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Abstract
Recognizing visual entities in a natural lan-
guage sentence and arranging them in a 2D
spatial layout require a compositional under-
standing of language and space. This task of
layout prediction is valuable in text-to-image
synthesis as it allows localized and controlled
in-painting of the image. In this comparative
study it is shown that we can predict layouts
from language representations that implicitly
or explicitly encode sentence syntax, if the
sentences mention similar entity-relationships
to the ones seen during training. To test com-
positional understanding, we collect a test set
of grammatically correct sentences and lay-
outs describing compositions of entities and
relations that unlikely have been seen during
training. Performance on this test set sub-
stantially drops, showing that current models
rely on correlations in the training data and
have difficulties in understanding the structure
of the input sentences. We propose a novel
structural loss function that better enforces the
syntactic structure of the input sentence and
show large performance gains in the task of
2D spatial layout prediction conditioned on
text. The loss has the potential to be used in
other generation tasks where a tree-like struc-
ture underlies the conditioning modality. Code,
trained models, and the USCOCO evaluation
set are available via Github.1

1 Introduction

Current neural networks and especially trans-
former architectures pretrained on large amounts
of data build powerful representations of content.
However, unlike humans, they fail when con-
fronted with unexpected situations and content
which is out of context (Geirhos et al., 2020).
Compositionality is considered a powerful tool in

∗Joint first authors
†Corresponding author.
1https://github.com/rubencart/USCOCO.

human cognition as it enables humans to under-
stand and generate a potentially infinite number of
novel situations by viewing the situation as a novel
composition of familiar simpler parts (Humboldt,
1999; Chomsky, 1965; Frankland and Greene,
2020).

In this paper we hypothesize that representa-
tions that better encode the syntactical structure of
a sentence—in our case a constituency tree—are
less sensitive to a decline in performance when
confronted with unexpected situations. We test
this hypothesis with the task of 2D visual object
layout prediction given a natural language input
sentence (Figure 2 gives an overview of the task
and of our models). We collect a test set of gram-
matically correct sentences and layouts (visual
‘‘imagined’’ situations), called Unexpected Situa-
tions of Common Objects in Context (USCOCO)
describing compositions of entities and relations
that unlikely have been seen during training. Most
importantly, we propose a novel structural loss
function that better retains the syntactic structure
of the sentence in its representation by enforcing
the alignment between the syntax tree embed-
dings and the output of the downstream task, in
our case the visual embeddings. This loss func-
tion is evaluated both with models that explicitly
integrate syntax (i.e., linearized constituent trees
using brackets and tags as tokens) and with mod-
els that implicitly encode syntax (i.e., language
models trained with a transformer architecture).
Models that explicitly integrate syntax show large
performance gains in the task of 2D spatial layout
prediction conditioned on text when using the
proposed structural loss.

The task of layout prediction is valuable in
text-to-image synthesis as it allows localized and
controlled in-painting of the image. Apart from
measuring the understanding of natural language
by the machine (Ulinski, 2019), text-to-image syn-
thesis is popular because of the large application
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Figure 1: Samples from the USCOCO dataset.

potential (e.g., when creating games and virtual
worlds). Current generative diffusion models cre-
ate a naturalistic image from a description in
natural language (e.g., DALL-E 2, Ramesh et al.,
2022), but lack local control in the image triggered
by the role a word has in the interpretation of the
sentence (Rassin et al., 2022), and fail to adhere to
specified relations between objects (Gokhale et al.,
2022). Additionally, if you change the description,
for instance, by changing an object name or its
attribute, a new image is generated from scratch,
instead of a locally changed version of the cur-
rent image, which is a concern in research (e.g.,
Couairon et al., 2022; Poole et al., 2022). Chen
et al. (2023) and Qu et al. (2023) show that using
scene layouts as additional input greatly improves
the spatial reasoning of text-to-image models, sub-
stantiating the importance of the text-to-layout
synthesis task. We restrict the visual scene to the
spatial 2D arrangements of objects mentioned in
the natural language sentence, taking into account
the size and positions of the objects (Figure 1).
From these layouts images can be generated that
accurately adhere to the spatial restrictions en-
coded by the layouts (Chen et al., 2023; Qu et al.,
2023), but this is not within the scope of this pa-
per. We emphasize that while we argue that good
layout predictions are valuable, the question this

Figure 2: Overview of text-to-layout prediction.

study aims to answer is not how to build the best
possible layout predictors, but whether and if so
how explicitly representing syntax can improve
such predictors, especially with respect to their
robustness to unseen and unexpected inputs.

