether
the correct value appears in the predicted output.

Our synthetic key-value retrieval task shares
similar goals with the Little Retrieval Test of
Papailiopoulos et al. (2023) and the fine-grained
line retrieval task of Li et al. (2023), but we ex-
plicitly seek to distill and simplify the task by
removing as much natural language semantics as
possible (using random UUIDs instead), since lan-
guage features may present potential confounders.
For example, Transformer language models may
have varying sensitivity to different linguistic
features in their input (O’Connor and Andreas,
2021).

162

Figure 7: The effect of changing the input context length and the position of relevant information on key-value
retrieval performance. Lower positions are closer to the start of the input context. Although some models show
perfect accuracy on this synthetic task (e.g., Claude-1.3 and Claude-1.3 (100K)), we see again that performance
is often highest when relevant information is occurs at the very start or end of the context, and rapidly degrades
when models must retrieve from the middle of the input context.

To modulate the position of relevant infor-
mation within the input context, we change the
position of the key to retrieve within the serial-
ized JSON object. To modulate the input context
length, we change the number of input JSON
key-value pairs k by adding or removing random
keys, changing the number of distractor key-value
pairs.

3.2 Results and Discussion

We experiment with input contexts containing
75, 140, and 300 key-value pairs (500 examples
each). We use the same set of models as the
multi-document question answering experiments,
see §2.2 for more details.

Figure 7 presents key-value retrieval perfor-
mance. Claude-1.3 and Claude-1.3 (100K) do
nearly perfectly on all evaluated input context
lengths, but other models struggle, especially
when contexts have 140 or 300 key-value
pairs—although the synthetic key-value retrieval
task only requires identifying exact match within
the input context, not all models achieve high
performance.

Similar to our multi-document QA results,
GPT-3.5-Turbo, GPT-3.5-Turbo (16K), and
MPT-30B-Instruct have the lowest performance
when they must access key-value pairs in the
middle of their input context. LongChat-13B
(16K) exhibits a different trend in the 140
key-value setting; we qualitatively observe that
when relevant information is placed at the start
of the input context, LongChat-13B (16K) tends
to generate code to retrieve the key, rather than
outputting the value directly.

4 Why Are Language Models Not
Robust to Changes in the Position of
Relevant Information?

Our multi-document question answering and
key-value retrieval results show that language
models struggle to robustly access and use infor-
mation in long input contexts, since performance
degrades significantly when changing the position
of relevant information. To better understand why,
we perform some preliminary investigations into
the role of model architecture (decoder-only vs.
encoder-decoder), query-aware contextualization,
and instruction fine-tuning.

4.1 Effect of Model Architecture

The open models we evaluated are all
decoder-only models—at each timestep, they may
only attend to prior tokens. To better understand
the potential effects of model architecture on
how language model use context, we compare
decoder-only and encoder-decoder language
models.

We experiment with Flan-T5-XXL (Raffel
et al., 2020; Chung et al., 2022) and Flan-UL2
(Tay et al., 2023). Flan-T5-XXL is trained with a
sequences of 512 tokens (encoder and decoder).
Flan-UL2 is initially trained with sequences of
512 tokens (encoder and decoder), but is then
pre-trained for an extra 100K steps with 1024
tokens (encoder and decoder) before instruction
fine-tuning on sequences with 2048 tokens in the
encoder and 512 tokens in the decoder. However,
since these models use relative positional embed-
dings, they can (in principle) extrapolate beyond

163

Figure 8: When encoder-decoder models (Flan-UL2 and Flan-T5-XXL) evaluated on sequences that are shorter
than their encoder’s training-time maximum sequence length (2048 and 512 tokens, respectively), they are
relatively robust to changes in the position of relevant information within their input context (left subplot). In
contrast, when these models are evaluated on sequences longer than those seen during training (center and right
subplots), we observe a U-shaped performance curve—performance is higher when relevant information occurs
at the beginning or end of the input context, as opposed to the middle of the input context.

these maximum context lengths; Shaham et al.
(2023) find that both models can perform well
with sequences of up to 8K tokens.

Figure 8 compares the performance of
decoder-only and encoder-decoder models. When
Flan-UL2 is evaluated on sequences within
its 2048-token training-time context window
(Figure 8; left subplot), its performance is rela-
tively robust to changes in the position of relevant
information within the input context (1.9%
absolute difference between best- and worst-case
performance). When evaluated on settings with
sequences longer than 2048 tokens (Figure 8;
center and right), Flan-UL2 performance begins
to degrade when relevant information is placed
in the middle. Flan-T5-XXL shows a similar
trend, where longer input contexts result in a
greater performance degradation when placing
relevant information in the middle of the input
context. We hypothesize that encoder-decoder
models may make better use of their context
windows because their bidirectional encoder
allows processing each document in the context of
future documents, potentially improving relative
importance estimation between documents.

