
Geographic Adaptation of Pretrained Language Models

Valentin Hofmann1,2,3 Goran Glavaš4 Nikola Ljubešić5,6
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Abstract
While pretrained language models (PLMs)
have been shown to possess a plethora of
linguistic knowledge, the existing body of
research has largely neglected extralinguis-
tic knowledge, which is generally difficult to
obtain by pretraining on text alone. Here, we
contribute to closing this gap by examining
geolinguisticknowledge, i.e., knowledge about
geographic variation in language. We intro-
duce geoadaptation, an intermediate training
step that couples language modeling with
geolocation prediction in a multi-task learn-
ing setup. We geoadapt four PLMs, covering
language groups from three geographic ar-
eas, and evaluate them on five different
tasks: fine-tuned (i.e., supervised) geoloca-
tion prediction, zero-shot (i.e., unsupervised)
geolocation prediction, fine-tuned language
identification, zero-shot language identifi-
cation, and zero-shot prediction of dialect
features. Geoadaptation is very successful
at injecting geolinguistic knowledge into
the PLMs: The geoadapted PLMs consis-
tently outperform PLMs adapted using only
language modeling (by especially wide mar-
gins on zero-shot prediction tasks), and we
obtain new state-of-the-art results on two
benchmarks for geolocation prediction and
language identification. Furthermore, we show
that the effectiveness of geoadaptation stems
from its ability to geographically retrofit the
representation space of the PLMs.

1 Introduction

The default tool for the majority of NLP tasks is
now de facto pretrained language models (PLMs;
Devlin et al., 2019; Liu et al., 2019b; Radford
et al., 2019; Brown et al., 2020; Clark et al.,
2020; Raffel et al., 2020; Chowdhery et al., 2022;
Hoffmann et al., 2022; Touvron et al., 2023, inter
alia), which are trained using language mod-
eling objectives on large text corpora. Despite

the conceptual simplicity of language modeling,
pretraining induces complex forms of linguistic
knowledge in PLMs, at various levels (Rogers
et al., 2020; Mahowald et al., 2023): morpho-
logical (Edmiston, 2020; Hofmann et al., 2020;
Weissweiler et al., 2023), lexical (Ethayarajh,
2019; Vulić et al., 2020), syntactic (Hewitt and
Manning, 2019; Jawahar et al., 2019; Wei et al.,
2021; Weissweiler et al., 2022), and semantic
(Wiedemann et al., 2019; Ettinger, 2020). This
general linguistic knowledge is then (re-)shaped
for concrete tasks via fine-tuning, i.e., supervised
training on task-specific labeled data.

Humans, however, additionally make use of
a rich spectrum of extralinguistic features when
they learn and process language, including gender
(Lass et al., 1979), ethnicity (Trent, 1995), and
geography (Clopper and Pisoni, 2004). Despite
the growing awareness for the importance of such
factors in NLP (Hovy and Yang, 2021), extralin-
guistic features have been typically introduced in
the fine-tuning phase so far, i.e., when specializing
PLMs for a concrete task (e.g., Rosin et al., 2022).
This prevents PLMs from forming generalizable
representations the way humans do, impeding the
exploitation of extralinguistic knowledge for tasks
other than the fine-tuning task itself.

In this work, we focus on geographic knowl-
edge, and more specifically geolinguistic knowl-
edge, i.e., knowledge about geographic variation
in language—the most salient type of extralinguis-
tic variation in language (Wieling and Nerbonne,
2015). We present what we believe to be the
first attempt to incorporate geolinguistic knowl-
edge into PLMs in a pretraining step, i.e., before
task-specific fine-tuning, making it possible to
exploit it in any task for which it is expected
to be useful. Specifically, we conduct an inter-
mediate training step (Glavaš and Vulić, 2021)
in the form of task-agnostic adaptation—dubbed
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geoadaptation—that couples language modeling
with predicting the geographic location (i.e., lon-
gitude and latitude) on geolocated texts. We
choose adaptation as opposed to pretraining from
scratch for three reasons: (i) intermediate train-
ing on language modeling (i.e., adaptation) before
task-specific fine-tuning has proved beneficial for
many NLP tasks (Gururangan et al., 2020), (ii)
adaptation has a lower computational cost than
pretraining (Strubell et al., 2019), and (iii) PLMs
encoding general-purpose linguistic knowledge
are readily available (Wolf et al., 2020).1 The
specific method we introduce for geoadaptation
combines language modeling with token-level
geolocation prediction via multi-task learning,
with task weights based on the homoscedastic
uncertainties of the task losses (Kendall et al.,
2018).

We evaluate our geoadaptation framework
on three groups of closely related languages,
each with a corresponding PLM: (i) the Ger-
man dialects spoken in Austria, Germany,
and Switzerland (AGS) and GermanBERT; (ii)
Bosnian-Croatian-Montenegrin-Serbian (BCMS)
and BERTić; and (iii) Danish, Norwegian, and
Swedish (DNS) and ScandiBERT. These groups
exhibit strong geographic differences, providing
an ideal testbed for geoadaptation.2 We further
test geoadaptation at scale by adapting mBERT, a
multilingual PLM, on the union of AGS, BCMS,
and DNS.

We evaluate the effectiveness of geoadapta-
tion on five downstream tasks expected to benefit
from geolinguistic knowledge: (i) fine-tuned (i.e.,
supervised) geolocation prediction, (ii) zero-shot
(i.e., unsupervised) geolocation prediction, (iii)
fine-tuned language identification, (iv) zero-shot
language identification, and (v) zero-shot predic-
tion of dialect features. Geoadaptation leads to
consistent performance gains compared to base-
line models adapted on the same data using only
language modeling, with particularly striking im-
provements on all zero-shot tasks. On two popular
benchmarks for geolocation prediction and lan-
guage identification, geoadaptation establishes a
new state of the art. Furthermore, we show that

1Notice that for the language areas we consider, there is
currently also not enough geotagged data that would allow
us to geographically pretrain models from scratch.

2Our focus on AGS, BCMS, and DNS also contributes to
the recent call for more work on languages other than English
in NLP (Joshi et al., 2020; Razumovskaia et al., 2022).

geoadaptation geographically retrofits the repre-
sentation space of the PLMs. Overall, we see our
study as an exciting step towards grounding PLMs
in geography.3

2 Related Work

Adaptation of PLMs. Continued language
modeling training (i.e., adaptation) on data
that comes from a similar distribution as the
task-specific target data has been shown to im-
prove the performance of PLMs for many NLP
tasks (Glavaš et al., 2020; Gururangan et al., 2020)
as well as in various language (Pfeiffer et al., 2020;
Parović et al., 2022) and domain adaptation sce-
narios (Chronopoulou et al., 2021; Hung et al.,
2022). Adaptation can be seen as a special case
of intermediate training, which aims at improving
the target-task performance of PLMs by carrying
out additional training between pretraining and
fine-tuning (Phang et al., 2018; Vu et al., 2020;
Glavaš and Vulić, 2021). Intermediate training has
also been conducted in a multi-task fashion, en-
compassing two or more training objectives (Liu
et al., 2019a; Aghajanyan et al., 2021). Our work
differs from these efforts in that it injects ge-
olinguistic knowledge—a type of extralinguistic
knowledge—into PLMs.

Extralinguistic Knowledge. Leaving aside the
large body of work on injecting visual (e.g.,
Bugliarello et al., 2022) and structured knowl-
edge (e.g., Lauscher et al., 2020) into PLMs,
a few studies have examined the interplay of
PLM adaptation and extralinguistic factors (Luu
et al., 2021; Röttger and Pierrehumbert, 2021).
However, they focus on time and adapt PLMs
to individual extralinguistic contexts (i.e., time
points). In contrast, we inject geographic infor-
mation from all contexts into the PLM, forcing
it to learn links between linguistic variability and
a language-external variable—in our case, ge-
ography. This is fundamentally different from
adapting the PLM only to certain realizations of
the language-external variable.