The contributions of our research are the fol-
lowing: (1) We introduce a new test set called
USCOCO for the task of 2D visual layout pre-
diction based on a natural language sentence
containing unusual interactions between known
objects; (2) We compare multiple sentence encod-
ing models that implicitly and explicitly integrate
syntactical structure in the neural encoding, and
evaluate them with the downstream task of lay-
out prediction; (3) We introduce a novel parallel
decoder for layout prediction based on transform-
ers; (4) We propose a novel contrastive structural
loss that enforces the encoding of syntax in the
representation of a visual scene and show that it
increases generalization to unexpected composi-
tions; and (5) We conduct a comprehensive set
of experiments, using quantitative metrics, human
evaluation and probing to evaluate the encoding
of structure, more specifically syntax.

2 Related Work

Implicit Syntax in Language and
Visio-linguistic Models Deep learning has
ruled out the need for feature engineering in
natural language processing including the ex-
traction of syntactical features. With the advent
of contextualized language models pretrained on
large text corpora (Peters et al., 2018; Devlin
et al., 2019), representations of words and sen-
tences are dynamically computed. Several studies
have evaluated syntactical knowledge embedded
in language models through targeted syntactic
evaluation, probing, and downstream natural lan-
guage understanding tasks (Hewitt and Manning,
2019; Manning et al., 2020; Linzen and Baroni,
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2021; Kulmizev and Nivre, 2021). Here we con-
sider the task of visually imagining the situation
expressed in a sentence and show that in case of
unexpected situations that are unlikely to occur
in the training data the performance of language
models strongly decreases.

Probing Compositional Multimodal Reasoning
One of the findings of our work, that is, the failure
of current models in sentence-to-layout predic-
tion of unusual situations, are in line with recent
text-image alignment test suites like Winoground
(Thrush et al., 2022) and VALSE (Parcalabescu
et al., 2022), that ask to correctly retrieve an im-
age using grammatically varying captions. The
benchmark of Gokhale et al. (2022) considers a
generation setting, like us, however, they evaluate
image generation (down to pixels), while ignoring
the role of the language encoder.2 Moreover, their
captions are automatically generated from object
names and simple spatial relations, and hence
only contain explicit spatial relations, whereas our
USCOCO captions are modified human-written
COCO captions and include implicit spatial
relations.

Explicitly Embedding Syntax in Language
Representations Popa et al. (2021) use a
tensor factorisation model for computing token
embeddings that integrate dependency structures.
In section 3.2.1 we discuss models that inte-
grate a constituency parse tree (Qian et al., 2021;
Sartran et al., 2022) as we use them as encoders in
the sentence-to-layout prediction task. They build
on generative parsing approaches using recurrent
neural networks (Dyer et al., 2016; Choe and
Charniak, 2016).

Visual Scene Layout Prediction Hong et al.
(2018), Tan et al. (2018), and Li et al. (2019b)
introduce layout predictors that are similar to our
autoregressive model. They also train on the re-
alistic COCO dataset and generate a dynamic
number of objects, but they do not investigate the
layout predictions. Other layout prediction meth-
ods require structured input like triplets or graphs
instead of free-form text (Li et al., 2019a; Johnson
et al., 2018; Lee et al., 2020), are confined to
layouts of only 2 objects (Collell et al., 2021), are
unconditional (Li et al., 2019b), work in simpli-
fied, non-realistic settings (Radevski et al., 2020;

2Their data has not been made publicly available at the
time of writing.

Lee et al., 2020), or focus on predicting posi-
tions for known objects and their relationships
(Radevski et al., 2020).

3 Methods

3.1 Task Definition
Given a natural language caption C, the task
is to generate a layout L that captures a spa-
tial 2D visual arrangement of the objects that
the caption describes. A layout L = {bi}i =
{(oi, xi, yi, wi, hi)}i consists of a varying number
of visual objects, each represented by a 5-tuple,
where oi is a label from a category vocabulary (in
this paper: one of the 80 COCO categories, e.g.,
‘‘elephant’’), and where (xi, yi, wi, hi) refers to
the bounding box for that object. The coordinates
of the middle point of a box are xi, yi, and wi, hi
are the width and height. A caption C consists of
a number Nc of word tokens ci. Hence, we want
to learn the parameters θ of a model fθ that maps
captions to layouts: L = fθ(C).

Model Overview We split the prediction prob-
lem into two parts. First, a text encoder tφ
computes (potentially structured) text embeddings
ej for input word tokens ci: E = tφ(C). Second,
a layout predictor pψ predicts an embedding vk
per visual object: vk = pψ(E). These are pro-
jected by a multilayer perceptron to a categorical
probability distribution to predict object labels:
ok ∼ softmax(MLPlabel(vk)). Regression (×4) is
used for positions bk = (xk, yk, wk, hk): e.g.,
xk = σ(MLPpos(vk)x), with σ : R

d �→ [0, 1]
a sigmoid.

