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Abstract

We address a growing debate about the ex-
tent to which large language models (LLMs)
produce behavior consistent with Theory of
Mind (ToM) in humans. We present EPIT-
OME: a battery of six experiments that tap
diverse ToM capacities, including belief at-
tribution, emotional inference, and pragmatic
reasoning. We elicit a performance baseline
from human participants for each task. We
use the dataset to ask whether distributional
linguistic information learned by LLMs is suf-
ficient to explain ToM in humans. We com-
pare performance of five LLMs to a baseline
of responses from human comprehenders. Re-
sults are mixed. LLMs display considerable
sensitivity to mental states and match hu-
man performance in several tasks. Yet, they
commit systematic errors in others, especially
those requiring pragmatic reasoning on the ba-
sis of mental state information. Such uneven
performance indicates that human-level ToM
may require resources beyond distributional
information.

1 Introduction

Theory of Mind (ToM) is a broad construct encom-
passing a range of social behaviors from reasoning
about others’ mental states (internal psychological
states such as beliefs and emotions) to understand-
ing non-literal communication (Apperly, 2012;
Beaudoin et al., 2020). These mentalizing or mind-
reading capacities underpin social intelligence
(Frith and Frith, 2012), allowing us to anticipate
others’ actions (Tomasello et al., 2005), solve so-
cial coordination problems (Sebanz et al., 2006),
and understand communicative intent (Grice,
1975; Sperber and Wilson, 2002).

There is growing interest in whether artificial
intelligent (AI) agents could display ToM abilities
(Johnson and Iziev, 2022; Langley et al., 2022;
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Rabinowitz et al., 2018). Many desirable AI appli-
cations require something akin to ToM, including
recognizing users’ intents (Wang et al., 2019), dis-
playing empathy toward users’ emotions (Sharma
et al., 2021), and interpreting requests in the con-
text of users’ goals (Dhelim et al., 2021).

The recent success of Large Language Models
(LLMs) has further intensified interest and opti-
mism in the potential for artificial ToM. Although
their pre-training regime does not explicitly in-
clude social interaction or communicative intent
(Bender and Koller, 2020), LLMs produce text
which superficially bears many hallmarks of men-
talizing (Shevlin, under review; Agüera y Arcas,
2022). However, previous studies evaluating LLM
performance on ToM tasks have yielded incon-
sistent findings, sparking debates on LLMs’ ToM
capacities (Kosinski, 2023; Sap et al., 2022;
Ullman, 2023). Here, we collect a battery of six
diverse tasks, used to measure ToM in humans,
to investigate the consistency of LLMs’ ToM
capabilities.

A variety of tasks have been designed to
measure different facets of mentalizing (Happé,
1994; Premack and Woodruff, 1978; Wimmer and
Perner, 1983). Unfortunately, these measures ex-
hibit poor convergent validity—performance in
one task does not necessarily correlate with any
other—and limited predictive validity, with task
performance failing to consistently predict socio-
emotional functioning (Gernsbacher and Yergeau,
2019; Hayward and Homer, 2017). This limits the
extent to which performance on a single task
can be taken as evidence of ToM more gener-
ally, and underscores the need for running varied,
tightly controlled experiments, each measuring
distinct aspects of mentalizing. We select six tasks
from the psychology literature which collectively
measure a diverse set of ToM-related abilities
including belief attribution, emotional reason-
ing, non-literal communication, and pragmatic
inference.
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Beyond measuring LLMs’ ToM performance,
these models can provide insights into debates
on human ToM’s evolutionary and developmen-
tal origins (Krupenye and Call, 2019; Premack
and Woodruff, 1978). Researchers disagree about
whether ToM is an innate, evolutionary adaptation
(Bedny et al., 2009; Surian et al., 2007) or learned
via social interaction (Harris, 2005; Hughes et al.,
2005) and language (Brown et al., 1996; de Villiers
and de Villiers, 2014; Hale and Tager-Flusberg,
2003). If language exposure is sufficient for hu-
man ToM, then the statistical information learned
by LLMs could account for variability in human
responses. We collate human responses to each
task for comparison with LLM performance, us-
ing identical materials for both. This approach
allows us to ask where LLMs sit in the distribu-
tion of human scores; whether their accuracy is
significantly different from humans; and whether
their predictions explain the effects of mental state
variables on human responses.

2 Related Work

Early work in machine ToM (Rabinowitz et al.,
2018) found that neural language models could
learn to coordinate actions using language (Zhu
et al., 2021), but struggled with explicit mental
state reasoning (Nematzadeh et al., 2018). Sev-
eral recent studies have directly investigated ToM
abilities in LLMs. Sap et al. (2022) evaluated
GPT-3 davinci (Brown et al., 2020) on SocialIQA
(a crowdsourced dataset of multiple choice ques-
tions about social reactions to events (Sap et al.,
2019)) and ToMi (a synthetically generated dataset
of False Belief Task passages; Le et al., 2019).
GPT-3 achieved 55% accuracy on SocialIQA,
well below a baseline of 84% set by three human
participants (Sap et al., 2019). While ToMi lacks a
specific human baseline, GPT-3 performed poorly
(60% accuracy) at belief questions, despite being
near ceiling on factual questions.

Kosinski (2023) similarly found that GPT-3
davinci performs poorly (40% accuracy) on a
range of novel False Belief stimuli (Perner et al.,
1987; Wimmer and Perner, 1983). However, later
models in the series performed much better. GPT-3
text-davinci-002, fine-tuned to follow instructions,
achieved 70% accuracy. GPT-3 text-davinci-
003 and GPT-4—fine-tuned using reinforcement
learning—achieve 90% and 95%, respectively.
Although the paper does not establish a human

baseline for the novel stimuli, this compares fa-
vorably to meta-analyses suggesting typical accu-
racy of 90% for 7-year olds (Wellman et al., 2001).