Most other studies introduce the extralinguis-
tic information during task-specific fine-tuning
(Dhingra et al., 2021; Hofmann et al., 2021;
Karpov and Kartashev, 2021; Kulkarni et al.,
2021; Rosin et al., 2022). In contrast, we leverage

3We make our code available at https://github
.com/valentinhofmann/geoadaptation.
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geographic information only in the task-agnostic
adaptation step. In task fine-tuning, the geoad-
apted PLM does not require any extralinguistic
signal and is fine-tuned in the same manner as
standard PLMs.

Geography in NLP. We also build upon the
long line of NLP research on geography, which
roughly falls into two camps. On the one hand,
many studies model geographically conditioned
differences in language, pointing to lexical vari-
ation as the most conspicuous manifestation
(Eisenstein et al., 2010; Eisenstein et al., 2011;
Doyle, 2014; Eisenstein et al., 2014; Huang
et al., 2016; Hovy and Purschke, 2018; Hovy
et al., 2020), although phonological (Hulden et al.,
2011; Blodgett et al., 2016), syntactic (Dunn,
2019; Demszky et al., 2021), and seman-
tic properties (Bamman et al., 2014; Kulkarni
et al., 2016) have been shown to exhibit geo-
graphic variation as well. On the other hand, there
exists a large body of work on predicting geo-
graphic location from text, a task referred to as
geolocation prediction (Rahimi et al., 2015a,b,
2017; Salehi et al., 2017; Rahimi et al., 2018;
Scherrer and Ljubešić, 2020, 2021). To the best of
our knowledge, we are the first to geographically
adapt PLMs in a task-agnostic fashion, making
them more effective for any downstream task for
which geolinguistic knowledge is relevant, from
geolocation prediction to dialect-related tasks and
language identification.

3 Geoadaptation

Let D be a geotagged dataset consisting of
sequences of tokens X = (x1, . . . , xn) and corre-
sponding geotags T = (tlon, tlat), where tlon and
tlat denote the geographic longitude and latitude.
We want to adapt a PLM in such a way that it
encodes the geographically conditioned linguistic
variability in D. Acknowledging the prominence
of lexical variation among geographic differences
in language (see §2), we accomplish this by
combining masked language modeling (i.e., the
pretraining objective) with token-level geoloca-
tion prediction in a multi-task setup that pushes
the PLM to learn associations between linguistic
phenomena and geolocations on the lexical level.4

4In this work, we focus on PLMs pretrained via masked
language modeling. However, geoadaptation can in principle
also be applied to autoregressive PLMs.

Masked Language Modeling. We replace
some tokens xi in X with masked tokens x̃i.
Following Devlin et al. (2019), x̃i can be a special
mask token ([MASK]), a random vocabulary to-
ken, or the original token itself. X is fed into the
PLM, which outputs a sequence of representations
E = (e(x1), . . . , e(xn)). The representations of
the masked tokens e(x̃i) are then fed into a classi-
fication head. We compute the masked language
modeling loss Lmlm as the negative log-likelihood
of the probability assigned to the true token.

Geolocation Prediction. We additionally feed
the vectors of masked tokens e(x̃i) into a
feed-forward regression head that predicts two
real-values: longitude and latitude. The geoloca-
tion prediction lossLgeo is the mean of the absolute
prediction errors for longitude and latitude. Note
that the gold geolocation is the same for all masked
tokens from the same input sequence. We inject
geographic information at the token level because
lexical variation represents the most prominent
type of geographic language variation (see §2).

Composite Multi-task Loss. We experiment
with two different ways to compute the composite
multi-task loss Lmt. First, we straightforwardly
sum the two task-specific losses: Lmt = Lmlm +
Lgeo. In multi-task training, however, a simple sum
of the losses can be a suboptimal choice, especially
if the losses are not of the same order of magni-
tude. In our case, Lmlm and Lgeo are measured on
different scales and relatively small values of Lgeo

may still be multiples of relatively large values of
Lmlm (or vice versa). In a similar vein, the model
might be more confident about one task than about
the other (e.g., associating contextual token rep-
resentations with geolocations may be easier than
language modeling—i.e., predicting the correct
token). To account for both factors, as a second
method we compute the weights with which Lgeo

and Lmlm contribute to the joint loss based on their
homoscedastic (i.e., task-dependent) uncertainties
σmlm and σgeo (Kendall and Gal, 2017). σmlm and
σgeo are learned as part of the model training. The
dynamic weighting ensures that the objectives are
given equal importance with respect to the over-
all optimization. Defining l ∈ {mlm, geo}, we
follow Kendall et al. (2018) and replace Ll with:

L̃l =
1

2σ2
l

Ll + log σl. (1)

413



Figure 1: Geographic distribution of the data for AGS (left), BCMS (middle), and DNS (right). Each point
represents a Jodel post (AGS) or tweet (BCMS, DNS). Point density correlates with population density, with the
densest areas corresponding to urban centers. For DNS, we exclude the Svalbard islands, which do not have any
points.

FT-Geoloc FT-Lang ZS-Dialect

Language Adaptation Train Dev Test ZS-Geoloc Train Dev Test ZS-Lang Phon Lex

AGS 15,000 343,748 31,538 33,953 1,600 45,000 4,500 4,500 – – –
BCMS 80,000 353,953 38,013 4,189 1,400 60,000 6,000 6,000 6,000 640 610
DNS 300,000 150,000 75,000 75,000 3,900 45,000 4,500 4,500 4,500 – –
EUR 50,000 100,000 10,000 10,000 4,500 100,000 10,000 10,000 – – –

Table 1: Data statistics. The table provides the number of Jodel posts (AGS), tweets (BCMS, DNS), or
both (EUR) used for (geo-)adaptation and the five evaluation tasks (FT-Geoloc, ZS-Geoloc, FT-Lang,
ZS-Lang, ZS-Dialect). There is no overlap between the Jodel posts/tweets used for (geo-)adaptation
and the ones used for evaluation. The FT-Geoloc splits for AGS and BCMS are the original VarDial
(Chakravarthi et al., 2021) splits.

Equation 1 holds for both regression (e.g., mean
absolute error as for Lgeo) and classification losses
(e.g., categorical cross-entropy as for Lmlm) and
can be derived from their Bayesian formulations
(Kendall et al., 2018). Notice that L̃l is smoothly
differentiable and well-formed: log σl ensures that
the task weight 1/σ2

l does not converge to zero
(or σ2

l diverges to infinity), which is the trivial
solution to minimizing 1/(2σ2

l )Ll. For numerical
stability, we set ηl = 2 log σl and compute L̃l as:

L̃l =
1

2
(e−ηlLl + ηl). (2)

The final multi-task loss is the sum of the two
uncertainty losses: L̃mt = L̃mlm + L̃geo.

4 Experimental Setup

Models. We examine four PLMs in this paper.
For AGS, we use GermanBERT, a German BERT
(Devlin et al., 2019) model.5 For BCMS, we
use BERTić (Ljubešić and Lauc, 2021), a BCMS

5https://huggingface.co/dbmdz/bert
-base-german-cased.