4.2 Effect of Query-Aware Contextualization

Our multi-document QA and key-value retrieval
experiments place the query (i.e., question to an-
swer or key to retrieve) after the data to process
(i.e., the documents or the key-value pairs). As
a result, decoder-only models cannot attend to
query tokens when contextualizing documents or

key-value pairs, since the query only appears at
the end of the prompt and decoder-only models
can only attend to prior tokens at each timestep.
In contrast, encoder-decoder models (which seem
more robust to changes in the position of rele-
vant information; §4.1) use a bidirectional encoder
to contextualize input contexts—can we use
this observation to improve decoder-only mod-
els by placing the query before and after the
data, enabling query-aware contextualization of
documents (or key-value pairs)?

We find that query-aware contextualization dra-
matically improves performance on the key-value
retrieval task—all models achieve near-perfect
performance on the 75, 140, and 300 key-value
pair settings. For example, GPT-3.5-Turbo (16K)
with query-aware contextualization achieves per-
fect performance when evaluated with 300
key-value pairs.

In contrast, without query-aware contextual-
ization, the worst-case performance is 45.6%
(Figure 7). Despite the significant impact on
key-value retrieval performance, query-aware
contextualization minimally affects performance
trends in the multi-document question answering
task (Figure 9); it slightly improves performance
when the relevant information is located at the
very beginning of the input context, but slightly
decreases performance in other settings.

4.3 Effect of Instruction Fine-Tuning

The models we evaluated are all instruction
fine-tuned—after their initial pre-training, they

164

Figure 9: Query-aware contextualization (placing the
query before and after the documents) does not
substantially improve robustness of language mod-
els to changing the position of relevant information
in multi-document QA; performance slightly increases
when relevant information occurs at the very beginning,
but otherwise slightly decreases.

undergo supervised fine-tuning on a dataset of
instructions and responses. The task specifica-
tion and/or instruction is commonly placed at
the beginning of the input context in super-
vised instruction fine-tuning data, which might
lead instruction fine-tuned language models to
place more weight on the start of the input
context. To better understand the potential ef-
fects of instruction fine-tuning on how language
models use long input contexts, we compare the
multi-document question answering performance
of MPT-30B-Instruct against its base model (i.e.,
before instruction fine-tuning) MPT-30B. We use
the same experimental setup as §2.

Figure 10 compares the multi-document QA
performance of MPT-30B and MPT-30B-Instruct
as a function of the position of the relevant in-
formation in the input context. Surprisingly, we
see that both MPT-30B and MPT-30B-Instruct
exhibit a U-shaped performance curve, where per-
formance is highest when relevant information
occurs at the very beginning or very end of the
context. Although the absolute performance of
MPT-30B-Instruct is uniformly higher than that
of MPT-30B, their overall performance trends
are similar. We also observe that instruction
fine-tuning slightly reduces the worst-case per-
formance disparity from nearly 10% between the

Figure 10: Multi-document QA performance of
MPT-30B-Instruct compared against its base model
(i.e., before instruction fine-tuning) MPT-30B. Both
models have a U-shaped performance curve, where
performance is much higher when relevant information
occurs at the start or end of the input context, indicat-
ing that the instruction fine-tuning process itself is not
necessarily responsible for these performance trends.

base model best- and worst-case performance to
around 4%.

These observations complement prior work,
which found that non-instruction fine-tuned lan-
guage models are biased towards recent tokens
(i.e., the end of the input context; Khandelwal
et al., 2018; Press et al., 2021). This recency bias
has been observed in past work when evaluat-
ing models on next-word prediction of contiguous
text, a setting where language models minimally
benefit from long-range information (Sun et al.,
2021). In contrast, our results show that language
models are capable of using longer-range informa-
tion (i.e., the beginning of the input context) when
prompted with instruction-formatted data. We hy-
pothesize that non-instruction fine-tuned language
models learn to use these long contexts from sim-
ilarly formatted data that may occur in Internet
text seen during pre-training, e.g., StackOverflow
questions and answers.

To better understand the effect of additional
fine-tuning and model scale, we also experimented
with Llama-2 models of varying sizes (7B, 13B,
and 70B) with and without additional supervised
fine-tuning and reinforcement learning from hu-
man feedback (Appendix E). We find that the
U-shaped performance curve only appears in suf-
ficiently large language models (with or without

165

additional fine-tuning)—the 7B Llama-2 models
are solely recency-biased, while the 13B and 70B
models exhibit a U-shaped performance curve.
In addition, we see that the Llama-2 supervised
fine-tuning and reinforcement learning from hu-
man feedback procedure slightly mitigates the
positional bias in smaller models (13B, akin to
trends shown when comparing MPT-30B and
MPT-30B-Instruct), but minimally affects trends
on larger models (70B).