3.2 Text Encoders tφ
We consider two types of text encoders. First,
we explicitly encode the syntactical structure of a
sentence in its semantic representation. As syntac-
tical structure we choose a constituency parse
as it naturally represents the structure of hu-
man language, and phrases can be mapped to
visual objects. Human language is characterized
by recursive structures which correspond with
the recursion that humans perceive in the world
(Hawkings, 2021; Hauser et al., 2002). Second,
we encode the sentence with a state-of-the-art sen-
tence encoder that is pretrained with a next token
prediction objective. We assume that it implicitly
encodes syntax (Tenney et al., 2019; Warstadt
et al., 2020). The choice of the next-token pre-
diction objective is motivated by existing work
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that compares language models with implicit vs.
explicit syntax (Qian et al., 2021; Sartran et al.,
2022). We use pretrained text encoders, which
are all frozen during layout prediction training to
allow a clean comparison.

3.2.1 Explicitly Embedding Syntax in
Sentence Representations

The models that explicitly embed syntax take a
linearized version of the constituency trees as in-
put, using brackets and constituent tags as tokens
in addition to the input sentence C, to end up
with C lin. For instance, ‘‘A dog catches a frisbee’’
would be preprocessed into ‘‘(NP a dog) (VP
catches (NP a frisbee))’’. The constituency trees
are obtained with the parser of Kitaev and Klein
(2018) and Kitaev et al. (2019). The model com-
putes an embedding estruct

j (0 ≤ j < Nc + Nlin)
per input token cj (including the parentheses and
syntax tags). The embeddings are given as is to the
layout predictor, and since tokens explicitly repre-
senting structure (parentheses, syntax tags) have
their own embedding, we assume the sequence
of estruct

j to carry more structural information than
the sequence formed by ebase

i (cfr. section 3.2.2).
We consider the following models, which are all
pretrained on the BLLIPLG dataset (≈40M tokens
Charniak et al., 2000).

PLM: The Parsing as Language Model from
Qian et al. (2021) inputs C lin into an untrained
GPT-2 model and learns estruct

j by training on a
next token prediction task.

PLMmask: This model, of Qian et al. (2021), is
similar to PLM but uses masking to constrain two
of the attention heads in the transformer layers
to attend to tokens that are respectively part of
the current constituent and part of the rest of the
partially parsed sentence.

TG: The Transformer Grammars model from
Sartran et al. (2022) uses a masking scheme that
constrains all attention heads to only attend to
local parts of the constituent tree. This results
in a recursive composition of the representations
of smaller constituents into the representations
of larger constituents, which reflects closely the
recursive property of Recurrent Neural Network
Grammars (RNNG) models (Dyer et al., 2016).
We adapt this model to use a GPT-2 backbone and
we train it for next token prediction on the same
dataset as the PLM models for a fair comparison.

TGRB: To test to what extent differences in
layout prediction performance are due to the ex-
plicit use of a constituency grammar, and not a
byproduct of model and/or input differences, this
model uses trivial right-branching constituency
trees (constructed by taking the silver trees and
moving all closing brackets to the end of the sen-
tence), instead of silver constituency trees, both
during pretraining and during layout generation.
This model is also used by Sartran et al. (2022) as
ablation baseline.

3.2.2 Baselines That Are Assumed to
Implicitly Encode Syntax

The baselines take a sequence of text tokens
ci (0 ≤ i < Nc) and produce a sequence of the
same length, of embeddings ebase

i (0 ≤ i < Nc),
which will be given to the layout decoder.

GPT-2Bllip: This language model is also used
by Qian et al. (2021) and shares its architecture
and training regime with GPT-2 (Radford et al.,
2019). It is trained on the sentences (not the lin-
earized parse trees) of the BLLIPLG dataset to
predict the next token given the history (Charniak
et al., 2000). Hence, this model is trained on the
same sentences as the models of section 3.2.1.
Even though it is debatable whether transform-
ers can learn implicit syntax from the relatively
small (≈40M tokens) BLLIPLG dataset, this model
is used as baseline by existing work on explicit
syntax in language modeling (Qian et al., 2021;
Sartran et al., 2022), which is why we also
include it. Furthermore, there is evidence that
pretraining datasets of 10M-100M tokens suffice
for transformers to learn most of their syntax ca-
pabilities (Pérez-Mayos et al., 2021; Zhang et al.,
2021; Samuel et al., 2023), even though orders
of magnitude (>1B) more pretraining tokens are
required for more general downstream NLU tasks.

GPT-2: As published by Radford et al. (2019),
trained for next token prediction on a large-scale
scraped webtext dataset.

GPT-2shuffle
Bllip : Identical to the GPT-2Bllip model

but the tokens in the input sentence are randomly
shuffled, to test whether syntax has any contribu-
tion at all. The pretraining is exactly the same as
GPT-2Bllip, with the token order preserved.

LLaMA: Large state-of-the-art language mod-
els trained on massive amounts of text, we use the
7B and 33B model variants (Touvron et al., 2023).
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3.3 Layout Predictors pψ
3.3.1 Models
As a baseline we consider the layout prediction
LSTM from Hong et al. (2018) and Li et al.
(2019c), further referred to as ObjLSTM.3 This
model does not perform well and it trains slowly
because of the LSTM architecture, so we propose
two novel layout predictors. The two models use
the same transformer encoder, and differ in their
transformer decoder architecture.