Ullman (2023), however, showed that 8 simple
perturbations to Kosinski’s stimuli cause GPT-3
text-davinci-003 to fail, suggesting that LLMs
exploit shallow statistical patterns rather than de-
ploying a deep, emergent ToM ability. Though
these perturbations were not tested with humans
or generalized to a larger sample of items, Ull-
man argues that ‘‘outlying failure cases should
outweigh average success rates.’’

More recently, Gandhi et al. (2023) used LLMs
to construct a synthetic false belief benchmark
from causal graphs, on which GPT-4 performs
similarly to humans. Kim et al. (2023) used a
similar approach to generate a belief attribution
benchmark composed of naturalistic conversa-
tional dialogues. However, the best performing
LLMs perform as low as 26.6% on their most
challenging measures, lagging far behind a human
baseline of 87.5%. Finally, Shapira et al. (2023)
evaluated 15 LLMs across 6 tasks incorporating
belief attribution (ToMi, False Belief), epistemic
reasoning, and social reactions (SocialIQa and
Faux Pas). They found that no model performed
robustly, and that all models were vulnerable to
adversarial perturbations in the style of Ullman
(2023).

Our contribution differs from existing studies
in several ways. First, we incorporate tasks that
evaluate a broader range of ToM capacities. While
most studies focus primarily on belief attribution
or social appropriateness, we additionally eval-
uate models on emotional reasoning, non-literal
communication, and pragmatic reasoning from
mental state inferences. Additionally, we test be-
lief attribution up to 7 levels of embedding, and
use a range of evaluation criteria (including hu-
man evaluation of free-text completions). Second,
we intentionally use experimental stimuli origi-
nally designed to measure ToM in humans. Some
researchers are rightly concerned that these tasks
may not have the same construct validity for LLMs
as they do for humans (Mitchell and Krakauer,
2023; Shapira et al., 2023; Ullman, 2023). We
agree that successful performance on these tasks
does not imply an agent has ToM. However, this
objection is not overcome by designing novel
tasks that have not been validated on human par-
ticipants. The proposition that an LLM displays
ToM must be supported by a range of empirical,
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Figure 1: Truncated examples of materials from each of the 6 Theory of Mind tasks. Participants read a con-
text passage (light text) and then answered a question using the response type indicated in the top-right of each
box. Checks and crosses indicate examples of answers that would be scored as correct or incorrect (see §4 for
details on how accuracy was measured in each task).

theoretical, and probably mechanistic evidence.
Moreover, we believe that existing experimental
stimuli have several advantages which comple-
ment contemporary work with synthetic or crowd-
sourced benchmarks: They have been carefully
designed to control for confounds and they have
been validated as measures of specific latent con-
structs in humans. Third, to allow direct item-level
comparison between model and human perfor-
mance, for each study we elicit an appropriately
powered human baseline for all items and make
all human data available. Fourth, we preregistered
four of the six studies in order to minimize the
risk of selecting materials or analyses that would
bias results. Finally, to test whether distributional
information learned by LLMs can fully account
for human behavior, we run a distributional base-
line analysis (Jones et al., 2022; Trott et al., 2023):
testing whether mental state variables explain re-
sidual variance in human responses beyond the
variance explained by the LLM responses.

3 The Present Study

We assemble EPITOME—a battery of six ex-
periments designed to measure distinct aspects

of ToM in humans (see Figure 1). We selected
these six experiments in order to provide broad
coverage of the theorized components of ToM
(Beaudoin et al., 2020). The False Belief Task
(FB) tests whether participants can maintain a rep-
resentation of someone else’s belief, even if it dif-
fers from their own (Wimmer and Perner, 1983).
Recursive Mindreading (RM) tests whether par-
ticipants can recursively represent mental states
up to seven levels of embedding, e.g., ‘‘Alice
knows that Bob believes that Charlie...’’ (O’Grady
et al., 2015). The Short Story Task (ShS) mea-
sures the ability to infer and explain emotional
states of characters (Dodell-Feder et al., 2013),
while the Strange Stories Task (StS) (Happé,
1994) asks participants to explain why charac-
ters might say things they do not mean literally.
The final two tasks measure sensitivity to speaker
knowledge during pragmatic inference. The In-
direct Request Task (IR) asks whether partici-
pants are less likely to interpret an utterance as
a request if the speaker knows that the request
can’t be fulfilled (Trott and Bergen, 2020). The
Scalar Implicature (SI) task tests whether com-
prehenders are less likely to interpret some to
mean not all when the speaker does not know
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enough to make the stronger claim (Goodman and
Stuhlmüller, 2013).

We used this battery of tasks to address a
longstanding debate about the origins of ToM
in humans: namely, the extent to which lan-
guage exposure is sufficient to account for human
mentalizing ability. The distributional hypothesis
(Firth, 1957; Harris, 1954) suggests that human
comprehenders use statistical information about
the co-occurrence frequency of words to under-
stand language. The rapid advance of LLMs—that
learn exclusively from such information—has gal-
vanized interest in the distributional hypothesis,
with many recent studies showing that LLMs
can accurately predict human linguistic behavior
(Chang and Bergen, 2023) and neural activity
(Schrimpf et al., 2021; Michaelov et al., 2022). A
more specific instantiation of this broader debate
concerns the role of language exposure in human
ToM development (de Villiers and de Villiers,
2014; Trott et al., 2023). We address this ques-
tion by comparing the responses of LLMs and hu-
mans on EPITOME.

Crucially, in order to test the sufficiency of
distributional information per se, we restrict our
analysis to models that have not been fine-tuned
on other objectives such as Reinforcement Learn-
ing from Human Feedback (RLHF; Ouyang et al.,
2022). While RLHF is theorized to improve ToM
performance (Moghaddam and Honey, 2023), it
exposes models to an additional training sig-
nal, making it hard to draw inferences about
the sufficiency of language exposure alone. Our
main analysis focuses on GPT-3 text-davinci-002
(henceforth, GPT-3)—one of the best-performing
models which has not been trained using RLHF.1

We make our code and materials available to
facilitate addressing further questions, including
whether RLHF improves ToM performance.