5 Is More Context Is Always Better?
A Case Study With Open-Domain QA

Our results indicate that prompting lan-
guage models with longer input contexts is a
trade-off—providing the language model with
more information may help it perform the
downstream task, but it also increases the amount
of content that the model must reason over, po-
tentially decreasing accuracy. Even if a language
model can take in 16K tokens, is it actually
beneficial to provide 16K tokens of context? The
answer to this question is ultimately downstream
task-specific since it depends on the marginal
value of the added context and the model’s ability
to effectively use long input contexts, but we
perform a case study with open-domain question
answering on NaturalQuestions-Open to better
understand this trade-off in existing language
models.

We use language models in a standard
retriever-reader setup. A retrieval system (Con-
triever, fine-tuned on MS-MARCO) takes an input
query from NaturalQuestions-Open and returns
the k documents from Wikipedia with the highest
relevance score. To condition language models
on these retrieved documents, we simply include
them in the prompt. We evaluate retriever recall
and reader accuracy (whether any of the annotated
answers appear in the predicted output) as a func-
tion of the number of retrieved documents k. We
use a subset of NaturalQuestions-Open where the
long answer is a paragraph (as opposed to a table
or a list).

Figure 11 presents retriever recall and
open-domain QA results. We see that reader
model performance saturates long before retriever
performance saturates, indicating that readers
are not effectively using the extra context.
Using more than 20 retrieved documents only
marginally improves reader performance (∼1.5%

Figure 11: Retriever recall and model performance as a
function of the number of retrieved documents. Model
performance saturates long before retriever recall, in-
dicating that the models have difficulty making use of
the extra retrieved documents.

for GPT-3.5-Turbo and ∼1% for Claude-1.3),
while significantly increasing the input context
length (and thus latency and cost). These results,
coupled with the observation that models are
often better at retrieving and using information
at the start or end of the input contexts, suggest
that effective reranking of retrieved documents
(pushing relevant information closer to the start
of the input context) or ranked list truncation
(retrieving fewer documents when appropriate;
Arampatzis et al., 2009) may be promising direc-
tions for improving how language-model-based
readers use retrieved context.

6 Related Work

6.1 Long-Context Language Models
There is much prior work in designing perfor-
mant language models with cheaper scaling than
Transformers in the context length. Many lines of
work pursue Transformer variants with attention
modifications like recurrence (Dai et al., 2019),
factorizing attention into computationally less
intensive approximations (Beltagy et al., 2020;
Zaheer et al., 2020), or low-rank approximations
(Wang et al., 2020; Peng et al., 2021). Dao et al.
(2022) instead provide a faster exact attention by
a carefully-crafted IO-aware CUDA kernel. Sepa-
rately, there are attempts to do away with attention
entirely to remove quadratic sequence length com-
plexity, often through convolution and/or linear

166

RNNs, e.g., in RWKV (Peng, 2023), S4 (Gu et al.,
2022), or Hyena (Poli et al., 2023). Many prior ef-
forts evaluate perplexity on a diverse web corpus
as a proxy for the ability to process long contexts;
this work shows that precise knowledge access on
long contexts may be an added challenge.

6.2 How Do Language Models Use Context?
The pioneering work of Khandelwal et al. (2018)
showed that small LSTM language models make
increasingly coarse use of longer-term context;
Sankar et al. (2019) found similar results in di-
alogue models. In a similar vein, Daniluk et al.
(2017) find that attentive LSTM language mod-
els tend to mainly use recent history. Petroni
et al. (2020) were among the first to demon-
strate the potential of combining context from
an information retrieval system with a pretrained
language models for unsupervised question an-
swering. O’Connor and Andreas (2021) found
that many information-destroying operations had
marginal effects on Transformer LMs’ predic-
tions. Krishna et al. (2022) found that long-context
neural generation in modestly-sized Transformer
language models degenerates because models fail
to properly condition on long context. Finally,
studying long-context models, Sun et al. (2021)
found that longer contexts improves prediction
of only a few tokens, an empirical finding con-
sistent with the theory of Sharan et al. (2018),
who showed that sequence distributions with
bounded mutual information necessarily lead to
marginal average prediction benefits from in-
creasingly long context. Qin et al. (2023) analyze
how efficient Transformers perform on a variety
of long-context downstream NLP tasks, finding
that long-context transformers are recency-biased
and do not effectively use long-range context.

6.3 The Serial-Position Effect
The U-shaped curve we observe in this work has
a connection in psychology known as the serial-
position effect (Ebbinghaus, 1913; Murdock Jr,
1962), that states that in free-association recall
of elements from a list, humans tend to best re-
member the first and last elements of the list. The
serial-position effect plays a role in understand-
ing how humans develop short- and long-term
memory. Observing a serial-position-like effect
in language models is perhaps surprising, since
the self-attention mechanisms underlying Trans-
former language models is technically equally

capable of retrieving any token from their
contexts.

