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adria.gimenez@uv.es

Abstract

Streaming Machine Translation (MT) is the
task of translating an unbounded input text
stream in real-time. The traditional cascade ap-
proach, which combines an Automatic Speech
Recognition (ASR) and an MT system, re-
lies on an intermediate segmentation step
which splits the transcription stream into
sentence-like units. However, the incorpora-
tion of a hard segmentation constrains the MT
system and is a source of errors. This paper
proposes a Segmentation-Free framework that
enables the model to translate an unsegmented
source stream by delaying the segmentation
decision until after the translation has been
generated. Extensive experiments show how
the proposed Segmentation-Free framework
has better quality-latency trade-off than com-
peting approaches that use an independent
segmentation model.1

1 Introduction

Streaming Machine Translation (STR-MT) is a
specific task of Machine Translation (MT) that
consists in translating an unbounded input text
stream in real-time. STR-MT systems are typically
used in a cascaded setting following a streaming
Automatic Speech Recognition (ASR) system.
This task has many applications for scenarios
such as live broadcasting, parliamentary debates,
live lectures, etc. where the input speech to be
translated is potentially several hours long, and
the system must provide accurate and real-time
translations over the live session.

However, conventional MT systems are not
well prepared to work in the conditions described
above. Training samples for conventional MT
systems are sentence-aligned pairs, so there is
a length mismatch between the training (a few
hundred tokens at most) and inference conditions

1Software, data and models are available at https://
github.com/jairsan/Segmentation-Free Streaming
Machine Translation.

(thousands of tokens for live sessions). Conven-
tionally, some sort of segmentation model is used
in order to split the incoming text stream into
sentence-like units, so that they can be translated
by the MT system. Each sentence-like unit, or seg-
ment, is typically translated in isolation, although
techniques from document MT can be used to
provide additional context to a conventional MT
model beyond the current sentence (Tiedemann
and Scherrer, 2017; Agrawal et al., 2018; Scherrer
et al., 2019; Ma et al., 2020a; Zheng et al., 2020b;
Li et al., 2021; Zhang et al., 2021). These tech-
niques can be adapted to the streaming case using
the concept of streaming history (Iranzo Sanchez
et al., 2022), which keeps a limited context of the
previously seen source segments and their corre-
sponding translations generated by the MT model.
We collectively refer to all approaches that use
an independent upstream segmenter model as the
Segmented setting.

The main downside of the Segmented setting
is that the translation quality is very dependant
on the quality of the segmenter, and forcing a
hard decision without involving the MT system
conditions the resulting translation quality. This is
particularly relevant in scenarios where we have
a downstream system. On this line of work, our
final goal is to build a streaming speech-to-speech
translation system using an additional downstream
streaming TTS model. The decisions of the TTS
model cannot be changed once the output has been
sent to the user, and therefore it is not possible to
change the output of the segmenter/MT systems.

This paper proposes a Segmentation-Free
(SegFree) approach that does not rely on an up-
stream segmenter. Instead, the MT model receives
an unsegmented stream of source text and gener-
ates a continuous sequence of translated words.
The SegFree model jointly generates the trans-
lation and its target segmentation by inserting
a special token (‘‘[SEP]’’) into the translation
stream. Whereas in the Segmented setting, the
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segmentation decision is incorporated into the
source side independently from the MT model,
in the SegFree setting this decision is taken by
the MT model considering both, the source and
target streams. That is, the segmentation decision
has been moved from an upstream segmenter into
the target translation stream. Delaying this seg-
mentation decision allows the SegFree model to
take into account additional target-side informa-
tion, which is the crucial component that enables
the SegFree model to significantly outperform its
Segmented counterpart.

The rest of this article is organized as follows.
First, the related work is described in Section 2.
Then, Section 3 defines the statistical frame-
work of our proposed Segmentation-Free model.
Next, Section 4 introduces the datasets involved,
how they were processed and the instantiation of
the models. Lastly, Section 5 reports the results
achieved and conclusions are drawn in Section 6.

2 Related Work

The problem of automatic segmentation has
limited the MT community for many years,
and many solutions have been proposed, rang-
ing from simple length-based heuristics (Cettolo
and Federico, 2006), using language model
probabilities (Stolcke and Shriberg, 1996), to in-
troducing segmentation with a monolingual MT
system (Cho et al., 2012, 2015, 2017). Li et al.
(2021) propose a data augmentation technique
that introduces segmentation errors during train-
ing in order to make the model more robust to
this type of errors.