We ask four types of question: (1) Where does
GPT-3 sit in the distribution of human perfor-
mance? (2) How does GPT-3 performance vary
with model scale? (3) Is GPT-3 sensitive to ex-
perimental variables that alter characters’ mental
states? (4) Does GPT-3 fully explain human men-
talizing behavior? Or is there a residual effect
of mental state variables on human comprehen-
ders after controlling for distributional likeli-
hood (as measured by GPT-3 predictions)? We

1https://platform.openai.com/docs/models
/gpt-base.

pre-registered our analyses for four tasks, and
provide code, data, and materials for all six.2

4 Methods

We accessed models through the OpenAI API.
For tasks that involved generating text (ShS, StS),
we set temperature to 0. For the remaining tasks,
we measured the probability assigned by the model
to a given string. When measuring the probabil-
ity assigned to a multi-token string, we summed
the log probabilities of each token. We used the
same instructions and stimulus wording for both
humans and LLMs. We avoided using any kind
of prompt engineering with LLMs to ensure a
fair comparison. We generated novel stimuli for
the Scalar Implicature task and we conducted
a contamination analysis following Golchin and
Surdeanu (2023), which indicated that none of
the other datasets were contained in the model’s
training data (see Appendix B).

The number of human participants in each study
varied based on the types of statistical analysis be-
ing run, the number of items, and the number of
observations per participant. For tasks without ex-
plicit correct answers, ‘accuracy’ is defined as the
total score on questions measuring sensitivity to
mental states. We use publicly available data from
Trott et al. (2023) for FB, and use their analysis
as a model for other tasks. LLM data and analyses
for all other tasks, as well as human data for RM,
StS, and SI, are novel contributions. All novel hu-
man data was collected from undergraduate stu-
dents, while existing data for FB, ShS and IR was
collected via Amazon Mechanical Turk.

4.1 False Belief Task

Materials Trott et al. (2023) constructed 12 pas-
sage templates, in which a main character puts an
object in a Start location, and a second character
moves it to an End location. The last sentence
states that the main character believes the object
is in some (omitted) location (e.g., ‘‘X thinks the
book is in the ’’). There are 16 versions of each
item (192 passages in total) which varied across
4 dimensions: (i) Knowledge State: whether the
main character knows (True Belief) or does not
know (False Belief) that the object has changed
location; whether (ii) the First Mention and (iii)
the most Recent Mention of a location is the Start

2Available on OSF https://osf.io/sn7gj/.
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or End location; and (iv) Knowledge Cue: whether
the main character’s belief is stated implicitly (‘‘X
goes to get the book from the ’’) or explicitly
(‘‘X thinks the book is in the ’’).

Human Responses 1156 participants from
Amazon’s Mechanical Turk were compensated
$1 to complete a single trial. Each read a passage
(except the final sentence), and on a new page,
produced a single word free-response completion
of the final sentence. Participants then completed
two free-response attention check questions that
asked for the true location of the object at the
start and the end of the passage. Responses were
preprocessed by lowercasing and removing punc-
tuation, stopwords, and trailing whitespace. Par-
ticipants were excluded if they were non-native
English speakers (13), answered ≥ 1 attention
check incorrectly (513), or answered the sentence
completion with a word that was not the start or
end location (17), retaining 613 trials.

LLM Responses LLM responses were opera-
tionalized as the probability assigned to each pos-
sible location (Start vs End) conditioned on each
of the passage versions. Using the Log-Odds Ra-
tio, log(p(Start)) − log(p(End)), higher values
indicate larger relative probabilities of the Start
location. We score model responses as correct if
p(Start) > p(End) in False Belief trials and vice
versa in True Belief Trials.

4.2 Recursive Mindreading

Materials We adapted stimuli from O’Grady
et al. (2015) for U.S. participants. The stimuli
comprised 4 stories, each of which had a plot
involving seven levels of recursively embedded
mental representation (e.g., ‘‘Anne knows that
Bob belives that Charlie saw...’’), and seven levels
of a non-mental recursive concept, such as relation
(e.g., ‘‘Stephen has Biology with Megan’s sister
Lauren’’). For each of the levels of mental and
non-mental recursion, the authors also created
two scenes to follow the main story, only one
of which was consistent with the main story. All
of the stories and continuations were written in
two different formats: as scripts (dialogue) and
as narratives. In total there were 112 pairs of
continuation passages. While the original study
recorded actors reading scripts, we presented the
materials in text format to both LLMs and human
participants.

Human Responses We recruited 72 under-
graduates who participated in the experiment on-
line. Each read all four stories in a randomized
order. After each story, they responded to 14
two-alternative forced-choice (2AFC) questions
(2 conditions × 7 embedding levels); each asked
which of a pair of story continuations was consis-
tent with the main story. The format of the story
and continuations (narrative vs dialogue) was fully
crossed. We excluded 6 participants who an-
swered fewer than 5/8 level 1 questions correctly,
and trials in which the participant read the story
in < 65ms/word (322), or responded to the ques-
tion in < 300ms (45).

LLM Responses We measured the probability
assigned by LLMs to each continuation follow-
ing the story. We presented all four combinations
of story and question format to the LLM. Be-
cause continuations varied considerably in length
and other surface features, we used PMIDC

(Holtzman et al., 2022) to control for the prob-
ability of the continuation in the absence of
the story. We operationalize the LLM’s pref-
erence for one option over another as the log-
odds (log(p([A])) − log(p([B])), corrected with
PMIDC . We scored the LLM as correct if it
assigned a higher probability to the consistent
continuation.

4.3 Short Story Task

Materials Dodell-Feder et al. (2013) designed
a set of 14 questions about Ernest Hemingway’s
short story The End of Something. The story de-
scribes an argument between a couple, culmi-
nating in their breakup. The mental lives of the
characters are not explicitly described and must
be inferred from their behavior. There are 5 Read-
ing Comprehension (RC) questions; 8 Explicit
Mental State Reasoning (EMSR) questions, and 1
Spontaneous Mental State Inference (SMSI) ques-
tion that asks whether participants make mental
state inferences when summarizing the passage.