7 Conclusion

We empirically study how language models use
long input contexts via a series of controlled
experiments. We show that language model per-
formance degrades significantly when changing
the position of relevant information, indicating
that models struggle to robustly access and use
information in long input contexts. In particular,
performance is often lowest when models must
use information in the middle of long input con-
texts. We conduct a preliminary investigation of
the role of (i) model architecture, (ii) query-aware
contextualization, and (iii) instruction fine-tuning
to better understand how they affect how language
models use context. Finally, we conclude with a
practical case study of open-domain question an-
swering, finding that the performance of language
model readers saturates far before retriever recall.
Our results and analysis provide a better under-
standing of how language models use their input
context and provides new evaluation protocols for
future long-context models.

Acknowledgments

We would like to thank Luke Zettlemoyer, who
served as our TACL action editor, and the anony-
mous reviewers for their comments and feedback.
We also thank Claudiu Leoveanu-Condrei, Megan
Leszczynski, Dmytro Okhonko, Maithra Raghu,
Eric Wallace, and Sang Michael Xie for feedback
and discussions that helped improve this work.
Further, we are grateful to Sewon Min for her
help with the AmbigQA dataset. This work was
supported by the Stanford Center for Research
on Foundation Models (CRFM), by OpenAI via
an API credits grant to the Stanford CRFM, and
by Anthropic via the Claude academic access
program.

References

Avi Arampatzis, Jaap Kamps, and Stephen
Robertson. 2009. Where to stop reading a
ranked list? Threshold optimization using
truncated score distributions. In Proceedings
of SIGIR. https://doi.org/10.1145
/1571941.1572031

167

https://doi.org/10.1145/1571941.1572031
https://doi.org/10.1145/1571941.1572031

Iz Beltagy, Matthew E. Peters, and Arman
Cohan. 2020. Longformer: The long-document
transformer. ArXiv:2004.05150.

Hyung Won Chung, Le Hou, Shayne Longpre,
Barret Zoph, Yi Tay, William Fedus, Yunxuan
Li, Xuezhi Wang, Mostafa Dehghani,
Siddhartha Brahma, Albert Webson, Shixiang
Shane Gu, Zhuyun Dai, Mirac Suzgun,
Xinyun Chen, Aakanksha Chowdhery, Alex
Castro-Ros, Marie Pellat, Kevin Robinson,
Dasha Valter, Sharan Narang, Gaurav Mishra,
Adams Yu, Vincent Zhao, Yanping Huang,
Andrew Dai, Hongkun Yu, Slav Petrov, Ed H.
Chi, Jeff Dean, Jacob Devlin, Adam Roberts,
Denny Zhou, Quoc V. Le, and Jason Wei. 2022.
Scaling instruction-finetuned language models.
ArXiv:2210.11416.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime
Carbonell, Quoc Le, and Ruslan Salakhutdinov.
2019. Transformer-XL: Attentive language
models beyond a fixed-length context. In Pro-
ceedings of ACL. https://doi.org/10
.18653/v1/P19-1285

Michał Daniluk, Tim Rocktäschel, Johannes
Welbl, and Sebastian Riedel. 2017. Frustrat-
ingly short attention spans in neural language
modeling. In Proceedings of ICLR.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri
Rudra, and Christopher Ré. 2022. FlashAtten-
tion: Fast and memory-efficient exact attention
with IO-awareness. ArXiv:2205.14135.

Hermann Ebbinghaus. 1913. Memory: A contribu-
tion to experimental psychology. H. A. Ruger &
C. E. Bussenius, Trans. https://doi.org
/10.1037/10011-000

Albert Gu, Karan Goel, and Christopher Ré.
2022. Efficiently modeling long sequences with
structured state spaces. In Proceedings of ICLR.

Maor Ivgi, Uri Shaham, and Jonathan
Berant. 2023. Efficient long-text understand-
ing with short-text models. Transactions of
the Association for Computational Linguis-
tics, 11:284–299. https://doi.org/10
.1162/tacl_a_00547

Gautier Izacard, Mathilde Caron, Lucas Hosseini,
Sebastian Riedel, Piotr Bojanowski, Armand
Joulin, and Edouard Grave. 2021. Unsupervised
dense information retrieval with contrastive
learning. ArXiv:2112.09118.

Gautier Izacard and Edouard Grave. 2021. Lever-
aging passage retrieval with generative models
for open domain question answering. In Pro-
ceedings of EACL. https://doi.org/10
.18653/v1/2021.eacl-main.74

Nikhil Kandpal, Haikang Deng, Adam Roberts,
Eric Wallace, and Colin Raffel. 2022. Large
language models struggle to learn long-tail
knowledge. ArXiv:2211.08411.