ELECTRA (Clark et al., 2020) model.6 We specif-
ically use the generator, i.e., a BERT model. For
DNS, we resort to ScandiBERT, an XLM-Roberta
(Conneau et al., 2020) model pretrained on cor-
pora from five Scandinavian languages.7 Since we
are interested to see whether geoadaptation can be
expanded to a larger geographical area (e.g., an
entire continent), we also geoadapt mBERT, a
multilingual BERT (Devlin et al., 2019) model,
on the union of the AGS, BCMS, and DNS areas.8

We refer to this setting as EUR.

Data. We start with a general overview of the
data used for the experiments. Details about data
splits are provided when describing the setup for
geoadaptation as well as the evaluation tasks.
Figure 1 shows the geographic distribution of the
data. Tables 1 and 2 list summary statistics.

6https://huggingface.co/classla/bcms
-bertic.

7https://huggingface.co/vesteinn
/ScandiBERT.

8https://huggingface.co/bert-base
-multilingual-cased.
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FT-Lang

Language Train Dev Test ZS-Lang

BCMS 7,374 963 921 921
DNS 22,796 5,699 1,497 1,497

Table 2: Out-of-domain data statistics. The table
provides the number of news articles (BCMS) and
Wikipedia snippets (DNS) used for out-of-domain
FT-Lang and ZS-Lang. The FT-Lang splits are
the original SETimes (Rupnik et al., 2023) and
NordicDSL (Haas and Derczynski, 2021) splits.

For AGS, we use the German data of the 2021
VarDial shared task on geolocation prediction
(Chakravarthi et al., 2021), which consist of geo-
tagged Jodel posts from the AGS area. We merge
the Austrian/German and Swiss portions of the
data. For BCMS, we use the BCMS data of the
2021 VarDial shared task on geolocation predic-
tion (Chakravarthi et al., 2021), which consist of
geotagged tweets from the BCMS area. To rem-
edy the sparsity of the data for some regions,
we retrieve an additional set of geotagged tweets
from the BCMS area posted between 2008 and
2021 using the Twitter API, ensuring that there
is no overlap with the VarDial data. For eval-
uation, we additionally draw upon SETimes, a
news dataset for discriminating between Bosnian,
Croatian, and Serbian (Rupnik et al., 2023). For
DNS, we use geotagged tweets from the Nordic
Tweet Stream (Laitinen et al., 2018), confining
geotags to the DNS area.9 For evaluation, we ad-
ditionally use the DNS portion of NordicDSL, a
dataset of Wikipedia snippets for discriminating
between Nordic languages (Haas and Derczynski,
2021). For EUR, we mix the AGS, BCMS, and
DNS data.

Geoadaptation. For AGS, we create a balanced
subset of the VarDial train posts (5,000 per coun-
try).10 For BCMS, we draw upon the union of the
VarDial train posts and the newly collected posts
to create a balanced subset (20,000 per country).
For DNS, we similarly create a balanced subset
of the posts (100,000 per country). For EUR, we
sample balanced subsets of the AGS, BCMS, and

9For the sake of simplicity, in the following we will refer
to both Jodel posts and tweets as posts.

10In preliminary experiments, we found that geographi-
cally balanced sampling is beneficial for geoadaptation.

DNS geoadaptation data (5,000 per country). Us-
ing these four datasets, we adapt the PLMs via the
proposed multi-task learning approach (see §3).
We geoadapt the PLMs for 25 epochs and save
the model snaphots after each epoch. To track
progress, we measure perplexity and token-level
median distance on the VarDial development sets
for AGS and BCMS, a separate set of 75,000 posts
for DNS, and a separate set of 10,000 posts for
EUR.

Evaluation Tasks. Inspired by existing NLP
research on geography (see §2), we evaluate the
geoadapted PLMs on five tasks that probe differ-
ent aspects of the learned associations between
linguistic phenomena and geography.

Fine-tuned Geolocation Prediction (FT-Geoloc).
We fine-tune the geoadapted PLMs for geolo-
cation prediction. For AGS and BCMS, we use
the train, dev, and test splits from VarDial. For
DNS, we create separate sets of train, dev, and
test posts; we do the same for EUR, drawing train,
dev, and test posts from the union of the AGS,
BCMS, and DNS data (see Table 1). We make
sure that there is no overlap between the geoad-
aptation posts and dev and test posts of any of
the downstream evaluation tasks. Following prior
work by Scherrer and Ljubešić (2021), we cast
geolocation prediction as a multi-class classifica-
tion task: We first map all geolocations in the
train sets into k clusters using k-means and assign
each geotagged post to its closest cluster.11 Con-
cretely, we pass the contextualized vector of the
[CLS] token to a single-layer softmax classifier
that outputs probability distributions over the k
geographic clusters.

In line with prior work, we use the median
of the Euclidean distance between the predicted
and true geolocation as the evaluation metric.
Note that FT-Geoloc is different from geolocation
prediction in geoadaptation (see §3): there, we
(i) cast geolocation prediction as a regression
task (i.e., predict the exact longitude and latitude)
and (ii) predict the geolocation from the masked
tokens, rather than the representation of the whole
post.

Zero-shot Geolocation Prediction (ZS-Geoloc).
Given the central objective of geoadaptation (i.e.,

11We standardize longitude and latitude values and use
the Euclidean distance as the clustering metric. Following
Scherrer and Ljubešić (2021), we choose k = 75.
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to induce mappings between linguistic variation
and geography), we next test if the geoadapted
models can predict geographic information from
text without any fine-tuning. To this end, we
directly probe the PLMs for geolinguistic associa-
tions: With the help of prompts, we ask the PLMs
to generate the correct toponym corresponding to a
post’s geolocation using their language modeling
head, which has not been trained on geolocation
prediction in any way (see §3). We do this on the
most fine-grained geographic resolution possible,
i.e., cities for BCMS/DNS and states for AGS.12

For EUR, we draw upon the union of AGS, BCMS,
and DNS, resulting in a mix of cities and states.

To create the data for ZS-Geoloc, we start
by reverse-geocoding all posts and then select
cities/states that contain at least 100 posts and
have names existing in the PLM vocabulary. We
randomly sample 100 posts from each of these
cities/states (AGS: Bayern, Bern, Brandenburg,
Bremen, Hessen, Kärnten, Luzern, Niedersachsen,
Oberösterreich, Saarland, Sachsen, Salzburg,
Steiermark, Thüringen, Tirol, Zürich; BCMS:
Bar, Beograd, Bor, Dubrovnik, Kragujevac, Niš,
Podgorica, Pula, Rijeka, Sarajevo, Split, Tuzla,
Zagreb, Zenica; DNS: Aalborg, Aarhus, Arendal,
Bergen, Drammen, Fredrikstad, Göteborg, Halm-
stad, Haugesund, Helsingborg, Kalmar, Karl-
stad, Kristiansand, København, Linköping, Luleå,
Lund, Moss, Nora, Norrköping, Odense, Oslo,
Porsgrunn, Roskilde, Sala, Sandefjord, Sarps-
borg, Skien, Stavanger, Stockholm, Södertälje,
Tromsø, Trondheim, Tønsberg, Uddevalla, Umeå,
Uppsala, Ålesund, Örebro; EUR: 45 underlined
cities/states above, which are in the mBERT
vocabulary).

For zero-shot prediction, we append prompts
with the meaning ‘This is [MASK]’ to the post
(AGS: Das ist [MASK]; BCMS: To je [MASK];
DNS: Dette er [MASK]).13 For EUR, we just ap-
pend [MASK] to the post. We pass the whole
sequence to the PLM and forward the output
representation of the [MASK] token into the lan-
guage modeling head. Following common practice
(Xiong et al., 2020), we restrict the output vocab-
ulary to the set of candidate labels, i.e., we select
the city or state name with the highest logit. We
measure the performance in terms of accuracy.