Human Responses Human response data came
from Trott and Bergen (2018). A total of 240
participants recruited from Amazon Mechanical
Turk completed a web version of the Short Story
Task, in which they read The End of Something
and then answered all 14 questions. Participants
who indicated that they had read the story before
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were excluded, and there were 227 subjects re-
tained after exclusions. All responses were scored
independently by two research assistants using
the rubric provided by Dodell-Feder et al. (2013),
with a third evaluator acting as a tiebreaker.

LLM Responses LLMs generated completions
for prompts that comprised the passage and a
question. Each question was presented separately.
A research assistant scored LLM responses and a
subset of human responses in a single batch. They
were unaware that any of the responses had been
generated by LLMs. In order to ensure consistent
scoring, we checked the correlation between this
evaluator’s scores on the subset of human data
and the scores assigned by the original evalua-
tors of the human data (RC: r = 0.98; EMSR:
r = 0.90; SMSI: r = 0.76).

4.4 Strange Story Task

Materials Happé (1994) designed 24 passages
in which a character says something they do not
mean literally (e.g., being sarcastic or telling a
white lie). Each story is accompanied by a com-
prehension question (‘‘Was it true, what X said?’’)
and a justification question (‘‘Why did X say
that?’’). Six non-mental control stories measured
participants’ general reading comprehension skill.

Human Responses We recruited 44 undergrad-
uates who participated online. Participants saw
a non-mentalistic example passage, and example
responses to both question types. Participants read
each passage and answered the associated ques-
tions using a free-response input. We removed 95
trials (7%) in which the participant answered the
comprehension question incorrectly. We excluded
16 participants for scoring < 66% on the control
stories, indicating inattention.

LLM Responses We generated completions
from LLMs for a prompt which consisted of the
same instructions and examples that human partic-
ipants saw, a passage, and the relevant question.
For the justification question, the prompt addi-
tionally contained the first question along with
the correct answer (i.e., ‘‘No’’). Human and LLM
responses to the justification question were evalu-
ated by two research assistants—unaware that any
responses were generated by LLMs—in a single
batch using the rubric provided by Happé (1994).
A third evaluator acted as a tiebreaker.

4.5 Indirect Request

Materials Trott and Bergen (2020) created 16
pairs of short passages, each ending with an am-
biguous sentence that could be interpreted as ei-
ther an indirect request or a direct speech act (e.g.,
‘‘it’s cold in here’’ could be a request to turn
on a heater, or a complaint about the tempera-
ture of the room). In each passage, the participant
learns about an obstacle that would prevent ful-
filment of the potential request (e.g., the heater
being broken). The authors manipulated Speaker
Awareness—whether the speaker was aware of
the obstacle or not—and Knowledge Cue: whether
the speaker’s knowledge about the obstacle was
indicated explicitly (‘‘Jonathan doesn’t know
about the broken heater’’) or implicitly (Jonathan
being absent when the heater breaks).

Human Responses Human response data came
from Trott and Bergen (2020) Experiment 2. A
total of 69 participants from Amazon Mechanical
Turk read 8 passages. Condition (Speaker Aware
vs Speaker Unaware) was randomized within
subjects. After each passage, participants were
asked: ‘‘Is X making a request?’’ and responded
‘‘Yes’’ or ‘‘No.’’

LLM Responses We presented each version of
each passage to GPT-3 followed by the critical
question ‘‘Do you think [the speaker] is making a
request?’’ and measured the probability assigned
by the model to the tokens ‘‘Yes’’ and ‘‘No.’’
We calculate the log odds ratio log(p(Y es)) −
log(p(No)) and score answers as correct if this is
positive when the speaker is unaware of the ob-
stacle, and negative when the speaker is unaware.

4.6 Scalar Implicature

Materials We designed 40 novel passage tem-
plates based on the 6 items in Goodman and
Stuhlmüller (2013). The first section of each pas-
sage introduces three objects that almost always
have some property (e.g., ‘‘David orders 3 pizzas
that almost always have cheese in the crust.’’).
The next section contains an utterance about the
speaker’s knowledge state (‘‘David says: ‘I have
looked at [a] of the 3 pizzas. [n] of the pizzas
have cheese in the crust.’’, where 1 ≤ a ≤ 3,
n =‘‘Some’’ in Experiment 1, and 1 ≤ n ≤ a
in Experiment 2. After each of the two passage
sections, participants are asked ‘‘How many of
the 3 pizzas do you think have cheese in the crust?

808



(0, 1, 2, or 3)’’, probing participants’ beliefs both
before and after the utterance. A third question
asks if the speaker knows how many objects have
the property (‘‘Yes’’ or ‘‘No’’). The scoring cri-
teria for the Scalar Implicature experiment can
be found in Appendix A, Tables 2 and 3.

Human Responses We randomly assigned 242
undergraduate student participants to either Ex-
periment 1 (126) or Experiment 2 (116).3 For each
question, participants were instructed to divide
‘‘$100’’ among the options, betting to indicate
their confidence in each option. Participants com-
pleted 3 trials in E1 (each with different values of
a) and 6 trials in E2 (with all possible combina-
tions of a and n).

Following Goodman and Stuhlmüller (2013),
we excluded 410 trials (143 in E1, 247 in E2) in
which the knowledge judgment was less than 70
in the expected direction (i.e., < $70 on ‘‘Yes’’
when a = 3; < $70 on ‘‘No’’ when a < 3). We
measured accuracy by testing whether the relation-
ships between bets before and after the speaker’s
utterance reflect the fact that a scalar implica-
ture should only be drawn when the speaker has
complete access (see Appendix A).

LLM Responses For each question, we con-
structed a prompt consisting of the relevant
sections of the story, followed by the question
(marked by ‘Q:’), then by an answer prompt, ‘A:’.
We found the probability assigned by the model to
each response option (0, 1, 2, and 3), normalized
by the total probability assigned to all response
options. We did not use the knowledge check fil-
tering criterion for model responses as this would
amount to removing entire items.