Urvashi Khandelwal, He He, Peng Qi, and Dan
Jurafsky. 2018. Sharp nearby, fuzzy far away:
How neural language models use context. In
Proceedings of ACL. https://doi.org
/10.18653/v1/P18-1027

Kalpesh Krishna, Yapei Chang, John Wieting,
and Mohit Iyyer. 2022. RankGen: Improving
text generation with large ranking models. In
Proceedings of EMNLP. https://doi.org
/10.18653/v1/2022.emnlp-main.15

Tom Kwiatkowski, Jennimaria Palomaki, Olivia
Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin,
Jacob Devlin, Kenton Lee, Kristina Toutanova,
Llion Jones, Matthew Kelcey, Ming-Wei
Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc
Le, and Slav Petrov. 2019. Natural Questions:
A benchmark for question answering research.
Transactions of the Association for Computa-
tional Linguistics, 7:452–466. https://doi
.org/10.1162/tacl_a_00276

Kenton Lee, Ming-Wei Chang, and Kristina
Toutanova. 2019. Latent retrieval for weakly
supervised open domain question answering.
In Proceedings of ACL. https://doi.org
/10.18653/v1/P19-1612

Mina Lee, Percy Liang, and Qian Yang. 2022.
CoAuthor: Designing a human-AI collabo-
rative writing dataset for exploring language
model capabilities. In Proceedings of CHI.
https://doi.org/10.1145/3491102
.3502030

Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng,
Lianmin Zheng, Joseph E. Gonzalez, Ion Stoica,
Xuezhe Ma, and Hao Zhang. 2023. How long
can open-source LLMs truly promise on context
length?

Alex Mallen, Akari Asai, Victor Zhong,
Rajarshi Das, Daniel Khashabi, and Hannaneh

168

https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.1037/10011-000
https://doi.org/10.1037/10011-000
https://doi.org/10.1162/tacl_a_00547
https://doi.org/10.1162/tacl_a_00547
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/P18-1027
https://doi.org/10.18653/v1/P18-1027
https://doi.org/10.18653/v1/2022.emnlp-main.15
https://doi.org/10.18653/v1/2022.emnlp-main.15
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.1145/3491102.3502030
https://doi.org/10.1145/3491102.3502030

Hajishirzi. 2023. When not to trust lan-
guage models: Investigating effectiveness of
parametric and non-parametric memories. In
Proceedings of ACL. https://doi.org
/10.18653/v1/2023.acl-long.546

Sewon Min, Julian Michael, Hannaneh Hajishirzi,
and Luke Zettlemoyer. 2020. AmbigQA:
Answering ambiguous open-domain ques-
tions. In Proceedings of EMNLP. https://
doi.org/10.18653/v1/2020.emnlp
-main.466

Bennet B. Murdock Jr. 1962. The serial position
effect of free recall. Journal of Experimental
Psychology, 64(5):482. https://doi.org
/10.1037/h0045106

Joe O’Connor and Jacob Andreas. 2021.
What context features can Transformer lan-
guage models use? In Proceedings of
ACL. https://doi.org/10.18653/v1
/2021.acl-long.70

Dimitris Papailiopoulos, Kangwook Lee, and
Jy-yong Sohn. 2023. A little retrieval test for
large language models. https://github.com
/anadim/the-little-retrieval-test

Bo Peng. 2023. RWKV-LM.https://github
.com/BlinkDL/RWKV-LM

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy
Schwartz, Noah Smith, and Lingpeng Kong.
2021. Random feature attention. In Proceedings
of ICLR.

Fabio Petroni, Patrick Lewis, Aleksandra
Piktus, Tim Rocktäschel, Yuxiang Wu, Alexander
H. Miller, and Sebastian Riedel. 2020. How
context affects language models’ factual pre-
dictions. In Proceedings of AKBC.

Michael Poli, Stefano Massaroli, Eric Nguyen,
Daniel Y. Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré.
2023. Hyena hierarchy: Towards larger con-
volutional language models. In Proceedings of
ICML.

Ofir Press, Noah A. Smith, and Mike Lewis.
2021. Shortformer: Better language model-
ing using shorter inputs. In Proceedings of
ACL. https://doi.org/10.18653/v1
/2021.acl-long.427

Ofir Press, Noah A. Smith, and Mike Lewis.
2022. Train short, test long: Attention with

linear biases enables input length extrapolation.
In Proceedings of ICLR.

Guanghui Qin, Yukun Feng, and Benjamin
Van Durme. 2023. The NLP task effective-
ness of long-range transformers. In Proceedings
of EACL. https://doi.org/10.18653
/v1/2023.eacl-main.273

Colin Raffel, Noam Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu.
2020. Exploring the limits of transfer learning
with a unified text-to-text Transformer. Journal
of Machine Learning Research, 21(140):1–67.