12Most posts in the AGS data come from rural areas.
13We experimented with other prompts (e.g., ‘This is in

[MASK]’) and obtained similar results.

Fine-tuned Language Identification (FT-Lang).
Next, we consider language identification, a task
of great importance for many applications that
is particularly challenging in the case of closely
related languages (Zampieri et al., 2014; Haas and
Derczynski, 2021). While arguably less directly
tied to geography than geolocation prediction, we
believe that language identification should also
benefit from geoadaptation since one or (in the
case of multilingual communities) few languages
are used at any given location—having knowledge
about geolinguistic variation should thus make it
easier to distinguish different languages.

We start by fine-tuning the PLMs for language
identification. For AGS, BCMS, and DNS, we
reuse the respective FT-Geoloc datasets and sam-
ple 15,000 train, 1,500 dev, and 1,500 test posts per
language (determined based on their geolocation).
For EUR, we reuse the exact FT-Geoloc train, dev,
and test split. To test how well the effects of geoad-
aptation generalize to out-of-domain data, we also
fine-tune BERTić on SETimes (i.e., news articles)
and ScandiBERT on NordicDSL (i.e., Wikipedia
snippets). In terms of modeling, we formulate
language identification as a multi-class classifica-
tion task, with three classes for AGS/DNS, four
classes for BCMS, and 10 classes for EUR. We
again pass the contextualized vector of the [CLS]
token to a single-layer softmax classifier that out-
puts probability distributions over the languages.
We measure the performance in terms of accuracy.

Zero-shot Language Identification (ZS-Lang).
Similarly to geolocation prediction, we are in-
terested to see how well the geoadapted PLMs
can identify the language of a text without
fine-tuning. We reuse the FT-Lang test sets for
this task. The setup follows ZS-Geoloc, i.e.,
we append the same prompts to the posts, pass
the full sequences through the PLMs, and feed
the output representations of the [MASK] to-
ken into the language modeling head. However,
instead of city/state names, we now consider lan-
guage names, specifically, bosanski (‘Bosnian’),
crnogorski (‘Montenegrin’), hrvatski (‘Croatian’),
and srpski (‘Serbian’) in the case of BCMS, and
dansk (‘Danish’), norsk (‘Norwegian’), and svensk
(‘Swedish’) in the case of DNS.14 We select the

14We do not conduct ZS-Lang for AGS and EUR since the
names of the German dialects (e.g., Schweizerdeutsch) are
not in the GermanBERT and mBERT vocabularies.
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language name with the highest logit and measure
the performance in terms of accuracy.

Zero-shot Dialect Feature Prediction (ZS-Dialect).
The fifth evaluation tests whether geoadapta-
tion increases the PLMs’ awareness of dialectal
variation. We only conduct this task for BCMS,
which exhibits many well-documented dialec-
tal variants that exist as tokens in the BERTić
vocabulary.

We consider two subtasks. In the first subtask
(Phon), we test whether BERTić can select the
correct variant for a phonological variable, specif-
ically the reflex of the Old Slavic vowel ě. This
feature exhibits geographic variation in BCMS: In
the (north-)west, the reflexes ije and je are pre-
dominately used, whereas the (south-)east mostly
uses e (Ljubešić et al., 2018), e.g., lijepo vs. lepo
(‘nice’). Drawing upon words for which both ije/je
and e variants exist in the BERTić vocabulary, we
filter out words that appear in fewer than 10
posts in the merged VarDial dev and test data,
resulting in a set of 64 words (i.e., 32 pairs). Sub-
sequently, we randomly sample 10 posts for each
of the words. For the second subtask (Lex), we
evaluate the recognition of lexical variation that
is not tied to a phonological feature (Alexander,
2006), e.g., porodica vs. obitelj (‘family’). Based
on a Croatian-Serbian comparative dictionary,15

we select all pairs for which both words are in
the BERTić vocabulary. We remove words that
occur in fewer than 10 VarDial dev and test posts
and sample 10 posts for each of the remaining 61
words.

For prediction, we mask out the phonologi-
cal/lexical variant and follow the same approach
as for ZS-Geoloc and ZS-Lang, with the differ-
ence that we restrict the vocabulary to the two
relevant variants (e.g., porodica vs. obitelj). We
measure the performance in terms of accuracy.

Model Variants. We evaluate the two geoad-
aptation variants, minimizing the simple sum of
Lmlm and Lgeo (GeoAda-S) and the weighted sum
based on homoscedastic uncertainty (GeoAda-W).
To quantify the effects of geoadaptation compared
to standard adaptation, we adapt the PLMs on the
same data using only Lmlm as the primary base-
line (MLMAda), i.e., the MLMAda models are

15https://hr.wiktionary.org/wiki/Razlikovnirje
%C4%8Dnikhrvatskogjezikaisrpskogjezika.

adapted on the exact same text data as GeoAda-S
and GeoAda-W, but using continued language
modeling training without geolocation predic-
tion. Where possible (i.e., BCMS FT-Geoloc
and out-of-domain BCMS FT-Lang), we compare
against the current state-of-the-art (SotA) per-
formances (Scherrer and Ljubešić, 2021; Rupnik
et al., 2023)—BERTić fine-tuned on the train data.
On the zero-shot tasks, we also report random
performance (Rand).

Language identification is a task that is not
typically addressed using PLMs. Instead, most
state-of-the-art systems are less expensive mod-
els trained on character n-grams (Zampieri et al.,
2017; Haas and Derczynski, 2021; Rupnik et al.,
2023). To get a sense of whether PLMs in general
and geoadapted PLMs in particular are competi-
tive with such custom-built systems, we evaluate
GlotLID (Kargaran et al., 2023), a strong language
identification tool based on FastText (Bojanowski
et al., 2017; Joulin et al., 2017), on FT-Lang.
Since GlotLID was not specifically trained on the
domains examined in FT-Lang, we also train new
FastText models on the data used to fine-tune the
PLMs.

Hyperparameters. For geoadaptation, we use a
batch size of 32 (16 for mBERT) and perform grid
search for the learning rate r ∈ {1 × 10−5, 3 ×
10−5, 1 × 10−4}. We always geoadapt the PLMs
for 25 epochs. For FT-Geoloc, we use a batch size
of 32 (16 for mBERT) and perform grid search
for the number of epochs n ∈ {1, . . . , 10} and the
learning rate r ∈ {1× 10−5, 3× 10−5, 1× 10−4}.
For FT-Lang, we use a batch size of 32 (16 for
mBERT) and perform grid search for the number
of epochs n ∈ {1, . . . , 5} and the learning rate
r ∈ {1× 10−5, 3× 10−5, 1× 10−4}. For all train-
ing settings (geoadaptation, FT-Geoloc, FT-Lang)
we tune r for MLMAda only and use the best con-
figuration for GeoAda-W and GeoAda-S. This
means that the overall number of hyperparame-
ter trials is three times larger for MLMAda than
GeoAda-W and GeoAda-S, i.e., we are giving
a substantial advantage to the models that serve
as a baseline. We use Adam (Kingma and Ba,
2015) as the optimizer. All experiments are per-
formed on a GeForce GTX 1080 Ti GPU (11GB).
For the FastText models trained on FT-Lang,
we perform grid search for the number of epochs
n ∈ {5, 10, 15, 20, 25}, the minimum length of in-
cluded character n-grams lmin ∈ {1, 2, 3}, and the
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FT-Geoloc ↓