PAR: This decoding model is inspired by
the DETR model for object detection of Carion
et al. (2020). The decoder generates a number of
objects in a single forward parallel pass, after first
predicting the number of objects.

SEQ: This autoregressive model is similar to
the language generating transformer of Vaswani
et al. (2017), but decodes object labels and bound-
ing boxes and not language tokens. It predicts an
object per step until the end-of-sequence token is
predicted, or the maximum length is reached. The
model is similar to the layout decoder of Li et al.
(2019c), but uses transformers instead of LSTMs.

3.3.2 Training
The PAR Model is trained analogous to Carion
et al. (2020) and Stewart et al. (2016) by first
computing the minimum cost bipartite matching
between predicted objects b̂i and ground-truth ob-
jects bj (as the ordering might differ), using the
Hungarian algorithm (Kuhn, 2010), with differ-
ences in box labels, positions, and overlaps as
cost.

The SEQ Model is trained to predict the next
visual object given the previous GT objects. The
order of generation is imposed (by a heuristic:
from large to small in area, after Li et al. [2019c]).
The 1st, 2nd,. . . generated object is matched with
the largest, 2nd but largest,. . . ground-truth object.

The PAR and SEQ models apply the following
losses to each matched pair of predicted box b̂i
and ground-truth box bj .

A Cross-entropy Loss Llabel(b̂i, bj) applied to
the object labels.

A Combination of Regression Losses applied
to the bounding box coordinates.

3This is the only existing model we found that generates
varying numbers of bounding boxes from free-form text for
the COCO dataset.

• An L1-loss LL1(b̂i, bj) applied to each of the
dimensions of the boxes (Carion et al., 2020).

• The generalized box IoU loss LgIoU(b̂i, bj)
proposed by Rezatofighi et al. (2019), taking
into account overlap of boxes.

• An L1-loss Lprop taking into account the
proportion of box width and height.

• A loss Lrel equal to the difference between
predicted and ground-truth predictions of
relative distances between objects.

The following losses are not applied between
matched predicted and ground-truth object pairs,
but to the entire sequence of output objects at once.

A Cross-entropy Loss Llen to the predicted
number of object queries (PAR only).

A Contrastive Structural Loss to enforce in a
novel way the grammatical structure found in the
parse trees on the output, in our case the visual
object embeddings vk that are computed by the
layout predictor and that are used to predict the
object boxes and their labels.

To calculate the loss, all nodes in the parse tree,
that is, leaf nodes corresponding to word tokens,
and parent and root nodes corresponding to spans
of word tokens, are represented separately by a
positional embedding epos

j (0 ≤ j < 2Nc − 1)
following Shiv and Quirk (2019). The positional
embeddings are learned, they are agnostic of the
content of the word or word spans they correspond
to, and they encode the path through the tree,
starting from the root, to the given node.

In a contrastive manner the loss forces the vi-
sual object representations vk to be close to the
positional embeddings epos

j , but far from those
êpos
j of other sentences in the minibatch. It maxi-

mizes the posterior probability that the set of vi-
sual object embeddings Vm = {vk}k for sample
m are matched with the set of tree positional em-
beddings Em = {epos

j }j for the same sample m,
and vice versa: Lstruct(m) = − logP (Em|Vm) −
logP (Vm|Em). These probabilities are computed
as a softmax over similarity scores S(m,n) be-
tween samples in the batch, where the denomi-
nator of the softmax sums over tree positions or
objects, resp.

The similarity score for 2 samples m,n is com-
puted as a log-sum-exp function of the cosine
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similarities between the i’th visual object vmi of
sample m and a visually informed syntax tree con-
text vector cni representing all tree positions {enj }j
of sample n. The context vector cni is computed
with the attention mechanism of Bahdanau et al.
(2015), with tree positional embeddings {enj }j as
keys and values, and visual embedding vmi as
query. The dot product between query vmi and
keys {enj }j is first additionally normalized over
the visual objects corresponding to a tree posi-
tion, before the regular normalization over tree
positions. These normalized dot products between
keys and queries constitute a soft matching be-
tween visual objects and constituency tree node
positions (note: only the positions, representing
syntax and not semantics of the words, are repre-
sented by the tree positional embeddings). Since
the model learns this mapping from the training
signal provided by this loss, it is not necessary
to manually specify which text spans are to be
matched to which visual objects.