MT of unsegmented inputs has received rela-
tively little attention. Kolss et al. (2008) propose
a stream decoding algorithm for phrase-based
statistical MT, which is able to translate unseg-
mented input by using a continuous translation
lattice that is updated during the translation
process. New input words extend the lattice,
and the output is committed whenever a pre-
defined latency is exceeded. In the case of neural
MT systems, Schneider and Waibel (2020) use
a Transformer-XL (Dai et al., 2019) encoder
for longer context, combined with a monotonic
encoder-decoder attention head. The model trans-
lates unsegmented input text using a rolling
window over the source stream with a fixed
offset. Their training procedure is a multi-stage

method that involves multiple training phases.
When translating in a streaming setup, the latency
of the model is quite significant when compared
with the speaker (Iranzo Sanchez et al., 2022).
More recently, Sen et al. (2022) propose a method
for the translation of unsegmented input by us-
ing a small window over the source stream that
is re-translated each time a new input token is
received. The overlapping translations of each
window are then merged together to form the out-
put stream. The downside of this approach is that
it introduces flickering into the output, so it is dif-
ficult to apply to setups such as speech-to-speech
translation that require non-flickering output.

With regard to the translation models them-
selves, a distinction can be made between
those that use fixed policies, policies which are
pre-defined and do not depend on the current con-
tent being translated, and adaptive policies, which
are those that adapt their decision based on the
current translation status. Wait-k (Ma et al., 2019)
is the most popular fixed translation policy. This
policy first waits for k source words to arrive, and
then alternates between writing a new target word
and waiting for a new source word. Adaptive poli-
cies are much more varied, although they can be
classified along some general trends. One popular
approach is to try to first detect meaningful units or
chunks that must be translated together, and only
generate a translation once an entire chunk has
been received (Wilken et al., 2020; Zhang et al.,
2020; Kano et al., 2021; Bahar et al., 2021; Zhang
et al., 2022). In contrast, in some approaches the
policy is derived from the model itself, either from
the output probabilities (Cho and Esipova, 2016;
Zheng et al., 2020a; Liu et al., 2021) or from some
internal state of the model (Arivazhagan et al.,
2019; Ma et al., 2020b).

3 Segmentation-Free Statistical
Framework

Under the proposed SegFree framework, the
translation system receives an unsegmented, con-
tinuous stream of source words, and produces a
translation stream in a real-time fashion. Unlike
in the Segmented setting, the system is not con-
strained by the pre-existing segmentation, so it
decides how to delimit the segments of the out-
put stream by taking into account both source
and target information. Moreover, a significant
advantage of this approach is that it removes
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Figure 1: This figure illustrates the memory mechanism in three consecutive steps shown by rows. The chunks
with shaded color belong to the streaming history, while the unshaded chunks are the current active source (top)
and target (bottom) streams. In the first row (t = i), the MT system has just generated the last target word yi =
‘‘duda’’. In the second row (t = i + 1), the translation model generates the ‘‘[SEP]’’ token, which indicates the
end of a target segment. At that point, the memory mechanism is activated and decides â = j + 5 with xâ =
‘‘that’’, so "there is no doubt about that" is moved to the streaming history along with the current translation. In
the third row, the translation continues, but the streaming history has grown too large, so the memory mechanism
discards the oldest chunk.

the dependency on the intermediate segmenta-
tion step, which is an additional component that
needs to be trained, as well as being a source of
cascaded errors.

A naive approach to SegFree translation con-
sists in using a sliding window over the source and
target streams, which is moved/updated following
a fixed schedule. For instance, every time a new
source word is received, it is added to the source
window and the oldest source word is discarded.
However, Iranzo-Sánchez et al. (2021) show that
the target-to-source ratio of the words generated
by an MT system is not constant during the trans-
lation of a source stream, and a system using this
approach will end up with source and target win-
dows whose content is out of sync, as a result of
having over or under-estimated the writing rate of
the system.

Our proposed SegFree system solves this is-
sue by replacing the fixed update schedule of
the sliding windows by a memory mechanism.
This mechanism keeps track of which parts of
the source stream have already been translated,
along with the associated translations. In addition,
it manages the streaming history by discarding
the oldest, already translated words of the stream,
which can be forgotten without affecting the cur-
rent translation. As a result, each of the sliding

windows of the SegFree model contains two dis-
joint chunks: a chunk of history words, which
has been fully processed, and can therefore be
discarded in the future, and the active chunk that
needs to be translated. Once the maximum capac-
ity of the streaming history has been reached, the
oldest source part and its corresponding translation
are discarded. The proposed memory mechanism
uses a probabilistic model in order to decide which
part of the source stream has already been trans-
lated and should be moved to the streaming history
together with its translation.