AGS BCMS DNS EUR ZS-Geoloc ↑

Method Dev Test Dev Test Dev Test Dev Test AGS BCMS DNS EUR

SotA / Rand — — ?30.11 ?15.49 — — — — ‡.071 ‡.070 ‡.026 ‡.021
MLMAda ‡193.51 ‡196.18 ‡29.36 ‡16.72 ‡101.15 ‡101.15 ‡107.20 ‡107.41 ‡.142 ‡.144 ‡.106 ‡.108

GeoAda-S †190.21 193.18 †26.02 †13.98 †98.82 †97.63 †98.00 †101.76 .192 †.287 †.135 †.159
GeoAda-W 189.06 †194.85 23.90 12.13 95.80 97.06 97.18 97.18 .193 .319 .149 .191

Table 3: Results on fine-tuned geolocation prediction (FT-Geoloc) and zero-shot geolocation prediction
(ZS-Geoloc). Measure for FT-Geoloc: median distance (in km); measure for ZS-Geoloc: prediction
accuracy. For FT-Geoloc and BCMS, the first row shows the current state-of-the-art performance
(Scherrer and Ljubešić, 2021). For ZS-Geoloc, the first row shows random performance. Bold: best
score in each column; underline: second best score. We highlight scores that are significantly (p < .05)
worse than the best score with a † and scores that are significantly (p < .05) worse than the two best
scores with a ‡. We indicate with a ? scores for which we cannot test for statistical significance since we
do not have access to the distribution of output predictions.

maximum length of included character n-grams
lmax ∈ {4, 5, 6}.

5 Results and Analysis

Tables 3, 5, 6, and 7 compare the performance
of the geoadapted PLMs against the baselines.
To test for statistical significance of the per-
formance differences, we use paired, two-sided
Student’s t-tests in the case of FT-Geoloc and
McNemar’s tests for binary data (McNemar, 1947)
in the case of ZS-Geoloc, FT-Lang, ZS-Lang, and
ZS-Dialect, as recommended by Dror et al. (2018).
We correct the resulting p-values for each evalu-
ation using the Holm-Bonferroni method (Holm,
1979).

Overall, the geoadapted models consistently
and substantially outperform the baselines—out of
the 30 main evaluations, it is always one of the two
geoadapted models that achieves the best score, a
result that is highly unlikely to occur by chance if
there is no underlying performance difference be-
tween the geoadapted and non-geoadapted mod-
els.16 Furthermore, in the two cases where we can
directly compare to a prior state of the art, one
or both geoadapted models outperform it. These
findings strongly suggest that geoadaptation suc-
cessfully induces associations between language
variation and geographic location.

16Assuming equal underlying performance for MLMAda,
GeoAda-S, and GeoAda-W (and ignoring other baselines),
the probability for this result is p = (2/3)30 < 10−5.

Fine-tuned Geolocation Prediction. PLMs geo-
adapted with uncertainty weighting (GeoAda-W)
predict the geolocation most precisely (see
Table 3). On BCMS, GeoAda-W improves the
previous state of the art—achieved by a directly
fine-tuned BERTić model—by 3.3 km on test and
by over 6 km on dev. On EUR (arguably the most
challenging setting), GeoAda-W improves upon
MLMAda (i.e., a model adapted without geo-
graphic signal) by more than 10 km on both dev
and test. MLMAda always performs worse than
the two geoadapted models, despite the fact that
task-specific fine-tuning likely compensates for
some of the geographic knowledge GeoAda-W
and GeoAda-S obtain in geoadaptation. This
shows that geoadaptation drives the performance
improvements, and that language modeling adap-
tation alone does not suffice. Loss weighting based
on homoscedastic uncertainties seems beneficial
for FT-Geoloc: While GeoAda-S already outper-
forms the baselines, GeoAda-W in seven out of
eight cases brings further significant gains. We
also observe that all models reach peak perfor-
mance in the first few fine-tuning epochs (not
shown), and that geoadaptation is useful even
when the geoadaptation data are a subset of the
fine-tuning data (as is the case for AGS). This
confirms that the performance gains come from
the geoadaptation and are not merely the result of
longer training on geolocation prediction.

Zero-shot Geolocation Prediction. In this task,
the PLMs have to predict the token of the correct
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Figure 2: Confusion matrices for MLMAda (a), GeoAda-S (b), and GeoAda-W (c) on ZS-Geoloc (BCMS).
While MLMAda always predicts one of the three most frequent city tokens (Beograd, Sarajevo, or Zagreb), the
predictions of GeoAda-S and GeoAda-W are much more diverse and less tied to frequency.

toponym (i.e., city or state). Notice that the PLMs
receive information about exact geolocations
during geoadaptation and do not leverage to-
ponym tokens in any direct way. ZS-Geoloc is
thus an ideal litmus test as it shows how well
the link between language variation and geogra-
phy, injected into the PLMs via geoadaptation,
generalizes. The results (see Table 3) strongly
suggest that geoadaptation leads to such gener-
alization: Both geoadapted model variants bring
massive and statistically significant gains in pre-
diction accuracy over MLMAda (e.g., GeoAda-W
vs. MLMAda: +17.5% on BCMS, +8.3% on
EUR). As on FT-Geoloc, uncertainty weight-
ing (GeoAda-W) overall outperforms simple loss
summation (GeoAda-S).

Figure 2 shows the confusion matrices for the
three methods on BCMS, offering further insights.
MLMAda assigns most posts from a country to
the corresponding capital (e.g., posts from Croa-
tian cities to Zagreb). These tokens are the most
frequent ones out of all considered cities, which
seems to heavily affect MLMAda. In contrast, pre-
dictions of GeoAda-S and GeoAda-W are much
more nuanced, i.e., more diverse and less tied to
the frequency of the toponym tokens: The geoad-
apted models are not only able to correctly assign
posts from smaller, less frequently mentioned
cities (e.g., Dubrovnik, Zenica), but their errors
also reflect regional linguistic consistency and
geographic proximity. For example, GeoAda-S
predicts Rijeka as the origin of many Pula posts,
and Bar as the origin of many Dubrovnik posts;
similarly, GeoAda-W assigns posts from Split to
Dubrovnik and posts from Bar to Podgorica.17

17Note that Bar and Dubrovnik are not in the same country.

One common method to alleviate the impact of
different prior probabilities in the zero-shot set-
ting (a potential reason for the bad performance
of MLMAda) is to calibrate the PLM predictions
(Holtzman et al., 2021; Zhao et al., 2021). Fol-
lowing Zhao et al. (2021), we measure the prior
probabilities of all toponym tokens using a neu-
tral prompt (specifically, ‘This is [MASK]’ for
AGS/BCMS/DNS and a [MASK] token for EUR)
and repeat the ZS-Geoloc evaluation, dividing
the output probabilities by the prior probabilities
(Table 4). We find that all models (both geoad-
apted and non-geoadapted) improve as a result of
calibration, i.e., the output probabilities seem to be
miscalibrated if not specifically adjusted by means
of the prior probabilities. However, refuting the
hypothesis that miscalibration causes the inferior
performance of MLMAda, the average gain due
to calibration is larger for the geoadapted models
(GeoAda-S: +4.8%, GeoAda-W: +3.0%) than for
the non-geoadapted models (MLMAda: +1.9%).
This suggests that a miscalibration of the toponym
probabilities—rather than disproportionately af-
fecting the non-geoadapted models—generally
impairs the geolinguistic capabilities of a PLM.
The consequences of such an impairment seem to
be the more detrimental the more profound the
underlying geolinguistic knowledge.