5 Results

For all 6 tasks, we asked the following 2 types
of question:

(1) Is GPT-3 accuracy significantly different
from humans? We ran a logistic regression:

accuracy ∼ data source

where the source of the data is either human
participants or GPT-3 (text-davinci-002).

3We originally ran this study on Mechanical Turk. An
unusually high exclusion rate of 70% indicated unreliable
data and we re-ran the study with undergraduate students.

(2) Does model scale predict accuracy? We
ran a logistic regression:

accuracy ∼ log(n parameters)

where n parameters is the number of parameters
in one of four base GPT-3 models (ada to davinci).
In addition, for the experiments that manipulated
a mental state variable (FB, RM, IR, SI), we asked
two additional questions:

(3) Does GPT-3 show effects of mental state
variables? We conducted statistical tests anal-
ogous to the tests run in the original human
experiments, but using GPT-3 responses as the
dependent variable. For example, in the False
Belief study, we ran a linear regression

log odds ∼ knowledge state

where log odds is the log-odds ratio of the prob-
abilities GPT-3 assigned to the Start and End
tokens (see Section 4.1) and knowledge state is
either True Belief or False Belief. More detail
on the specific variables tested in each study is
contained in the relevant result sections.

(4) Does GPT-3 account for effects of mental
state variables on human comprehenders? In
order to test whether GPT-3 can fully account
for mentalizing effects in humans, we ran linear
regressions predicting human responses on the
basis of mental state variables while controlling
for the effect of GPT-3 predictions. For example,
in the FB task we ran:

prop start ∼ log odds + knowledge state

where prop start is the proportion of human par-
ticipants who responded with the Start location. If
the addition of knowledge state improves the fit
of a base regression model using only log odds,
it suggests that knowledge state explains unique
variance, over and above GPT-3 predictions.

In each case, we use a Chi-Squared test to
compare the fit of a full model (indicated above)
with a base model (with boldface variables re-
moved). For the fourth question, this allows us
to test whether mental state variables explain sig-
nificant variance in human responses once the
effect of distributional likelihood (measured by
GPT-3 predictions) has been controlled for. We
used mixed effects models with random intercepts
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Model FB RM ShS StS IR SI1 SI2

ada 51 63 19 58 17 45
babbage 46 62 31 50 32 42
curie 48 63 48 47 43 47
davinci 61 65 75 47 50 49
t-d-002 74 73 62 83 50 25 45

Human 83 84 46 86 63 59 73

Table 1: LLM and human accuracy (%) across
tasks. Humans outperform models in all tasks
except ShS.

Figure 2: Distribution of human accuracy by partici-
pant (violins and gray circles with 95% CI) compared
to mean GPT-3 text-davinci-002 accuracy (red dia-
monds). GPT-3 accuracy was not significantly differ-
ent from human accuracy across 3 tasks (ShS, StS, IR),
but was significantly lower in others (FB, RM, SI).

by item. Table 1 contains raw accuracies for all
models and tasks.

5.1 False Belief Task

GPT-3 accuracy was 74%, significantly below the
human mean of 83% (χ2(1) = 6.97, p = .008,
see Figure 2). Accuracy increased with model
size from ada (51%) to davinci (60%) (χ2(1) =
7.51, p = .006, see Figure 4).

Knowledge State—whether the character knew
that the object had been moved—had a significant
effect on the log-odds that GPT-3 assigned to each
location (χ2(1) = 18.6, p < .001). Concretely,
GPT-3 assigned a higher probability to the true
(end) location of the object when the character
was in a position to observe the object having
moved to that location. Human comprehenders
also showed an effect of Knowledge State on the
likelihood that they completed the critical sentence

Figure 3: RM accuracy by embedding level and ques-
tion type for GPT-3 and human participants. Humans
maintain high accuracy across all levels in both ques-
tion types. GPT-3 performance drops beyond level 5
for mental questions specifically.

with the end location (χ2(1) = 31.7, p < .001).
Crucially, this effect on human comprehenders
was robust to controlling for the predictions of
GPT-3 (χ2(1) = 30.4, p < .001), suggesting that
Knowledge State influenced human responses in
a way that was not captured by the LLM.

5.2 Recursive Mindreading

GPT-3’s mean accuracy on mental questions was
73%, significantly lower than the human mean of
85% (χ2(1) = 9.12, p = .003). GPT-3 was in the
16th percentile of human accuracy scores, aggre-
gated by participant. Model accuracy increased
slightly with scale, from ada (63%) to davinci
(65%) (z = 3.06, p = .002).

Human accuracy on mental questions was
significantly above chance up to 7 levels of
embedding (z = 5.56, p < .001), though there
was a negative effect of embedding level (z =
−4.12, p < .001). GPT-3 accuracy on mental
questions decreased after level 4 and was not sig-
nificantly different from chance beyond level 5
(z = −0.06, p = 0.949). However, there was no
such drop for control questions (see Figure 3). The
difference in log-probability assigned to correct
and incorrect continuations did not significantly
predict human accuracy (z = 1.78, p = 0.075),
indicating that human comprehenders are using
different types of information from the LLM to se-
lect responses. Human accuracy was significantly
above chance at all embedding levels when con-
trolling for GPT-3 log probabilities (all p values
< 0.022).
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Figure 4: ToM task accuracy vs model scale across
four GPT-3 models (ada, babbage, curie, and davinci).
FB, StS, RM, and SI E1 show positive scaling, with
higher-parameter models achieving increased accu-
racy. IR and SI E2 show relatively flat scaling, with no
significant increase in accuracy for larger models.