Formally, let X = {x1, x2, . . . , xJ} be the
source stream and Y = {y1, y2, . . . , yI}, the tar-
get stream. Let xj

′

j be a chunk of active source
words and ŷi

′
i a partial translation of that chunk.

Every time the translation model generates the
end-of-segment token (‘‘[SEP]’’), the memory
mechanism is invoked and selects a source posi-
tion â ∈ [j, j′] based on the current status of the
translation. After this decision, xâj and ŷi

′
i will be

moved to the streaming history, and the translation
will continue with xj

′

â+1. This is graphically shown
in Figure 1.

For this work, the memory mechanism takes the
current active source and target chunks, x = xj

′

j

and ŷ = yi
′
i respectively, and uses a log-linear
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model composed by a series of feature functions
hf (a,x, ŷ) which provide a score for every posi-
tion a of the active source chunk. The probability
of position a being the last position that has been
translated is estimated as

p(a|x, ŷ) =
∏

f hf (a,x, ŷ)
λf

∑
a′
∏

f hf (a
′,x, ŷ)λf

. (1)

After applying the log-transformation, the po-
sition of the last source word â to be moved to the
streaming history is chosen as

â = argmax
a

∑

f

λf log hf (a,x, ŷ). (2)

The weights of the feature functions, λ ∈ R
F ,

are optimized using gradient descent by minimiz-
ing the conventional cross-entropy loss over a set
of samples. Specifically, each sentence pair can
be understood as a classification sample for a task
with classes C = {1, 2, . . . , |x|} and correct label
Ĉ = |x|. The abbreviated pseudocode for SegFree
inference is presented in Figure 2.

The SegFree model presented in this work uses
a memory mechanism based on the following
feature functions2:

• A reverse translation model (Reverse MT).
The score for each source position is
given by a reverse translation model that
computes the probability of the partial trans-
lation xaj followed by the end-of-sentence
symbol (‘‘</s>’’). That is, hf (a,x, ŷ) =
py→x([x

a
j ,</s>]|ŷ), computed as the product

of token-level probabilities including </s>.
For this work, our reverse model uses the
same architecture and training data as the
forward model, but the translation direction
has been switched during training.

• A normal distribution conditioned by a lin-
ear regression (LinReg) model hf (a,x, ŷ) =
N (a | θμ · |ŷ|, θ2σ), estimated with Ordinary
Least Squares.

Apart from the two aforementioned features,
we also tried some other approaches that were not
able to improve the results, either in isolation or in

2Note that in these definitions, a is the relative position
from the start of the active chunk, that is, a ∈ [1, |x|].

Figure 2: Python-like pseudocode for our proposed
SegFree model with memory mechanism.

combination with other features. Specifically, we
tried predicting both the mean and the variance
rather than only the mean with the linear model as
well as replacing the linear models with higher or-
der models. Furthermore, we also collected counts
of source lengths for every different target length
and used them to estimate the segmentation prob-
ability, as well as using the source length, target
length and length ratios as features. Lastly, we
also tried a neural-based regressor that predicts
the mean and variance.

Additionally, we also compare our log-linear
approach with the naive SegFree approach
(Naive), which uses a sliding window with a
fixed offset r. The median target-to-source length
ratio is used as the offset. Then, during inference
time, whenever the ‘‘[SEP]’’ token is emitted, the
source sliding window is moved a fixed num-
ber of positions based on this pre-computed ratio.
Specifically, â = max(�|y|/r�, 0).
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4 Experimental Settings

4.1 Datasets
Results are presented for four translation direc-
tions: English to German, Spanish, and French,
and German to English. The models involving
German were trained using datasets available for
the IWSLT 2022 shared tasks (Anastasopoulos
et al., 2022). The specific datasets are reported
in Table 1. The other systems were trained us-
ing open data from OPUS NLPL (Tiedemann,
2009). Specifically, the English to French and
Spanish models were trained using 305M and
327M sentence pairs, respectively. All sentences
for which document-level information is present
are augmented with their corresponding stream-
ing history (Iranzo Sanchez et al., 2022), by
concatenating the previous source and target sen-
tences until a maximum length of 50 words has
been reached.