Taken together, these observations indicate
that GeoAda-S and GeoAda-W possess detailed
knowledge of geographic variation in language.
Since geoadaptation provides no supervision in
the form of toponym names, this implies an
impressive generalization, i.e., the association
of linguistic constructs to toponyms, with ge-
olocations (specifically, scalar longitude-latitude
pairs) as the intermediary signal driving the
generalization.
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ZS-Geoloc ↑
Method AGS BCMS DNS EUR

MLMAda ‡.156 ↑.014 ‡.150 ↑.006 ‡∗.131 ↑.025 ‡∗.139 ↑.031

GeoAda-S ∗.229 ↑.036 ∗.386 ↑.099 .147 ↑.012 †∗.195 ↑.036

GeoAda-W ∗.229 ↑.036 ∗.373 ↑.054 .152 ↑.003 ∗.219 ↑.028

Table 4: Results on zero-shot geolocation prediction (ZS-Geoloc) with calibration (Zhao et al., 2021).
Measure: prediction accuracy. Besides the results, we give the changes compared to vanilla ZS-Geoloc
and indicate with a ∗ if they are significant (p < .05). See Table 3 for an explanation of the other
symbols used in the table.

FT-Lang ↑
AGS BCMS DNS EUR ZS-Lang ↑

Method Dev Test Dev Test Dev Test Dev Test BCMS DNS

Rand – – – – – – – – ‡.245 ‡.339
GlotLID – – ‡.323 ‡.316 ‡.927 ‡.931 – – – –
FastText ‡.843 ‡.840 ‡.598 ‡.588 ‡.948 ‡.959 ‡.757 ‡.762 – –
MLMAda .851 .855 ‡.693 ‡.694 ‡.964 ‡.966 ‡.776 ‡.777 ‡.417 ‡.885

GeoAda-S .861 .856 .734 .726 .972 .975 .789 †.786 .553 †.896
GeoAda-W .861 .858 .743 .734 .973 .976 .792 .796 †.543 .927

Table 5: Results on fine-tuned language identification (FT-Lang) and zero-shot language identification
(ZS-Lang). Measure: Prediction accuracy. See Table 3 for an explanation of the symbols used in the
table.

Fine-tuned Language Identification. The
geoadapted PLMs are best at identifying the
language in which a text is written: Both
GeoAda-S and GeoAda-W consistently show a
higher accuracy than MLMAda (e.g., GeoAda-W
vs. MLMAda: +5% on BCMS dev, +1.9% on
EUR test), and the difference in performance is
statistically significant in six out of eight cases
(see Table 5). As opposed to the two geolocation
tasks where uncertainty weighting (GeoAda-W)
clearly leads to better results than summing
the losses (GeoAda-S), the difference is less
pronounced for FT-Lang and significant only in
one case (EUR test), even though GeoAda-W
numerically outperforms GeoAda-S overall.
Compared to the language identification models
operating on the level of character n-grams
(GlotLID, FastText), geoadaptation always brings
statistically significant performance gains. Even
MLMAda outperforms GlotLID and FastText
in all cases, indicating that PLMs are generally
competitive with more traditional systems on
this task. We further notice that the relative
disadvantage is particularly pronounced for

GlotLID on BCMS. Upon inspection, we find
that GlotLID’s inferior performance on BCMS
is due to the fact that it predicts more than 80%
of the examples as Croatian. This imbalance can
be explained as a result of the domain difference
between GlotLID’s training data and the FT-Lang
evaluation data: While GlotLID was mostly
trained on formal texts such as Wikipedia articles
and government documents (Kargaran et al.,
2023), we test it on data from Twitter. Crucially,
while Croatian is the only BCMS language that
consistently uses Latin script in formal contexts,
with Cyrillic script being preferred especially in
Serbian, Latin script is everywhere much more
common on social media, even in Serbia (George,
2019). GlotLID seems to be heavily affected by
this script mismatch and is only very rarely able
to correctly predict the language of non-Croatian
posts written in Latin script.

These trends are also reflected by the re-
sults on the out-of-domain language identification
benchmarks: Geoadaptation always outperforms
adaptation based on language modeling alone as
well as models operating on the level of character
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FT-Lang ↑

BCMS DNS ZS-Lang ↑

Method Dev Test Dev Test BCMS DNS

SotA / Rand – ?.995 – – ‡.311 ‡.351
GlotLID ‡.692 ‡.697 ‡.932 ‡.931 – –
FastText .992 †.983 ‡.957 ‡.949 – –
MLMAda .992 .992 .962 †.957 ‡.604 †.822

GeoAda-S .993 .995 .964 .962 .640 †.826
GeoAda-W .994 .997 .964 .961 †.631 .875

Table 6: Results on out-of-domain fine-tuned
language identification (FT-Lang) and zero-shot
language identification (ZS-Lang). Measure for
FT-Lang and BCMS: macro-average F1-score (for
comparability); measure elsewhere: prediction ac-
curacy. For FT-Lang and BCMS, the first row
shows the current state-of-the-art performance
(Rupnik et al., 2023). For ZS-Lang, the first row
shows random performance. See Table 3 for an
explanation of the symbols used in the table.

n-gram (see Table 6). On the SETimes benchmark
(BCMS), GeoAda-W further establishes a new
state of the art, almost halving the error rate from
0.5% to 0.3%. Similarly to in-domain FT-Lang,
the two geoadaptation variants perform similarly.
GlotLID again predicts many non-Croatian ex-
amples in Latin script as Croatian, leading to a
substantially worse performance on BCMS.

The superior performance of the geoadapted
models in language identification—a task that is
distinct from geolocation prediction and not typ-
ically addressed by means of PLMs—suggests
that the geolinguistic knowledge acquired during
geoadaptation is highly generalizable, making it
beneficial for a broader set of tasks with a con-
nection to geography, and not only the task used
as an auxiliary objective for geoadaptation itself.

Zero-shot Language Identification. Here, the
PLMs have to predict the token corresponding
to the language in which a text is written, e.g.,
hrvatski (‘Croatian’). This task requires general-
ization on two levels: First (similarly to FT-Lang),
the PLMs have not been trained on language iden-
tification and are thus required to draw upon the
geolinguistic knowledge they have formed during
geoadaptation; second (similarly to ZS-Geoloc),
the geolinguistic knowledge has not been pro-
vided to them in a form that would make it
readily usable in a zero-shot setting—recall that
the geographic information is presented in the

ZS-Dialect ↑
Method Phon Lex

Rand ‡.501 ‡.499
MLMAda ‡.784 ‡.872

GeoAda-S .870 .910
GeoAda-W .858 .913

Table 7: Results on zero-shot dialect feature pre-
diction (ZS-Dialect), which is only conducted
for BCMS. Measure: prediction accuracy. See
Table 3 for an explanation of the symbols used in
the table.

form of longitude-latitude pairs (i.e., two scalars),
whereas the language modeling head (which is
used for the zero-shot predictions) is not trained
differently than for vanilla adaptation (MLMAda).
Despite these challenges, we find that geoadap-
tation substantially improves the performance of
the PLMs on ZS-Lang (see Tables 5 and 6).
The fact that the performance gains are equally
pronounced on in-domain (e.g., GeoAda-W vs.
MLMAda: +4.2% on DNS) and out-of-domain
examples (e.g., GeoAda-W vs. MLMAda: +5.3%
on DNS) highlights again that geoadaptation en-
dows PLMs with knowledge that allows for a high
degree of generalization.