Ori Ram, Yoav Levine, Itay Dalmedigos,
Dor Muhlgay, Amnon Shashua, Kevin
Leyton-Brown, and Yoav Shoham. 2023.
In-context retrieval-augmented language mod-
els. ArXiv:2302.00083. https://doi.org
/10.1162/tacl_a_00605

Ohad Rubin and Jonathan Berant. 2023. Long-
range language modeling with self-retrieval.
ArXiv:2306.13421.

Chinnadhurai Sankar, Sandeep Subramanian,
Chris Pal, Sarath Chandar, and Yoshua Bengio.
2019. Do neural dialog systems use the conver-
sation history effectively? An empirical study.
In Proceedings of ACL. https://doi.org
/10.18653/v1/P19-1004

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀,
Roberta Raileanu, Maria Lomeli, Luke
Zettlemoyer, Nicola Cancedda, and Thomas
Scialom. 2023. Toolformer: Language models
can teach themselves to use tools.

Uri Shaham, Maor Ivgi, Avia Efrat, Jonathan
Berant, and Omer Levy. 2023. ZeroSCROLLS:
A zero-shot benchmark for long text un-
derstanding. ArXiv:2305.14196. https://
doi.org/10.18653/v1/2023.findings
-emnlp.536

Vatsal Sharan, Sham Kakade, Percy Liang, and
Gregory Valiant. 2018. Prediction with a short
memory. In Proceedings of STOC. https://
doi.org/10.18653/v1/K18-3013

Weijia Shi, Sewon Min, Michihiro Yasunaga,
Minjoon Seo, Rich James, Mike Lewis, Luke
Zettlemoyer, and Wen tau Yih. 2023. REPLUG:
Retrieval-augmented black-box language mod-
els. ArXiv:2301.12652.

169

https://doi.org/10.18653/v1/2023.acl-long.546
https://doi.org/10.18653/v1/2023.acl-long.546
https://doi.org/10.18653/v1/2020.emnlp-main.466
https://doi.org/10.18653/v1/2020.emnlp-main.466
https://doi.org/10.18653/v1/2020.emnlp-main.466
https://doi.org/10.1037/h0045106
https://doi.org/10.1037/h0045106
https://doi.org/10.18653/v1/2021.acl-long.70
https://doi.org/10.18653/v1/2021.acl-long.70
https://github.com/anadim/the-little-retrieval-test
https://github.com/anadim/the-little-retrieval-test
https://github.com/BlinkDL/RWKV-LM
https://github.com/BlinkDL/RWKV-LM
https://doi.org/10.18653/v1/2021.acl-long.427
https://doi.org/10.18653/v1/2021.acl-long.427
https://doi.org/10.18653/v1/2023.eacl-main.273
https://doi.org/10.18653/v1/2023.eacl-main.273
https://doi.org/10.1162/tacl_a_00605
https://doi.org/10.1162/tacl_a_00605
https://doi.org/10.18653/v1/P19-1004
https://doi.org/10.18653/v1/P19-1004
https://doi.org/10.18653/v1/2023.findings-emnlp.536
https://doi.org/10.18653/v1/2023.findings-emnlp.536
https://doi.org/10.18653/v1/2023.findings-emnlp.536
https://doi.org/10.18653/v1/K18-3013
https://doi.org/10.18653/v1/K18-3013

Kurt Shuster, Jing Xu, Mojtaba Komeili, Da Ju,
Eric Michael Smith, Stephen Roller, Megan
Ung, Moya Chen, Kushal Arora, Joshua Lane,
Morteza Behrooz, William Ngan, Spencer Poff,
Naman Goyal, Arthur Szlam, Y-Lan Boureau,
Melanie Kambadur, and Jason Weston. 2022.
BlenderBot 3: A deployed conversational agent
that continually learns to responsibly engage.
ArXiv:2208.03188.

Simeng Sun, Kalpesh Krishna, Andrew
Mattarella-Micke, and Mohit Iyyer. 2021.
Do long-range language models actually use
long-range context? In Proceedings of EMNLP.

Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier
Garcia, Jason Wei, Xuezhi Wang, Hyung Won
Chung, Siamak Shakeri, Dara Bahri, Tal
Schuster, Huaixiu Steven Zheng, Denny Zhou,
Neil Houlsby, and Donald Metzler. 2023.
UL2: Unifying language learning paradigms.
ArXiv:2205.05131.