In order to enable simultaneous translation,
the prefix-training data augmentation technique
(Arivazhagan et al., 2020b) is used. One partial
translation pair is generated for each sentence pair
in the original corpus (which already includes the
streaming history) by randomly selecting a partial
prefix of both, source and target sentences. If a
given sentence pair contains streaming history in-
formation, the streaming history is left unchanged,
and prefix generation is only applied to the current
sentence pair. The model is trained on the con-
catenation of both, the original training data and
the partial prefix data. Figure 3 shows a graphical
overview of how the training data was constructed.

The source side of the dataset is lowercased
and punctuation marks are removed in order to
simulate the output of a streaming ASR system.
SentencePiece (Kudo and Richardson, 2018) is
used to learn 50k subword units. The Sentence-
Piece whitespace meta symbol ‘‘ ’’ is used as a
suffix instead of a prefix, so that a full word can
be written once its last subword has been written,
without having to wait for the model to generate
the next subword. Both Segmented and SegFree
systems are trained exactly with the same data,
with the only difference between the two being
that the training data of the SegFree model has
been processed to remove ‘‘[SEP]’’ tokens from
the source side of the data, in order to mimic
the inference condition in which no end-of-chunk
information is available. The baseline segmenters
and the SegFree feature functions were trained

Corpus # sentences (K) Doc

News-comm. v16 398 �
Tilde-Rapid 1531 �
MuST-C 250 �
Europarl-ST 45 �
ParaCrawl 82638 –
CommonCrawl 2399 –
WikiTitles 1474 –
WikiMatrix 6227 –
LibriVox 51 –

Table 1: Overview of the datasets used for training,
including number of sentence pairs (in thousands)
and the availability of document boundaries,
which used for constructing samples with stream-
ing history. Note that Europarl (Koehn, 2005) is
excluded from the training data, in order to avoid
overlap with Europarl-ST.

with the MuST-C v2 train set. The feature func-
tion weights were then optimized with the samples
of the MuST-C v2 dev set.

4.2 Translation Models
Both Segmented and SegFree systems use a
Transformer BIG model (Vaswani et al., 2017),
trained following the streaming-history setup
of Iranzo Sanchez et al. (2022). We opted to
use a conventional Transformer trained with
prefix-augmented data (Arivazhagan et al., 2020b)
rather than their masked wait-k (Ma et al., 2019;
Elbayad et al., 2020) training as the results of
Arivazhagan et al. (2020b) show that is a better
choice. No specific architecture changes are ap-
plied for the simultaneous task, as the model learns
to generate simultaneous translations thanks to the
data augmentation regime. At inference time, the
latency of the models is controlled with a wait-k
policy (Ma et al., 2019). The words in the stream-
ing history are ignored for the purposes of the
policy, that is, only the words in the active chunk
are taken into account when deciding between a
READ or a WRITE operation. Speculative Beam
Search (Zheng et al., 2019) with a beam size of 4
is used to generate hypotheses. The best scoring
hypothesis is selected, and then only the amount
of words indicated by the wait-k policy will be
committed as a WRITE operation, the rest are
discarded. The search is always initialized with a
target prefix consisting of the already committed
target words. Every time a target sentence is
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Figure 3: Illustrated example of how the training set was prepared. One prefix training version is generated
for each sentence pair by discarding a portion of both the source and target sentences. The first row shows
a source-target sample without streaming history that is randomly prefixed. The second row is a source-target
sample including streaming history (shown in light gray), in which prefix augmentation is only applied to the
current sentence to be translated, but the history remains unchanged. The final dataset contains both, the Original
and the Prefix-augmented samples, so the size of the training set is doubled.

committed (indicated by the ‘‘[SEP]’’ token), the
length of the streaming history is checked, and
if the maximum history size is exceed in either
the source or the target side, pairs of segments
are removed from the streaming history until the
maximum word length (50) is no longer exceeded.

Apart from the aforementioned Segmented and
SegFree systems, a system following the approach
of Sen et al. (2022) has also been trained to serve as
an additional baseline. This system uses the same
training data as the other systems, but rather than
sentence-based samples, the data is first aligned
at the word level using fastAlign (Dyer et al.,
2013), and then the algorithm proposed by Sen
et al. (2022) is used to extract window pairs for
training. The results for this system are reported
as Window Retrans.