5.3 Short Story Task

GPT-3 scored 100% on both the RC and SMSI
questions, and 62% on EMSR. Mean human per-
formance was 83%, 42%, and 46% for these
components, respectively. GPT-3’s EMSR score
was better than 73% of human subjects, but
not significantly greater than the human mean
(χ2(1) = 0.997, p = .318). In order to test
whether GPT-3’s EMSR performance could be at-
tributable to general comprehension performance,
we performed a follow-up analysis on the 55 par-
ticipants (25%) who matched GPT-3’s Reading
Comprehension score. Mean EMSR performance
among this group was 57% and GPT-3 fell in
the 50th percentile of this distribution, consistent
with the theory that GPT-3’s improved read-
ing comprehension accounts for its high ESMR
performance.

5.4 Strange Story Task

GPT-3 text-davinci-002’s mean accuracy on crit-
ical trials was 83%, below mean human accuracy
of 86%, however the difference was not signifi-
cant (χ2(1) = 0.119, p = .73). GPT-3 performed
better than 36% of human participants. Model
performance increased monotonically with scale,
from ada (18%) to davinci (75%) (t(71) = 6.02,

p < .001). GPT-3’s accuracy on the control ques-
tions (83%) was very similar to the mean accu-
racy of retained participants (80%).

5.5 Indirect Request

GPT-3 interpreted all statements as requests (i.e.,
it assigned a higher probability to ‘Yes’ vs ‘No’),
yielding an accuracy of 50%. Human mean ac-
curacy was 62% and there was no significant
difference in accuracy between Human and LLM
responses (χ2(1) = 0.666, p = .414). GPT-3’s
accuracy placed it in the 11th percentile of humans,
aggregated by subject. No consistent relationship
held between model scale and performance, with
all smaller models performing at around 50% ac-
curacy (z = −1.13, p = .260).

There was a significant effect of Speaker
Awareness on human responses (χ2(1) = 23.557,
p < .001). Human participants were less likely to
interpret a statement as a request if the speaker
was aware of an obstacle preventing the request’s
fulfillment. There was no significant effect of
Speaker Awareness on the log-odds ratio between
the probabilities assigned to ‘Yes’ and ‘No’ by
GPT-3, suggesting that the model was not sen-
sitive to this information when interpreting the
request (χ2(1) = 1.856, p = .173).

5.6 Scalar Implicature

In Experiment 1, GPT-3 accuracy was 25%, sig-
nificantly lower than the human mean of 56%
(χ2(1) = 28.0, p < .001), and outperforming only
19% of human participants. Accuracy increased
with scale from ada (17%) to davinci (50%)
(z = 3.93, p < .001). In line with the original re-
sults, human participants make the scalar implica-
ture that ‘some’ implies ‘not all’ when the speaker
has complete access to the objects, i.e., they bet
significantly more on 2 vs 3 when a = 3 (t(1) =
−13.07, p < .001). However, in contrast with the
original results we also find this effect when
the speaker has incomplete access (a < 3) and
the implicature ought to be cancelled (t(1) =
−5.881, p < .001). This could be due to the am-
biguity of whether ‘some’ refers to some of the
observed objects or some of the total set of ob-
jects (Zhang et al., 2023). GPT-3’s predictions
were inconsistent with the rational model in both
cases. It assigned a higher probability to 3 vs 2
in the complete access condition—inconsistent
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Figure 5: GPT-3 and human bets on each state (n
objects with property) for all conditions in SI E2.
Unlike humans, GPT-3 often fails to make a scalar
implicature when access = 3.

with the scalar implicature—and a lower probabil-
ity to 3 vs 2 in the incomplete access conditions—
inconsistent with cancelling the implicature.

In Experiment 2, GPT-3 achieved 45% accu-
racy, placing it in the 12th percentile of the human
distribution and significantly below the human
mean of 72% (χ2(1) = 37.0, p < .001). There was
no significant relationship between model scale
and performance (z = 1.04, p = .300). GPT-3
failed to show the scalar implicature effect in
the complete access condition (where a = 3, see
Figure 5). The model assigned a higher probability
to 2 vs 1 when n = 1 (t(1) = 29.3, p < .001),
and there was no difference between p(2) and
p(3) when n = 2 (t(1) = 0.39, p < .697). The
probabilities reflected cancellation of the impli-
cature in all of the incomplete access conditions:
p(2) ≥ p(1) when a = 1 and n = 1 (t(1) =
216, p < .001) and when a = 2 and n = 1
(t(1) = 71.4, p < .001), and p(3) ≥ p(2) when
a = 2 and n = 2 (t(1) = 13.256, p < .001). The
pattern of human responses replicated all of the
planned comparison effects from Goodman and
Stuhlmüller (2013), and all effects persisted when
controlling for GPT-3 predictions.

6 Discussion

We assembled EPITOME—a battery of six ToM
experiments that tap diverse aspects of ToM—
and provided a human baseline for each task. We
used the dataset to assess the extent to which
distributional information learned by an LLM
(GPT-3) was sufficient to reach human-level per-

formance on these tasks. LLM performance var-
ied considerably by task, achieving parity with
humans in some cases and failing to show sensi-
tivity to mental states at all in others. There was
also significant variation in human performance
within and between tasks—with close to base-
line performance on SI E1 and IR—highlighting
the importance of establishing human baselines
to contextualise LLM performance. While previ-
ous work has shown isolated successes (Kosinski,
2023) and failures (Sap et al., 2022; Ullman, 2023)
of LLMs at specific tasks, the breadth of tasks
presented here provide a more systematic basis
for understanding model performance on diverse
aspects of ToM. We make the code, materials,
and human data from EPITOME available to fa-
cilitate further research into differences in ToM
between humans and LLMs.

In some respects, GPT-3 showed striking sen-
sitivity to mental state information. For three of
the tasks (ShS, StS, and IR), GPT-3 accuracy was
not significantly different from the human mean.
For the ShS and StS tasks, this means that GPT-3’s
free-text explanations of characters’ mental states
were rated as equivalent to humans’ by human
evaluators. In others tasks, GPT-3 was sensitive to
mental states, with above chance performance in
RM up to 4 levels of embedding, and significant
effects of knowledge state in FB. This provides
an important demonstration that distributional
information alone is sufficient to generate ap-
proximately humanlike behavior on several tasks
that have been used to measure ToM in humans.