Romal Thoppilan, Daniel De Freitas, Jamie
Hall, Noam Shazeer, Apoorv Kulshreshtha,
Heng-Tze Cheng, Alicia Jin, Taylor Bos,
Leslie Baker, Yu Du, YaGuang Li, Hongrae
Lee, Huaixiu Steven Zheng, Amin Ghafouri,
Marcelo Menegali, Yanping Huang, Maxim
Krikun, Dmitry Lepikhin, James Qin, Dehao
Chen, Yuanzhong Xu, Zhifeng Chen, Adam
Roberts, Maarten Bosma, Vincent Zhao,
Yanqi Zhou, Chung-Ching Chang, Igor
Krivokon, Will Rusch, Marc Pickett, Pranesh
Srinivasan, Laichee Man, Kathleen Meier-
Hellstern, Meredith Ringel Morris, Tulsee
Doshi, Renelito Delos Santos, Toju Duke,
Johnny Soraker, Ben Zevenbergen, Vinodkumar
Prabhakaran, Mark Diaz, Ben Hutchinson,
Kristen Olson, Alejandra Molina, Erin
Hoffman-John, Josh Lee, Lora Aroyo, Ravi
Rajakumar, Alena Butryna, Matthew Lamm,
Viktoriya Kuzmina, Joe Fenton, Aaron
Cohen, Rachel Bernstein, Ray Kurzweil, Blaise
Aguera-Arcas, Claire Cui, Marian Croak,
Ed Chi, and Quoc Le. 2022. LaMDA:
Language models for dialog applications.
ArXiv:2201.08239.

Hugo Touvron, Thibaut Lavril, Gautier Izacard,
Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Rozière, Naman

Goyal, Eric Hambro, Faisal Azhar, Aurelien
Rodriguez, Armand Joulin, Edouard Grave,
and Guillaume Lample. 2023a. LLaMA: Open
and efficient foundation language models.
ArXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone,
Peter Albert, Amjad Almahairi, Yasmine
Babaei, Nikolay Bashlykov, Soumya Batra,
Prajjwal Bhargava, Shruti Bhosale, Dan Bikel,
Lukas Blecher, Cristian Canton Ferrer, Moya
Chen, Guillem Cucurull, David Esiobu, Jude
Fernandes, Jeremy Fu, Wenyin Fu, Brian
Fuller, Cynthia Gao, Vedanuj Goswami,
Naman Goyal, Anthony Hartshorn, Saghar
Hosseini, Rui Hou, Hakan Inan, Marcin
Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh
Koura, Marie-Anne Lachaux, Thibaut Lavril,
Jenya Lee, Diana Liskovich, Yinghai Lu,
Yuning Mao, Xavier Martinet, Todor
Mihaylov, Pushkar Mishra, Igor Molybog,
Yixin Nie, Andrew Poulton, Jeremy
Reizenstein, Rashi Rungta, Kalyan Saladi, Alan
Schelten, Ruan Silva, Eric Michael Smith,
Ranjan Subramanian, Xiaoqing Ellen Tan,
Binh Tang, Ross Taylor, Adina Williams, Jian
Xiang Kuan, Puxin Xu, Zheng Yan,
Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien
Rodriguez, Robert Stojnic, Sergey Edunov,
and Thomas Scialom. 2023b. Llama 2:
Open foundation and fine-tuned chat models.
ArXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. 2017.
Attention is all you need. In Proceedings of
NeurIPS.

Sinong Wang, Belinda Z. Li, Madian Khabsa,
Han Fang, and Hao Ma. 2020. Lin-
former: Self-attention with linear complexity.
ArXiv:2006.04768.

Manzil Zaheer, Guru Guruganesh, Kumar
Avinava Dubey, Joshua Ainslie, Chris
Alberti, Santiago Ontanon, Philip Pham,
Anirudh Ravula, Qifan Wang, Li Yang, and
Amr Ahmed. 2020. Big Bird: Transformers for
longer sequences. In Proceedings of NeurIPS.

170

Figure 12: Language model performance on a
unambiguous subset of questions.

A Ambiguity in Multi-Document QA
Distractor Documents

Following past work on NaturalQuestions-Open
(Izacard et al., 2021; Izacard and Grave, 2021, in-
ter alia), we use a Wikipedia dump from late 2018
as our retrieval corpus. However, this standard
Wikipedia dump has a small amount of temporal
mismatch with the NaturalQuestions annotations.

For example, consider the question ‘‘what nfl
team does robert griffin iii play for’’. The Natural-
Questions annotated answer is ‘‘currently a free
agent’’. However, the Wikipedia retrieval corpus
contains the information that he plays for the ‘‘Bal-
timore Ravens’’, since he was released from the
team between the Wikipedia dump’s timestamp
and the NaturalQuestions annotation process.

We use the ambiguity annotations of Min
et al. (2020) to create a subset unambiguous ques-
tions. Experiments on this unambiguous subset of
the data show similar results and conclusions as
the experiments on the full questions collection
(Figure 12).

B Random Distractors in
Multi-Document QA

We also run multi-document question answering
experiments with random Wikipedia documents as
distractors, which allows us to ablate the impact of
retrieved distractors (hard negatives). Note that in
this setting, the document containing the answer
can often be identified with simple heuristics (e.g.,

Figure 13: Language model performance on
multi-document QA when using random distractors,
rather than retrieved distractors.

lexical overlap with the query). Figure 13 presents
the results of this experiment. Although all models
have higher absolute accuracy in this setting, they
surprisingly still struggle to reason over their entire
input context, indicating that their performance
degradation is not solely due to an inability to
identify relevant documents.