4.3 Segmented Setting
For the Segmented setting, the Direct Segmenta-
tion (DS) approach described in our previous work
(Iranzo-Sánchez et al., 2020; Iranzo Sanchez et al.,
2022) is used, which is a streaming segmenter with
a small future window. The DS approach consid-
ers the segmentation as a classification problem
and decides, for each source word, whether it is the
end of a chunk or not. The detected chunks are then
translated by the MT system. The end-of-chunk
events detected by the segmenter are conveyed to
the MT system by inserting the ‘‘[SEP]’’ token
into the source text received by the MT system.

The original DS system used an RNN-based
classifier, however our experiments revealed that
replacing the RNN-based model with a finetuned
XLM-RoBERTa model (Conneau et al., 2020)
provides a significant translation quality gain.
Indeed, a Large XLM-RoBERTa model was se-
lected as it outperformed both, the original RNN
segmenter and the Base XLM-RoBERTa version,
providing an even stronger segmented baseline.

DS models were trained with history size 10 and
a different system was trained for each value of
future window w ∈ {0, 1, 2, 4}. The results of an
Oracle segmenter (DS-Oracle) using the reference
source sentence segmentation are also reported as
an upper bound to better understand the effect of
the segmentation.

5 Results

SegFree and DS-based models follow a wait-k
translation policy. We report 10 results for each
system, one for each k ∈ [1, 10], in order to
explore the latency-quality tradeoff. Each video
belonging to the evaluation set is translated inde-
pendently from the other videos in the set. Because
both the DS and the SegFree approaches create
their own segmentation that does not match the
reference one, the hypotheses are re-aligned with
the reference translation using minimum edit dis-
tance (Matusov et al., 2005) before computing the
quality measure BLEU (Papineni et al., 2002).3

Likewise, stream-level latency (Iranzo-Sánchez
et al., 2021) is computed using minimum edit
distance so that both approaches can be com-
pared. The average of the Average Lagging (AL)
(Ma et al., 2019) value of each individual video
is reported.

The quality-latency tradeoff of the Window-
Retrans approach is controlled using two hyper-
parameters: w, which is the size of the window
that is re-translated at each step, and r, the match
threshold that needs to be reached by a hy-
pothesis to be considered a match. Similarly to
Sen et al. (2022), we test w ∈ {8, 12, 16, 20}
and r ∈ {0.1, 0.2, . . . , 0.7}. WindowRetrans does
have flickering, unlike the other systems. We fol-
low the conventional practice of evaluating on the

3BLEU|nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|
version:2.2.1.
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Figure 4: Comparison of BLEU vs. AL between the
Naive SegFree system and SegFree systems based on
two different setups of feature functions (Reverse-MT
and Reverse-MT + LinReg) on the English to German
Europarl-ST dev set. There are 10 results for each
system, one for each k ∈ [1, 10].

final text (Arivazhagan et al., 2020a,b; Yao and
Haddow, 2020) and disregard any flickering for
quality evaluation. This enables us to compare the
WindowRetrans system with the other proposed
systems, assuming an ideal situation in which
flickering can be safely discarded. However, in
practice we would not be able to do this, as the
output of the downstream TTS system cannot be
changed once it has been received by the listener.

Figure 4 shows BLEU vs. AL of SegFree sys-
tems when using two different combinations of
feature functions (Reverse-MT and Reverse-MT
+ LinReg) compared with the Naive SegFree
system, evaluated on the English to German
Europarl-ST dev set. Unsurprisingly, the Naive
approach underperforms the other two systems.
The use of a fixed offset in the Naive approach
is a limiting factor for the translation quality, as
both the source and target streams are assumed
to progress at the same rate, irregardless of their
actual content. Every time a target sentence is
produced, a fixed number of source words are
considered to have been translated. This means
that on some occasions the actual writing rate

may be underestimated, and on other occasions
it may be overestimated. In this case, the results
suggest that the writing rate might have been un-
derestimated, which in turn causes high latency
even for low values of k. In contrast, our pro-
posed SegFree system with Reverse-MT feature
works significantly better than the Naive baseline,
because it can dynamically update the streaming
history based on the source and target streams,
instead of being constrained by a fixed rate. Thus,
if a source chunk containing many high fertility
words is translated, the system can take this into
account when updating the streaming history. This
avoids the problem of marking untranslated words
as already translated, which is what would have
happened in the Naive approach. On top of this,
combining the Reverse-MT feature with the Lin-
ear Regression feature (Reverse-MT + LinReg)
further improves the results, as the Linear Re-
gression feature smooths the probabilities given
by the Reverse-MT model. Based on this result,
the Reverse-MT + LinReg system is selected for
further experimentation.