Zero-shot Dialect Feature Prediction. The re-
sults on ZS-Dialect—phonological (Phon) and
lexical (Lex)—generally follow the trends from
the other four tasks (see Table 7): The geoadapted
PLMs clearly (and statistically significantly) out-
perform MLMAda, albeit with overall narrower
margins than in most other zero-shot tasks for
BCMS (e.g., GeoAda-S vs. MLMAda: +8.6% on
Phon, GeoAda-W vs. MLMAda: +4.1% on Lex).
MLMAda is expectedly more competitive here:
Selecting the word variant that better fits into the
linguistic context is essentially a language model-
ing task, for which additional language modeling
training intuitively helps. For example, typical fu-
ture tense constructions in Serbian vs. Croatian
(ja ću da okupim vs. ja ću okupiti, ‘I’ll gather’)
have strong selectional preferences on subsequent
lexical units (Alexander, 2006; e.g., porodicu vs.
obitelj for ‘family’).

We further verify this by comparing the
zero-shot performance on BCMS for different
model checkpoints obtained during training. The
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Figure 3: Performance on BCMS ZS-Geoloc (a), ZS-Lang (b), and ZS-Dialect (c, d) for different number
of epochs. In stark contrast to geoadaptation (GeoAda-S, GeoAda-W), language modeling adaptation alone
(MLMAda) barely helps in acquiring geographic knowledge (a), which is also reflected by the consistently worse
performance on ZS-Lang (b). MLMAda does form dialectal associations after several epochs, but the inductive
bias of geoadaptation allows GeoAda-S and GeoAda-W to establish those associations more quickly (c, d).

Figure 4: (Geo-)adaptation diagnostics. The figure il-
lustrates how log perplexity of language modeling
(a) and median distance of token-level geoloca-
tion prediction (b) change on dev during BCMS
geoadaptation.

performance curves over 25 (geo-)adaptation
epochs, shown in Figure 3, confirm our hypothesis
that longer language modeling adaptation substan-
tially improves the performance of MLMAda on
predicting dialect features, but its benefits for ge-
olocation prediction and language identification
remain limited. While prolonged language mod-
eling adaptation allows MLMAda to eventually
learn the dialectal associations, the inductive bias
of the knowledge injected via geoadaptation al-
lows GeoAda-S and GeoAda-W to reach high
performance much sooner, after merely two to
three epochs.

EffectsofLossWeighting. Thedynamic weight-
ing of Lmlm and Lgeo (i.e., GeoAda-W) clearly
outperforms the simple summation of the losses
(i.e., GeoAda-S) on the geolocation prediction
tasks (FT-Geoloc, ZS-Geoloc), but the difference
between the two geoadaptation variants is less pro-
nounced for FT-Lang, ZS-Lang, and ZS-Dialect.
While geographic knowledge is beneficial for all
five tasks, geolocation prediction arguably de-
mands a more direct exploitation of that knowl-
edge. Comparing the model variants in terms of
the two task losses, we observe that GeoAda-S
reaches lower Lmlm levels, whereas GeoAda-W

ends with lower Lgeo levels (see Figure 4 for
the example of BCMS), which would explain
the differences in their performance. We in-
spect GeoAda-W’s task uncertainty weights af-
ter geoadaptation and observe ηmlm = 0.29 and
ηgeo = −0.35 for AGS, ηmlm = 1.12 and ηgeo =
−1.22 for BCMS, ηmlm = 0.84 and ηgeo = −1.23
for DNS, and ηmlm = 0.90 and ηgeo = −1.95
for EUR. Thus, GeoAda-W consistently assigns
more importance to Lgeo.18 The fact that the
divergence of the task uncertainty weights is
smallest for AGS explains why the difference be-
tween GeoAda-S and GeoAda-W on FT-Geoloc/
ZS-Geoloc is least pronounced for that language
group.

Sequence-level Geoadaptation. The decision
to inject geographical information at the level
of tokens was motivated by the central impor-
tance of the lexicon for geographically condi-
tioned linguistic variability (see §2). A plausible
alternative—one less tied to lexical variation
alone—is to geoadapt the PLMs by predicting the
geolocation from the representation of the whole
input text, i.e., to feed the contextualized repre-
sentation of the [CLS] token to the regressor that
predicts longitude and latitude. For comparison,
we evaluate this variant too (GeoAda-Seq) and
compare it against the best token-level geoad-
apted model (GeoAda-Tok; e.g., GeoAda-W for
BCMS FT-Geoloc) on all PLMs and tasks. For
reasons of space, we only present BCMS here, but
the overall trends for AGS, DNS, and EUR are
very similar.

Sequence-level geoadaptation trails token-level
geoadaptation on all tasks except for fine-tuned
geolocation prediction (see Table 8). In general,
while the difference is small for the fine-tuned

18Because L̃l ∝ −ηl (see Equation 2), the smaller the
value of ηl, the larger the emphasis on task l.
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FT-Geoloc ↓ FT-Lang ↑ ZS-Dialect ↑
Model Dev Test ZS-Geoloc ↑ Dev Test ZS-Lang ↑ Phon Lex

GeoAda-Seq †27.35 12.13 †.188 .737 .730 †.542 †.844 †.885
GeoAda-Tok 23.90 12.13 .319 .743 .734 .553 .870 .913

Table 8: Comparison between sequence-level geoadaptation (GeoAda-Seq) and token-level geoadapta-
tion (GeoAda-Tok) for BCMS. GeoAda-Tok stands for the better-performing model between GeoAda-S
and GeoAda-W on each task (see Tables 3, 5, and 7). See Table 3 for an explanation of the symbols
used in the table.

tasks, it is large (and always significant) for
the zero-shot tasks—for example, GeoAda-Seq
performs only slightly better than MLMAda on
ZS-Geoloc (see Table 3). This suggests that in-
jecting geographic information on the level of
tokens allows the PLMs to acquire more nuanced
geolinguistic knowledge. Nonetheless, sequence-
level geoadaptation still outperforms the non-
geoadapted baselines.

Geoadaptation as Geographic Retrofitting.
Even though it makes intuitive sense that minimiz-
ing Lgeo improves the geolinguistic knowledge of
PLMs, we want to determine the exact mechanism
by which it does so. Based on the results described
so far, we make the following hypothesis: Geoad-
aptation changes the representation space of the
PLMs in such a way that tokens indicative of a
certain location are brought close to each other,
i.e., it has the effect of geographic retrofitting
(Hovy and Purschke, 2018). We examine this hy-
pothesis by analyzing (i) how the representations
of toponyms and lexical variants change in rela-
tion to each other, and (ii) how the representations
of toponyms change internally. We examine the
PLM output embeddings (which directly impact
the zero-shot predictions) and focus on BCMS.

For the first question, we use the geoadapta-
tion data to compute type-level embeddings for
the five largest Croatian (Zagreb, Split, Rijeka,
Osijek, Zadar) and Serbian (Beograd, Niš, Kragu-
jevac, Subotica, Pančevo) cities as well as the ije/e
variants used for ZS-Dialect. Following estab-
lished practice (e.g., Vulić et al., 2020; Litschko
et al., 2022), we obtain type-level vectors for
words (i.e., city name or phonological variant)
by averaging the contextualized output represen-
tations of their token occurrences. We then resort
to WEAT (Caliskan et al., 2017), a measure that
quantifies the difference in association strength
between a word (in our case, a city name) and

Figure 5: Association strength between the BERTić
embeddings of Croatian/Serbian cities and ije/e variants
for MLMAda (top) and GeoAda-W (bottom), measured
using WEAT (Caliskan et al., 2017). A positive or
negative score indicates that a city is associated more
strongly with the ije or e variants, respectively.

two word sets (in our case, ije vs. e phonological
variants). A positive or negative score indicates
that a city name is associated more strongly
with the ije or e variants, respectively. Figure 5
shows that during geoadaptation (GeoAda-W),
the Croatian city names develop a strong associ-
ation with the ije variants (i.e., positive WEAT
scores), whereas the Serbian city names develop
a strong association with the e variants (i.e., neg-
ative WEAT scores), which is exactly in line
with their geographic distribution (Alexander,
2006). By contrast, the associations created dur-
ing adaptation based on language modeling alone
(MLMAda) are substantially weaker.