The loss has resemblance to the loss used by
Xu et al. (2018), replacing their text embeddings
by our visual object embeddings, and their vi-
sual embeddings by our syntax tree embeddings.
Note that only the constituency parse of the input
text and the output embeddings are needed. In
this case, the output embeddings represent visual
objects, but they are in general not confined to
only represent visual objects, they could techni-
cally represent anything. Hence, the loss is not
tied to layout generation in specific, and could
be applied to any generation task conditioned on
(grammatically) structured text, as tree positions
are matched to output embeddings. This novel loss
is completely independent of the text encoder and
can be applied to a text encoder with explicit syn-
tax input, or to a text encoder with implicit syntax
(if a constituency parse of the input is available).4

The Final Loss for one training sample is the
sum of the above losses L, with (b̂i, bj) matched
pairs of predicted and GT objects, and each loss
weighted by a different weight λ.

4 The loss uses explicit syntax in the form of a constitu-
ency parse, so when used to train a model with implicit syn-
tax as input (like GPT-2Bllip, which does not use linearized
parse trees C lin as input), it adds explicit syntax information
to the training signal. Nevertheless, in this study, we call such
a model an ‘‘implicit syntax model with structural loss’’.

tφ Train set Regime

PLM BLLIP sents, trees NTP
PLMmask BLLIP sents, trees NTP
TG BLLIP sents, trees NTP
GPT-2Bllip BLLIP sents NTP
GPT-2 ≈8B text tokens NTP
LLaMA 1.4T tokens NTP

Table 1: Overview of the text encoders, their
training data, and training regimes. NTP stands
for next-token prediction.

Ltotal = λ1Lstruct + λ2Llen

+
∑
(i,j)

[
λ3Llabel(b̂i, bj) + λ4LL1(b̂i, bj)

+ λ5LgIoU(b̂i, bj) + λ6Lprop(b̂i, bj)

+ λ7Lrel(b̂i, bj)
]

(1)

3.4 Datasets

The text encoders are pretrained on datasets sum-
marized in Table 1. We use COCO captions and
instances (bounding boxes and labels; Lin et al.,
2014) for training and testing the layout decoder.
We use the 2017 COCO split with 118K training
images and 5K validation images (both with 5
captions per image). The testing images are not
usable as they have no captions and bounding box
annotations. We randomly pick 5K images from
the training data for validation and use the remain-
ing 113K as training set Dtrain. We use the 2017
COCO validation set as in-domain test set Dindom.
DUSCOCO is our test set of unexpected situations
with 2.4K layouts and 1 caption per layout.

Collection of USCOCO We used Amazon Me-
chanical Turk (AMT) to collect ground-truth
(caption, layout)-pairs denoting situations that are
unlikely to occur in the training data. We obtained
this test set in three steps. In the first step, we
asked annotators to link sentence parts of captions
in Dindom to bounding boxes.

Second, we used a script to replace linked sen-
tence parts in the captions with a random COCO
category name (onew, with a different COCO su-
percategory than the bounding box had that the
sentence part was linked to). The script also re-
places the bounding box that the annotators linked
to the replaced sentence part in the first step, with
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a bounding box for an object of the sampled cat-
egory onew. We use 4 replacement strategies: the
first keeps the original box merely replacing its la-
bel. The next 3 strategies also adjust the size of the
box based on average dimensions of boxes with
category onew in Dtrain, relative to the size of the
nearest other box in the layout. The 2nd places the
middle point of the new box on the middle point
of the replaced box, the 3rd at an equal x-distance
to the nearest object box and the the 4th at an equal
y-distance to the nearest object.

In the third step, annotators were shown the
caption with the automatically replaced sentence
part and the 4 corresponding automatically gener-
ated layouts. They were asked to evaluate whether
the new caption is grammatically correct, and
which of the 4 layouts fits the caption best (or
none). Each sample of step 2 was verified by 3
different annotators. Samples where at least 2 an-
notators agreed on the same layout and none of the
3 annotators considered the sentence as grammat-
ically incorrect, were added to the final USCOCO
dataset.

The USCOCO test set follows a very different
distribution of object categories than Dtrain. To
show this we calculate co-occurrences of object
categories in all images (weighted so that every
image has an equal impact) of Dtrain, DUSCOCO,
and Dindom. The co-occurence vectors of Dtrain

and DUSCOCO have a cosine similarity of 47%,
versus 99% for Dtrain and the in-domain test set
Dindom.

3.5 Preprocessing of the Images

Spurious Bounding Boxes (SP) Because ob-
jects annotated with bounding boxes in the COCO
images are not always mentioned in the cor-
responding captions, we implement a filter for
bounding boxes and apply it on all train and test
data. The filter computes for each object class
O of COCO the average diagonal length d̄O of
its bounding box, over the training set, and the
normalized average diagonal length d̄norm

O (scaled
by the size of the biggest object of each image).
Only the largest object of a class per image is
included in these averages to limit the influence of
background objects. Then, all the objects with size
smaller than 0.5 · d̄O and normalized size smaller
than 0.5 · d̄norm

O are discarded. The normalized
threshold allows the filters to be scale invariant,
while the non-normalized threshold removes fil-

tering mistakes when there is a big unimportant,
unmentioned object in the image.