We test the previous hypothesis by taking the
translations generated with the DS-Oracle and
feeding the memory mechanism of the Naive and
Reverse-MT models with the appropriate source
context. Because the DS-Oracle tells us which
source words have actually been used to generate
the translation, we can test if the memory mech-
anism is able to correctly identify these words.
Figure 5 shows the difference in length between
the hypothesis generated by the memory mecha-
nism and the DS-Oracle. It can be observed how
the SegFree system is very good at detecting the
correct position, except for some cases in where
the length is underestimated. In contrast, the Naive
approach cannot adapt its prediction depending on
the content of the actual translation, and as a result
it performs significantly worse at selecting the
right position to update the source stream.

Figure 6 shows a comparison between the
SegFree approach and the selected baselines on
the English to German Europarl-ST dev set. The
DS-RoBERTa quality/latency trade-off is very
dependant on the size of the future window
w ∈ {0, 1, 2, 4}. It can be observed how w = 0
only remains competitive for low latencies, but it
quickly plateaus between 28 and 29 BLEU points.
The lack of a future window means that the seg-
mentation decisions are less informed, and the
translation quality does not greatly increase even
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Figure 5: Logarithmic scale distribution of the differ-
ence between the source chunk length computed by
the Naive and Reverse-MT SegFree models and the
reference length used by the DS-Oracle model. Results
computed on the English to German Europarl-ST dev.
Negative numbers indicate that the length was under-
estimated by the memory mechanism, whereas positive
numbers indicate that it was overestimated.

if the translation model is given more context.
Moving from w = 0 to w = 1 provides a sig-
nificant quality boost, and the model is able to
reach 31.7 BLEU points. Larger future window
values (w = 2 and w = 4) provide further qual-
ity improvements, reaching a maximum of 32.3
and 33.3 BLEU points, respectively, but the ad-
ditional latency introduced by the segmenter does
not make them competitive choices. This is con-
sistent with the results of other works that use the
DS segmenter (Iranzo-Sánchez et al., 2021). Once
the DS-RoBERTa model has one or two future
context tokens, it is better to allocate additional
latency to the MT model in order to avoid dimin-
ishing returns. Based on this, w = 1 was selected
for the final evaluation on the test sets. There
is a gap of around 3 BLEU points between the
DS-RoBERTa systems and the DS-Oracle across
all latency regimes. This gap illustrates the loss
of performance incurred when using an imper-
fect segmentation, as well as the upper bound
of performance that could be achieved using a
perfect segmenter.

The proposed SegFree system clearly outper-
forms the DS-RoBERTa systems at mid and
high latencies, and performs similarly to the
best DS-RoBERTa system at low latencies. The
SegFree system achieves this quality improvement

Figure 6: Comparison of BLEU vs. AL between the
proposed SegFree approach and the baseline models
on the English to German Europarl-ST dev set. For the
WindowRetrans models, each point corresponds to a
different r ∈ {0.1, 0.2, . . . , 0.7}.

by having access to the original source stream and
letting the MT system take the decision where
the segment delimiter should be placed. More-
over, the SegFree system achieves these results
consistently, whereas the DS approach needs mul-
tiple segmenters with different w in order to stay
competitive. This highlights another advantage of
moving beyond a segmenter system, as the latency
of the translation only depends on the policy of
the MT system. The WindowRetrans system is
far behind the performance of both the SegFree
and the best DS-RoBERTa system. The results
for WindowRetrans with w = 16 and w = 20 are
not included in Figure 6 as they had even worse
latency-quality trade-off. The configuration with
w = 8 was selected for further evaluation.

After performing hyperparameter exploration
on the Europarl-ST dev set, the DS-RoBERTa,
DS-Oracle, WindowRetrans, and SegFree systems
were evaluated on the selected test sets. Figure 7
reports BLEU vs. AL results, from left to right, on
the English to German Europarl-ST and MuST-C
test sets, and the German to English Europarl-ST
test set. Statistical significance tests using boot-
strap resampling (Koehn, 2004; Post, 2018) were
conducted to test whether differences between
systems were significant, with 1000 bootstrap
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resamples per test. Each system was compared
with each other system within ±0.3 AL.