C Randomizing Distractor Order in
Multi-Document QA

Our prompt instructs the language model to use
the provided search results to answer the ques-
tion. There may be a prior in the pre-training or
instruction fine-tuning data to treat search results
as sorted by decreasing relevance (i.e., the docu-
ments near the beginning of the input context are
more likely to be useful than those at the end).
To validate that our conclusions are not simply a
byproduct of this bias, we run experiments with
the modified instruction ‘‘Write a high-quality an-
swer for the given question using only the provided
search results (some of which might be irrelevant).
The search results are ordered randomly.’’ In ad-
dition, we randomly shuffle the k − 1 distractor
documents.

Figure 14 presents the results of this experiment.
We continue to see a U-shaped performance curve,
with performance degrading when language mod-
els must use information in the middle of their
input contexts. Comparing the results in §2.3 with
those when randomizing the distractor order and

171

Figure 14: Language model performance when ran-
domizing the order of the distractors (rather than
presenting them in order of decreasing relevance) and
mentioning as such in the prompt.

mentioning such in the prompt, we see that ran-
domization slightly decreases performance when
the relevant information is at the very beginning
of the context, and slightly increases performance
when using information in the middle and end of
the context.

D GPT-4 Performance

We evaluate GPT-4 (8K) on a subset of 500 ran-
dom multi-document QA examples with 20 to-
tal documents in each input context (Figure 15).
GPT-4 achieves higher absolute performance than
any other language model, but still shows a
U-shaped performance curve—its performance is
highest when relevant information occurs at the
very start or end of the context, and performance
degrades when it must use information in the
middle of its input context.

E Llama-2 Performance

We evaluate Llama-2 (Touvron et al., 2023b)
on multi-document QA with 20 total documents
in each input context. The Llama tokenizer pro-
duces longer sequences than the tokenizers for
our previously-studied models, so we discard 20
examples (out of 2655) that exceed Llama-2’s
maximum context length of 4096 tokens. We ex-
periment with models of varying sizes (7B, 13B,
and 70B parameters), with and without additional

Figure 15: Although GPT-4 has higher absolute perfor-
mance than other models, its performance still degrades
when relevant information occurs in the middle of the
input context.

Figure 16: Multi-document QA performance (20 total
documents) of Llama-2 models of varying sizes (7B,
13B, 70B parameters), with and without additional
supervised fine-tuning and reinforcement learning
from human feedback (‘‘-chat-’’ models).

supervised fine-tuning and reinforcement learning
from human feedback (‘‘-chat-’’ models). The
results are presented in Figure 16.

Comparing Llama-2 models of varying sizes,
we find that only the larger models (13B and
70B) exhibit the U-shaped performance curve
(i.e., both primacy and recency bias)—the smallest

172

Llama-2 models (7B) are solely recency-biased.
Given these results, we hypothesize that prior
work (e.g., Khandelwal et al., 2018; Sun et al.,
2021) did not previously observe any primacy
bias in language models because the models they
studied were too small (less than 1B parameters).

Comparing between Llama-2 models with and
without additional supervised fine-tuning and re-
inforcement learning from human feedback, we
see that additional fine-tuning dramatically im-
proves performance on the multi-document QA
task. The 7B models with and without additional

fine-tuning show minimal primacy bias, and are
largely recency-biased. The 13B base model has
a dramatic primacy and recency bias—there is
a 20-point accuracy disparity between the best-
and worst-case performance. Applying additional
fine-tuning to the 13B seems to slightly reduce
this bias (10-point worst-case degradation), but
the bias remains significant. However, the 70B
models with and without additional fine-tuning
have largely similar trends (showing both pri-
macy and recency bias), and additional fine-tuning
minimally changes the positional bias severity.

173

	Introduction
	Multi-Document Question Answering
	Experimental Setup
	Models
	Results and Discussion

	How Well Can Language Models Retrieve From Input Contexts?
	Experimental Setup
	Results and Discussion

	Why Are Language Models Not Robust to Changes in the Position of Relevant Information?
	Effect of Model Architecture
	Effect of Query-Aware Contextualization
	Effect of Instruction Fine-Tuning

	Is More Context Is Always Better? A Case Study With Open-Domain QA
	Related Work
	Long-Context Language Models
	How Do Language Models Use Context?
	The Serial-Position Effect

	Conclusion
	Ambiguity in Multi-Document QA Distractor Documents
	Random Distractors in Multi-Document QA
	Randomizing Distractor Order in Multi-Document QA
	GPT-4 Performance
	Llama-2 Performance