We then use the same set of 10 Croatian and Ser-
bian cities and compare their pairwise geodesic
distances against the pairwise cosine distances
of the city name embeddings, at the end of
geoadaptation. The correlation between the two
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Figure 6: The first two principal components of the
city output embeddings (points), plotted on top of a
geographic map of Croatia and Serbia. The x-marks
indicate the actual geographic locations of the cities.

sets of distances (Pearson’s r) is only 0.577 for
MLMAda, but 0.881 for GeoAda-W, indicating
almost perfect correlation. Furthermore, after only
five epochs, the correlation is already 0.845 for
GeoAda-W (vs. only 0.124 for MLMAda). This
striking correspondence between real-world geog-
raphy and the topology of the embedding space of
geoadapted PLMs can also be seen by plotting the
first two principal components of the city name
embeddings on top of a geographic map, where
we use orthogonal Procrustes (Schönemann, 1966;
Hamilton et al., 2016) to align the points (see
Figure 6).

These results are strong evidence that geoad-
aptation indeed acts as a form of geographic
retrofitting. The geographically restructured rep-
resentation space of the PLMs can then be further
refined via fine-tuning (as in FT-Geoloc and
FT-Lang) or directly probed in a zero-shot manner
(as in ZS-Geoloc, ZS-Lang and ZS-Dialect).

6 Conclusion

We introduce geoadaptation, an approach for
task-agnostic continued pretraining of PLMs that
forces them to learn associations between lin-
guistic phenomena and geographic locations. The
method we propose for geoadaptation couples
language modeling and token-level geolocation
prediction via multi-task learning. While we focus
on PLMs pretrained via masked language model-
ing, geoadaptation can in principle be applied to
autoregressive PLMs as well. We geoadapt four
PLMs and obtain consistent gains on five tasks,
establishing a new state of the art on established
benchmarks. We further show that geoadaptation
acts as a form of geographic retrofitting. Overall,
we see our study as an exciting step towards NLP

technology that takes into account extralinguis-
tic aspects in general and geographic aspects in
particular.

Acknowledgments

This work was funded by the European Research
Council (grant #740516 awarded to LMU Mu-
nich) and the Engineering and Physical Sciences
Research Council (grant EP/T023333/1 awarded
to University of Oxford). Valentin Hofmann was
also supported by the German Academic Scholar-
ship Foundation. Goran Glavaš was supported
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Seddah. 2019. What does BERT learn about
the structure of language? In Annual Meeting of
the Association for Computational Linguistics
(ACL) 57. https://doi.org/10.18653
/v1/P19-1356

Pratik Joshi, Sebastin Santy, Amar Budhiraja,
Kalika Bali, and Monojit Choudhury. 2020.
The state and fate of linguistic diversity
and inclusion in the NLP world. In Pro-
ceedings of the 58th Annual Meeting of
the Association for Computational Linguistics,
pages 6282–6293. https://doi.org/10
.18653/v1/2020.acl-main.560

Armand Joulin, Edouard Grave, Piotr Bojanowski,
and Tomas Mikolov. 2017. Bag of tricks for ef-
ficient text classification. In Conference of the
European Chapter of the Association for Com-
putational Linguistics (EACL) 15. https://
doi.org/10.18653/v1/E17-2068

427

https://doi.org/10.18653/v1/2020.emnlp-main.316
https://doi.org/10.18653/v1/2020.emnlp-main.316
https://doi.org/10.18653/v1/2021.acl-long.542
https://doi.org/10.18653/v1/2021.acl-long.542
https://doi.org/10.18653/v1/2021.emnlp-main.564
https://doi.org/10.18653/v1/2021.emnlp-main.564
https://doi.org/10.18653/v1/D18-1469
https://doi.org/10.18653/v1/D18-1469
https://doi.org/10.1007/978-3-030-02438-3_175
https://doi.org/10.1007/978-3-030-02438-3_175
https://doi.org/10.18653/v1/2021.naacl-main.49
https://doi.org/10.18653/v1/2021.naacl-main.49
https://doi.org/10.1016/j.compenvurbsys.2015.12.003
https://doi.org/10.1016/j.compenvurbsys.2015.12.003
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/E17-2068
https://doi.org/10.18653/v1/E17-2068


Amir Hossein Kargaran, Ayyoob Imani, François
Yvon, and Hinrich Schütze. 2023. GlotLID:
Language identification for low-resource lan-
guages. In Conference on Empirical Methods
in Natural Language Processing (EMNLP)
2023. https://doi.org/10.18653/v1
/2023.findings-emnlp.410

Ilia Karpov and Nick Kartashev. 2021. Social-
BERT: Transformers for online social network
language modelling. arXiv preprint arXiv
2111.07148.

Alex Kendall and Yarin Gal. 2017. What uncer-
tainties do we need in Bayesian deep learning
for computer vision? In Advances in Neural
Information Processing Systems (NIPS) 31.

Alex Kendall, Yarin Gal, and Roberto Cipolla.
2018. Multi-task learning using uncertainty to
weigh losses for scene geometry and semantics.
In Conference on Computer Vision and Pattern
Recognition (CVPR) 31.

Diederik P. Kingma and Jimmy L. Ba. 2015.
Adam: A method for stochastic optimiza-
tion. In International Conference on Learning
Representations (ICLR) 3.

Vivek Kulkarni, Bryan Perozzi, and Steven
Skiena. 2016. Freshman or fresher? Quanti-
fying the geographic variation of language in
online social media. In International AAAI Con-
ference on Weblogs and Social Media (ICWSM)
10. https://doi.org/10.1609/icwsm
.v10i1.14798

Vivek Kulkarni, Mishra Shubhanshu, and Aria
Haghighi. 2021. LMSOC: An approach for
socially sensitive pretraining. In Findings of
the Association for Computational Linguistics:
EMNLP 2021. https://doi.org/10.18653
/v1/2021.findings-emnlp.254

Mikko Laitinen, Jonas Lundberg, Magnus Levin,
and Rafael Martins. 2018. The Nordic Tweet
Stream: A dynamic real-time monitor corpus
of big and rich language data. In Digital
Humanities in the Nordic Countries (DHN) 3.

Norman J. Lass, John E. Tecca, Robert A.
Mancuso, and Wanda I. Black. 1979. The ef-
fect of phonetic complexity on speaker race
and sex identifications. Journal of Phonet-
ics, 7(2):105–118. https://doi.org/10
.1016/S0095-4470(19)31044-7

Anne Lauscher, Olga Majewska, Leonardo
F. R. Ribeiro, Iryna Gurevych, Nikolai
Rozanov, and Goran Glavaš. 2020. Com-
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and Ivan Vulić. 2022. Crossing the conversa-
tional chasm: A primer on natural language
processing for multilingual task-oriented di-
alogue systems. Journal of Artificial Intel-
ligence Research, 74:1351–1402. https://
doi.org/10.1613/jair.1.13083

Anna Rogers, Olga Kovaleva, and Anna
Rumshisky. 2020. A primer in bertology: What
we know about how BERT works. Trans-
actions of the Association for Computational
Linguistics, 8:842–866. https://doi.org
/10.1162/tacl_a_00349

Guy D. Rosin, Ido Guy, and Kira Radinsky. 2022.
Time masking for temporal language models.
In International Conference on Web Search
and Data Mining (WSDM) 15. https://doi
.org/10.1145/3488560.3498529
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