Crop-Pad-Normalize (CPN) To center and
scale bounding boxes, we follow Collell et al.
(2021). We first crop the tightest enclosing box
that contains all object bounding boxes. Then,
we pad symmetrically the smallest side to get a
square box of height and width P . This preserves
the aspect ratio when normalizing. Finally, we nor-
malize coordinates by P , resulting in coordinates
in [0, 1].

3.6 Evaluation Metrics

Pr, Re, F1 precision, recall, and F1 score of pre-
dicted object labels, without taking their predicted
bounding boxes into account.

Pr0.5, Re0.5, F10.5 precision, recall, and F1
score of predicted object labels, with an Intersec-
tion over Union (IoU) threshold of 0.5 considering
the areas of the predicted and ground-truth bound-
ing boxes (Ren et al., 2017). The matching set
MIoU between ground-truth (GT) and predicted
objects is computed in a greedy fashion based on
box overlap in terms of pixels.

Rerepl The recall (without positions) on only the
set of GT objects that have been replaced in the
test set of unexpected situations DUSCOCO.

PrDpw, ReDpw, F1Dpw The F10.5 score pe-
nalizes an incorrect/missing label as much as it
penalizes an incorrect position, while we con-
sider an incorrect/missing label to be a worse
error. Additionally, there are many plausible spa-
tial arrangements for one caption (as explained in
section 3.5 image preprocessing tries to reduce its
impact). For this reason we introduce an F1 score
based on the precision and recall of object pairs,
penalized by the difference of the distance be-
tween the two boxes in the GT and the two boxes
in the predictions. This metric penalizes incorrect
positions, since a pair’s precision or recall gets
downweighted when its distance is different from
its distance in the GT, but it penalizes incorrect
labels more, since pairs with incorrect labels have
precision/recall equal to 0. Moreover, it evaluates
positions of boxes relative to each other, instead
of to one absolute GT layout.

First, a greedy matching set MD between GT
and predicted objects is computed based on labels
and middle-point distance. Boxes b̂ are part of
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the predicted layout Lp (with Np object pairs),
and boxes b are part of the GT layout LGT (with
NGT object pairs). The matching function π(b̂i, b̂k)
equals 1 if predicted boxes b̂i and b̂k both have a
matching box bj and bm in the GT (so (i, j) ∈ MD

and (k,m) ∈ MD), and equals 0 otherwise. D
denotes Euclidean distance between box middle
points, and Sjm,ik ∈ [0, 1] is a normalized simi-
larity metric based on this distance. The penalized
precision PrDpw and recall ReDpw are computed
as follows:

Sjm,ik = 1− 1√
2
|D(bj , bm)−D(b̂i, b̂k)|

PrDpw =
1

Np

∑
i∈Lp

∑
k∈Lp\{i}

Sjm,ik π(b̂i, b̂k) (2)

ReDpw =
1

NGT

∑
i∈Lp

∑
k∈Lp\{i}

Sjm,ik π(b̂i, b̂k) (3)

where (i, j) ∈ MD and (k,m) ∈ MD.

F1Dpw is finally computed as the standard F1
of PrDpw and ReDpw. If a sample has less than
2 boxes in the GT or predictions, respectively
ReDpw or PrDpw is undefined for that sample.5

4 Experiments

4.1 Experimental Set-up
All runs were repeated three times and the av-
erages and standard deviations are reported. We
used a learning rate of 10−4 with Adam (Kingma
and Ba 2015), a batch size of 128 (64 for runs using
Lstruct), random horizontal flips on the bounding
boxes as data augmentation, and early stopping.
All text encoders were frozen. Layout predic-
tors use a hidden dimension of 2566 and a FFN
dimension of 1024, with 4 encoder layers and 6 de-
coder layers, and have 10M parameters. The loss
weights (eq. 1) were chosen experimentally and
set to λ1 ∈ {0.25, 0.5, 1.0}, λ2 = 0.1, λ3 = 0.5,
λ4 = 5,λ5 = 2,λ6 = 0.5,λ7 = 0.5. We took most
of the other PAR hyperparameters from Carion
et al. (2020).

We run all text encoders with the smallest
GPT-2 architecture (125M params), for which

5There are fewer than 2 boxes for 0% of samples in
DUSCOCO and 19% in Dindom. Re and Re0.5 are defined for
samples with only 1 box, and samples with 0 boxes almost
do not occur.

6We use the same dimension regardless of the text en-
coder to allow for a fair comparison. Increasing the dimen-
sion did not improve results.

we reuse checkpoints shared by Qian et al.
(2021) for PLM, PLMmask and GPT-2Bllip. We also
run GPT-2-lgBllip, GPT-2-lg and TG-lg with the
larger GPT-2 architecture (755M params). GPT-2
and GPT-2-lg runs use checkpoints from Hug-
gingFace (Wolf et al., 2020), and LLaMA runs
use checkpoints shared by Meta. We train
GPT-2-lgBllip ourselves, using the code of Qian
et al. (2021).