For the English to German Europarl-ST test
set, the SegFree outperforms the DS-RoBERTa
system by a wide margin. There is a gap of around
2 BLEU points across all latency regimes, and
this gap grows up to 2.6 BLEU when comparing
the best results (34.6 BLEU points for SegFree
and 32.0 BLEU points for DS-RoBERTa). The
SegFree is 1.1 BLEU points behind the DS-Oracle
system at medium latencies (AL	5), and this dif-
ference decreases at higher latencies (0.5 BLEU
points for AL	9). BLEU differences across
systems were statistically significant.

On the MuST-Ctestset, both the SegFree and the
DS-RoBERTa systems performsimilarly at low and
medium latencies. The SegFree system does signi-
ficantly outperform the DS-RoBERTa system for
AL≥7.6, reaching a maximumof30.1BLEU points,
whereas the DS-RoBERTa system provides 28.8
BLEU points. The DS-Oracle is significantly
better than both the SegFree and DS systems.

Lastly, the German to English Europarl-ST test set
results show that the SegFree system significantly
outperforms the DS-RoBERTa system across all
latency regimes. For example, there is a gap of
1.9 BLEU points for AL	4.5, and a gap of 1.1
BLEU points for AL	8.0. When comparing the
DS-Oracle and the SegFree system, the DS-Oracle
is not significantly better for k ∈ {5, 6, 7}.

The WindowRetrans system shows a similar
trend to the one that was observed on the dev set.
As the value of r is increased, so does the quality
of the translation and the latency. The quality
plateaus when r = 0.5 or r = 0.6 is reached,
and further increases on r tend to degrade the
performance. The difference in quality between
this approach and the DS-RoBERTa model is
statistically significant. Figure 9 reports the results
of the different translation systems when evaluated
with the BLEURT-20 (Pu et al., 2021) neural
measure. We observe no significant differences
when compared with the evaluation carried out
using BLEU.

Figure 10 reports the results for the English to
French system, evaluated on the Europarl-ST and
MuST-C test sets. The results show a similar pat-
tern on both test sets: The DS-RoBERTa system
outperforms the WindowRetrans baseline across
all latency ranges, and is in turn surpassed by the
proposed SegFree system. A small gap remains
between the SegFree system and the DS-Oracle,

and this gap is not statistically significant at some
latency conditions. For AL 	 9, there is a gap
of 0.4 BLEU between the DS-Oracle and the
SegFree system on the Europarl-ST test, and a
gap of 3.2 BLEU between the SegFree system
and the DS-RoBERTa system. BLEU scores for
WindowRetrans were too low (32.8) and omit-
ted in Figure 10 for the sake of clarity. For the
MuST-C test, there is a larger gap of 1.7 BLEU
between the DS-Oracle and the SegFree system,
and a gap of 2.9 BLEU between the SegFree and
the DS-RoBERTa system.

Next, Figure 11 reports the results for the
English to Spanish system. The results follow
a similar trend to previous test sets. For the
Europarl-ST test (AL 	8), there is a gap of of
1.7 BLEU between DS-Oracle and SegFree sys-
tems, and a gap of 4.0 between the SegFree and the
DS-RoBERTa systems. The WindowRetrans re-
sult is 1.2 BLEU lower than that of DS-RoBERTa.
For the MuST-C test, these gaps are 1.7, 2.6 and
2.8 BLEU, respectively.

Figures 12 and 13 report BLEURT curves rather
than BLEU for the same datasets and languages
pairs. The English to French BLEURT results
are shown in Figure 12, whereas the English to
Spanish results are shown in Figure 13. As in
previous cases, there are no relevant changes re-
garding system ordering or gaps between systems.
Similar conclusions are reached when evaluating
with either of the measures, BLEU or BLEURT.

5.1 Computational Efficiency

Both the DS-RoBERTa and the SegFree systems
have one additional neural model than the Naive
baseline. Both are Transformer-based models with
different architectures, but a similar number of
parameters (300M). We collect results from all of
our experiments, carried out on a machine with
a i9-10920X CPU and an NVIDIA 3090 GPU.
The cost of running this additional neural model
once is on average 15ms ± 2ms (min. 10ms, max.
35ms) for the reverse model integrated into the
SegFree memory, and 19ms ± 1ms (min. 15ms,
max. 50ms) for the DS-RoBERTa system. The
DS-RoBERTa system is called every time a new
source word is read, whereas the SegFree reverse
model model is only called when the ‘‘[SEP]’’
token is generated by the translation model. For
all intents and purposes, both approaches can be
assumed to have the same computational cost.
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Figure 7: BLEU vs. AL on the English to German Europarl-ST (left) and MuST-C (center) test sets, and on the
German to English Europarl-ST (right) test set.