However, other aspects of the current results
suggest crucial differences between human and
LLM performance. First, GPT-3 was insensitive
to knowledge state in the IR task, interpreting
every statement as a request. Second, GPT-3
failed to show effects of speaker knowledge in
SI, although poor human performance indicates
the wording of E1 may be ambiguous. Third,
GPT-3 failed to perform above chance at Recur-
sive Mindreading beyond 5 levels of embedding,
suggesting that distributional information may be
insufficient for more complex mentalizing behav-
ior. However, it’s possible that more or better
distributional data could enable progress on this
task. Finally, across 4 tasks (FB, RM, IR, and SI)
there were residual effects of mental state variables
on human responses after controlling for GPT-3
predictions. In other words, even after accounting
for any variance in human responses that could be
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explained by the distributional language statistics
learned by GPT-3, there was still a significant ef-
fect of mental state variables on human responses.
This indicates that humans are sensitive to mental
state information in a way that is not captured by
the model.

Consistent with the hypothesis that an LLM’s
performance is positively correlated with its size
(Kaplan et al., 2020), we found positive scale-
accuracy relationships for 4 tasks (FB, RM, and
StS, SI E1). However, IR and SI E2 showed flat
or even negative scaling. This could indicate that
models will require information beyond distribu-
tional statistics to achieve human parity.

GPT-3 performed worst on IR and SI, the two
tasks requiring pragmatic inferences from mental
state information. These showed the largest gaps
in accuracy, insensitivity to mental states, and
the flat scaling relationships noted above. Given
existing work showing LLM sensitivity to prag-
matic inference (Hu et al., 2022), this trend could
indicate a specific difficulty for LLMs in making
pragmatic inferences on the basis of mental state
information. These tasks require a complex multi-
step process of sampling, maintaining, and deploy-
ing mental-state information (Trott and Bergen,
2020), increasing the chances of information loss.

These results bear on the origins of mentalizing
abilities in humans. LLMs’ sensitivity to mental
state variables suggests that domain-general learn-
ing mechanisms and exposure to language could
be sufficient to produce ToM-consistent behav-
ior. But LLMs also performed relatively better at
non-mental control questions (in RM and ShS).
This could imply that distributional information is
less useful for predicting human performance in
mentalistic than non-mentalistic tasks, supporting
the view that humans recruit other resources for
mental reasoning specifically.

6.1 Limitations

The current work has several important limita-
tions. First, the tasks were designed to test specific
hypotheses about human comprehenders and may
not be well suited to comparing mentalizing per-
formance of humans and LLMs. The performance
score for the SI tasks, for instance, was not pro-
posed by the original authors and may not reliably
track mentalizing ability. Second, some aspects of
ToM are not measured by the tasks in this inven-
tory, including recognizing intentions, perspective

taking, and inferring emotions from visual cues
(Beaudoin et al., 2020). Third, several tasks re-
quire abilities beyond mentalizing, for instance
knowledge of infrequent words (ShS) and prob-
abilistic reasoning (SI). Fourth, many differences
between LLMs and human comprehenders com-
plicate comparisons between them. In particular,
LLMs are exposed to orders of magnitude more
words than humans in a lifetime (Warstadt and
Bowman, 2022), which undermines claims that
LLM performance indicates the practical viabil-
ity of distributional learning in humans. Fifth,
although we tried to closely align experimental
procedures between LLMs and humans, there are
inevitably differences. For instance, while hu-
mans could not look back at context passages,
transformer-based LLMs can attend to any previ-
ously presented token in their context window. In
many cases, LLMs were exposed to each item in-
dependently, whereas humans completed multiple
items. Sixth, we used attention checks in order to
exclude participants who were not attending to the
experiment, however, this could also artificially
inflate our estimates of human performance. Fi-
nally, some of the datasets contain a relatively
small number of items, and so non-significant ef-
fects of mental state variables could be due to a
lack of power.

6.2 Does the LLM have a Theory of Mind?

Do the results suggest that GPT-3 have ToM-
like abilities? One interpretation argues that these
tasks, which are used to measure mentalizing in
humans, should be equally persuasive for artificial
agents (Hagendorff, 2023; Schwitzgebel, 2013;
Agüera y Arcas, 2022). On this view, LLMs de-
monstrably learn to implicitly represent mental
states to some degree, and we should attribute
ToM-like abilities to them insofar as it helps to
explain their behavior (Dennett, 1978; Sahlgren
and Carlsson, 2021). An alternative view pro-
poses that we should deny a priori that LLMs can
mentalize, due to their lack of grounding and so-
cial interaction (Bender and Koller, 2020; Searle,
1980). On this view, successful LLM performance
undermines the validity of the tasks themselves,
revealing unidentified confounds that allow suc-
cess in the absence of the relevant ability (Niven
and Kao, 2020; Raji et al., 2021). While some
argue these tests can be valid for humans in a
way that they are not for LLMs (Mitchell and
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Krakauer, 2023; Ullman, 2023), it is unclear how
well these arguments apply in an unsupervised,
zero-shot setting, where models are not trained
on specific dataset artifacts. Moreover, growing
evidence suggests that humans are also sensitive
to distributional information (Michaelov et al.,
2022; Schrimpf et al., 2021) and therefore could
be exploiting the same statistical confounds in
materials.