Models were trained on one 16GB Tesla P100
or 32GB Tesla V100 GPU (except the LLaMA-33B
runs which were trained on a 80GB A100).

Training TG We train TG and TG-lg like PLM
and baseline GPT-2Bllip following Qian et al.
(2021), with a learning rate 10−5, the AdamW op-
timizer, a batch size of 5, and trained until con-
vergence on the development set of the BLLIPLG

dataset split (Charniak et al., 2000). We imple-
ment TG with the recursive masking procedure of
Sartran et al. (2022), but without the relative po-
sitional encodings, since these do not contribute
much to the performance, and because GPT-2
uses absolute position embeddings.

5 Results and Discussion

5.1 Layout Prediction

5.1.1 Preprocessing of Images

We ran a comparison of preprocessing for the PLM
and GPT-2Bllip text encoders (both using PAR).
All conclusions were identical.

Using SP gives small but significant improve-
ments in F10.5 and F1 on both test sets, and larger
improvements when also normalizing bounding
boxes with CPN. Using CPN increases the posi-
tion sensitive F10.5 metric drastically on both test
sets, even more so when also using SP. In a hu-
man evaluation with AMT, annotators chose the
best layout given a COCO caption from Dindom.
A total of 500 captions with 2 corresponding lay-
outs (one from Dindom + CPN + SP and one from
Dindom + CPN) were evaluated by 3 annotators,
who preferred SP in 37% of cases, as opposed to
18.6% where they preferred not using SP (44.4%
of the time they were indifferent). These results
suggest that the preprocessing techniques improve
the alignment of COCO bounding boxes with their
captions, and that the best alignment is achieved
when using both.
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Dindom DUSCOCO

F10.5 ↑ F1 ↑ F1Dpw ↑ F10.5 ↑ F1 ↑ F1Dpw ↑
ObjLSTM* .185 ± .021 .676 ± .006 .356 ± .019 .099 ± .013 .524 ± .009 .16 ± .019

ObjLSTMlrg + GPT-2Bllip .104 ± .003 .542 ± .01 .238 ± .013 .074 ± .003 .404 ± .014 .078 ± .007

ObjLSTMlrg + GPT-2Bllip .167 ± .005 .65 ± .006 .345 ± .01 .1 ± .003 .524 ± .016 .174 ± .019

SEQ + GPT-2Bllip .271 ± .004 .597 ± .01 .304 ± .011 .167 ± .001 .485 ± .006 .149 ± .007

PAR + GPT-2Bllip .296 ± .004 .67 ± .014 .375 ± .018 .18 ± .001 .576 ± .026 .229 ± .036

SEQ + TG .28 ± .002 .638 ± .006 .344 ± .011 .177 ± .002 .541 ± .002 .203 ± .004

PAR + TG .306 ± .008 .69 ± .002 .398 ± .008 .185 ± .004 .6 ± .004 .255 ± .005

Table 2: PAR, SEQ, and ObjLSTM (baseline) layout predictor results on USCOCO and Dindom, incl. F1,
F10.5 and F1Dpw showing that the PAR decoding model performs best. All entries use the GPT-2Bllip or
TG text encoder (without structural loss), except for ObjLSTM* which uses a multimodal text encoder
trained on images and text (Li et al., 2019c; Xu et al., 2018). ObjLSTMlrg is scaled up to same number
of parameters as SEQ and PAR, and uses a layout predictor with a transformer encoder before the
LSTM decoder, like SEQ and PAR. Best results of models using implicit syntax (upper rows) and those
with explicit syntax (lower rows, with TG) are marked in bold.

5.1.2 Layout Prediction Models
Table 2 compares our new PAR and SEQ layout
predictors with the ObjLSTM baseline. All mod-
els use either the GPT-2Bllip or TG text encoder
(based on the small GPT-2 architecture), except
for ObjLSTM* which uses a multimodal text en-
coder following Li et al. (2019c) and Xu et al.
(2018). The Lrel and Lprop losses are used for the
SEQ and PAR runs (in Table 2 and subsequent
tables). These losses give minor consistent im-
provements in F10.5, while keeping F1 more or
less constant.

Both SEQ / PAR + GPT-2Bllip models outper-
form all ObjLSTM baselines by significant mar-
gin on the position sensitive F10.5 metric on both
test sets (even though ObjLSTM* uses a text en-
coder that has been pretrained on multimodal
data). PAR + GPT-2Bllip obtains better F1Dpw and
position insensitive F1 scores than baselines on
the unexpected test set, and similar F1Dpw and
F1 on Dindom. SEQ + GPT-2Bllip lags a bit behind
on the last 2 metrics.
PAR obtains a significantly better precision than

SEQ, both with and without object positions (Pr
and Pr0.5), on both test sets, both with GPT-2Bllip

and TG, resulting in greater F1 scores. This could
be attributed to the fact that the nth prediction
with SEQ is conditioned only on the text and
n − 1 preceding objects, while with PAR, all pre-
dictions are conditioned on the text and on all
other objects. The fact that for generating lan-
guage, autoregressive models like SEQ are su-

perior to non-autoregressive models like PAR, but
vice versa for generating a set of visual objects,
may be due to the inherent sequential character
of language, as opposed to the set of visual ob-
jects in a layout, which does not follow a natural
sequential order. When generating a set of ob-
jects in parallel, the transformer’s self-attention
can model all pairwise relationships between ob-
jects before assigning any positions or labels. In
contrast, when modeling a sequence of objects
autoregressively, the model is forced to decide on
the first object’s label and position without being
able to take into account the rest of the gener-
ated objects, and it cannot change those decisions
later on.