Figure 8: BLEU vs. TL on the English to German Europarl-ST (left) and MuST-C (center) test sets, and on the
German to English Europarl-ST (right) test set.

Figure 8 reports the results using the compu-
tationally-aware Translation Lag (Arivazhagan
et al., 2020a) measure to check if there are any rel-
evant differences with the stream-level AL results.
In order to obtain timestamps for the words on the
source side, we forced aligned the transcriptions
with the audio using an off-the-shelf ASR system.

The results for both the English to German
and German to English Europarl-ST test sets are
similar for either AL or TL. On the MuST-C test
set, there is a region on the low-latency regime
where the DS-RoBERTa system performs better

than that of SegFree. The computational cost of
both models is the same, so this gap reveals a
difference in behaviour in the translation of certain
words. AL assumes a constant cost for every word,
whereas in TL the cost is estimated based on the
source audio timestamp. This means that pauses
and other similar phenomena are accounted with
TL, whereas they would be ignored for latency
computation with AL.

For the WindowRetrans system, the results are
similar for r ≤ 0.4. The match threshold r con-
trols the minimum acceptable match between the
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translation of the current window and the output
stream. If this match is not reached, the system
extends the translation window by one word and
generates another translation until the minimum
match is reached, or five re-translations have al-
ready been generated. For r > 0.4, the system is
forced to generate too many re-translations and it
starts falling behind the speaker.

6 Conclusions

This work introduces a novel SegFree approach
to STR-MT that can directly translate an un-
bounded text stream without having to rely on
an intermediate segmenter. This is achieved by
letting the MT system decide where the segment
delimiters are placed, and delaying this decision
until the translation has been generated. In addi-
tion, a memory mechanism keeps track of which
parts of the stream have already been translated,
and can therefore be forgotten when needed, and
which parts remain untranslated and must be kept.
The SegFree approach avoids the performance
degradation introduced by a segmenter model,
and is able to take into account additional infor-
mation from both, source and target streams, when
generating the output translation and segment de-
limiters. The experiments have shown how the
SegFree system is able to significantly outperform
the competing DS-RoBERTa approach across six
of the seven test sets. Furthermore, the SegFree
approach is able to match the performance of the
oracle segmenter in the Europarl-ST German to
English test set. These results validate the perfor-
mance of the SegFree approach across multiple
domains and translation directions. More impor-
tantly, the SegFree approach eliminates the need
of an intermediate segmenter system in a cas-
caded system. As a result, the SegFree approach
is not only better in terms of quality, but it also
lets the MT system retain full control over the
translation policy.

As a future work, the proposed SegFree mem-
ory mechanism has been instantiated with a
Reverse-MT feature and a Linear Regression fea-
ture, but the generic formulation allows for any
arbitrary feature function to be used. Likewise,
the SegFree approach has been tested with static
translation policies, but it could also be applied
to a dynamic translation policy. The SegFree ap-
proach opens the doors to further research that
moves away from local, sentence level translation

with limited context, into a fully-fledged contex-
tual translation system augmented with a dynamic
history that keeps the appropriate context.
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A Appendix: Additional Figures

Figure 9: BLEURT vs. AL on the English to German Europarl-ST (left) and MuST-C (center) test sets, and the
German to English Europarl-ST (right) test set. WindowRetrans curves are not shown for the sake of clarity, as
they are significantly lower than the rest.

Figure 10: BLEU vs. AL on the English to French Europarl-ST (left) and MuST-C (right) test sets. WindowRetrans
curves are not shown for the sake of clarity, as they are significantly lower than the rest.
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Figure 11: BLEU vs. AL on the English to Spanish Europarl-ST (left) and MuST-C (right) test sets.

Figure 12: BLEURT vs. AL on the English to French Europarl-ST (left) and MuST-C (right) test sets.
WindowRetrans curves are not shown for the sake of clarity, as they are significantly lower than the rest.
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Figure 13: BLEURT vs. AL on the English to Spanish Europarl-ST (left) and MuST-C (right) test sets.
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