An analogous debate revolves around attribut-
ing ToM to non-human animals on the basis of
behavioral evidence. Chimpanzees produce be-
havior that is consistent with them representing
mental states (Krupenye et al., 2016; Krupenye
and Call, 2019), but can also be explained by
low-level, domain-general mechanisms operat-
ing on observable behavioral regularities (Heyes,
2014; Penn and Povinelli, 2007). One integrative
proposal to resolve this debate is to test behavior
in a wide variety of conditions: If mentalizing ex-
planations predict behavior in diverse situations
they may be more useful than equivalent defla-
tionary accounts (Halina, 2015). The current work
is intended in this vein and presents mixed ev-
idence. While GPT-3 performance is impressive
and humanlike in several ToM tasks, it lags be-
hind humans in others and makes errors that would
be surprising for an agent with a general and ro-
bust theory of mind. Even if GPT-3s don’t appear
to represent mental states of others in a general
sense, continued work along the lines described
here may uncover such developments if and when
they emerge.
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Francesca G. E. Happé. 1994. An advanced test
of theory of mind: Understanding of story char-
acters’ thoughts and feelings by able autistic,
mentally handicapped, and normal children and
adults. Journal of Autism and Developmen-
tal Disorders, 24(2):129–154. https://doi
.org/10.1007/BF02172093, PubMed:
8040158

Paul L. Harris. 2005. Conversation, pretense, and
theory of mind. In Why Language Matters for
Theory of Mind, pages 70–83. Oxford Univer-
sity Press, New York, NY, US. https://doi
.org/10.1093/acprof:oso/9780195159912
.003.0004

Zellig S. Harris. 1954. Distributional structure.
Word, 10(2–3):146–162. https://doi.org
/10.1080/00437956.1954.11659520

Elizabeth O. Hayward and Bruce D. Homer.
2017. Reliability and validity of advanced
theory-of-mind measures in middle childhood
and adolescence. British Journal of Develop-
mental Psychology, 35(3):454–462. https://
doi.org/10.1111/bjdp.12186, PubMed:
28464376

Cecilia Heyes. 2014. Submentalizing: I am not re-
ally reading your mind. Perspectives on Psycho-
logical Science, 9(2):131–143. https://doi
.org/10.1177/1745691613518076, PubMed:
26173251

815

https://doi.org/10.1097/TLD.0000000000000037
https://doi.org/10.1097/TLD.0000000000000037
https://doi.org/10.1017/S0140525X00076664
https://doi.org/10.1017/S0140525X00076664
https://doi.org/10.1109/JIOT.2021.3081556
https://doi.org/10.1109/JIOT.2021.3081556
https://doi.org/10.1371/journal.pone.0081279
https://doi.org/10.1371/journal.pone.0081279
https://pubmed.ncbi.nlm.nih.gov/24244736
https://doi.org/10.1146/annurev-psych-120710-100449
https://doi.org/10.1146/annurev-psych-120710-100449
https://pubmed.ncbi.nlm.nih.gov/21838544
https://doi.org/10.1037/arc0000067
https://pubmed.ncbi.nlm.nih.gov/31938672
https://doi.org/10.1111/tops.12007
https://pubmed.ncbi.nlm.nih.gov/23335578
https://doi.org/10.1163/9789004368811_003
https://doi.org/10.1163/9789004368811_003
https://doi.org/10.1111/1467-7687.00289
https://doi.org/10.1111/1467-7687.00289
https://pubmed.ncbi.nlm.nih.gov/16467908
https://doi.org/10.1086/681627
https://doi.org/10.1086/681627
https://doi.org/10.1007/BF02172093
https://doi.org/10.1007/BF02172093
https://pubmed.ncbi.nlm.nih.gov/8040158
https://doi.org/10.1093/acprof:oso/9780195159912.003.0004
https://doi.org/10.1093/acprof:oso/9780195159912.003.0004
https://doi.org/10.1093/acprof:oso/9780195159912.003.0004
https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1111/bjdp.12186
https://doi.org/10.1111/bjdp.12186
https://pubmed.ncbi.nlm.nih.gov/28464376
https://doi.org/10.1177/1745691613518076
https://doi.org/10.1177/1745691613518076
https://pubmed.ncbi.nlm.nih.gov/26173251


Ari Holtzman, Peter West, Vered Shwartz, Yejin
Choi, and Luke Zettlemoyer. 2022. Surface
Form Competition: Why the Highest Probabil-
ity Answer Isn’t Always Right. https://doi
.org/10.18653/v1/2021.emnlp-main.564

Jennifer Hu, Sammy Floyd, Olessia Jouravlev,
Evelina Fedorenko, and Edward Gibson. 2022.
A fine-grained comparison of pragmatic lan-
guage understanding in humans and language
models.

Claire Hughes, Sara R. Jaffee, Francesca Happé,
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Access Criterion
3 Δbet3 > 0

≤ 2 Δbet3 <= 0

Table 2: Scoring criteria for Scalar
Implicature E1.

A.1 Experiment 1
We check that bets on 3 decrease when access = 3
(scalar implicature) and do not decrease when
access < 2 (implicature cancelled).

A.2 Experiment 2
In Experiment 2, the speaker indicates a specific
number of objects that have a given property.
When access = 3, we expect the speaker to
draw the scalar implicature and decrease bets on
states > n. When access ≤ 2 and n = a, the
scalar implicature is cancelled, so bets on 3 ought
not to decrease. When access = 2 and n = 1,
the speaker can draw the partial implicature that
fewer than 3 objects meet the condition.

B Contamination Analyses

We ran contamination analyses on the 4 pre-
existing datasets to test if the items had appeared

Access N Criterion
3 3 Δbet3 > 0

3 2 Δbet3 < 0

3 1 Δbet3 < 0 and Δbet2 < 0

2 2 Δbet2 > 0 and Δbet3 ≥ 0

2 1 Δbet2 ≥ 0 and Δbet3 < 0

1 1 Δbet2 ≥ 0 and Δbet3 ≥ 0

Table 3: Scoring criteria for Scalar Implicature E2.

in the models’ training set. We used the guided
instruction method from Golchin and Surdeanu
(2023), in which models generate completions for
fragments of dataset items either with or without
a prompt prefix describing the origin of the data.
We measured the similarity of the generated and
reference samples in three ways: using BLEURT
scores (BLEURT-20), ROUGE-L scores, and us-
ing an In-Context Learning appraoch with GPT-4
to near-exact matches. There were no significant
difference between guided and unguided scores
(all p’s > 0.16) and GPT-4 flagged no near-exact
matches in any dataset. The results suggest that
GPT-3 davinci-002’s training data was not con-
taminated with any of the items used here to as-
sess it.
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