Since the PAR model scores higher and is more
efficient (it decodes all b̂i in one forward pass,
compared to one forward pass per b̂i for SEQ),
we use PAR in subsequent experiments.

5.2 Improved Generalization to USCOCO
Data with Syntax

5.2.1 Explicitly Modeling Syntax
Table 3 shows layout prediction F10.5, F1,
and F1Dpw on the USCOCO test set of PAR
with implicitly structured GPT-2Bllip, GPT-2, and
LLaMA-7B text encoders (upper half) vs. with ex-
plicitly structured PLM, PLMmask and TG text en-
coders (bottom half), with (rows with + Lstruct)
and without (λ1 = 0) structural loss.

Without structural loss, all smaller 125M mod-
els achieve very similar F10.5 scores compared
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DUSCOCO

Size F1Dpw ↑ F10.5 ↑ F1 ↑
GPT-2 125M .207 ± .019 .179 ± .008 .566 ± .02

GPT-2 + Lstruct .187 ± .006 .184 ± .007 .555 ± .011

GPT-2Bllip .229 ± .036 .18 ± .001 .576 ± .026

GPT-2Bllip + Lstruct .233 ± .014 .192 ± .003 .574 ± .014

GPT-2-lg 755M .283 ± .047 .188 ± .005 .61 ± .03

GPT-2-lg + Lstruct .292 ± .025 .205 ± .009 .628 ± .016

GPT-2-lgBllip .233 ± .027 .183 ± .002 .586 ± .019

GPT-2-lgBllip + Lstruct .234 ± .019 .196 ± .005 .579 ± .006

LLaMA-7B 7B .231 ± .014 .179 ± .007 .583 ± .011

LLaMA-7B + Lstruct .26 ± .026 .192 ± .01 .602 ± .02

PLM 125M .226 ± .006 .18 ± .002 .579 ± .002

PLM + Lstruct .282 ± .048 .192 ± .002 .61 ± .033

PLMmask .234 ± .012 .176 ± .005 .588 ± .01

PLMmask + Lstruct .28 ± .039 .191 ± .007 .612 ± .024

TG .255 ± .005 .185 ± .004 .6 ± .004

TG + Lstruct .318 ± .026 .192 ± .008 .641 ± .018

TG-lg 755M .283 ± .017 .183 ± .008 .621 ± .014

TG-lg + Lstruct .327 ± .018 .195 ± .006 .645 ± .01

Table 3: Text encoders with implicit (above double line) and explicit (below double line) syntax,
and structural loss results on USCOCO: F1, precision and recall, with and without IoU threshold and
pairwise distance weighted. All entries use the PAR layout predictor. Results of the best (in terms of
F1Dpw) λ1 for each model type are shown.

to the baseline GPT-2Bllip, and only TG is able to
slightly improve the F1 and F1Dpw scores. We
assume that models with explicit syntax, i.e., that
integrate syntax in the input sentence, do not learn
to fully utilize the compositionality of the syntax
with current learning objectives.

We observe a noticeable increase over all
metrics by using GPT-2-lg compared to GPT-2
which is to be expected, while GPT-2-lgBllip

and GPT-2Bllip perform equally where we assume
that the training with a relatively small dataset
does not fully exploit the capabilities of a larger
model. TG-lg obtains similar scores as TG with a
small increase for the F1Dpw and performs on par
with GPT-2-lg while trained on only a fraction
of the data.

Notable is that the very large LLaMA-7B
model performs on par with GPT-2Bllip and GPT-
2-lgBllip. A possible explanation could be the
quite drastic downscaling of the 4096-dimensional
features of LLaMA-7B to 256 dimensions for
our layout predictor by a linear layer. Using a
4096-dimensional hidden dimension for the layout
predictor did not improve results. This increased

the number of trainable parameters by two or-
ders of magnitude, and the large resulting model
possibly overfitted the COCO train set.
TG outperforms PLM and PLMmask in F1 and

F1Dpw, which proves that restricting the attention
masking scheme to follow a recursive pattern ac-
cording to the recursion of syntax in the sentence
helps generalizing to unexpected situations. This
is in line with Sartran et al. (2022) who find that TG
text encoders show better syntactic generalization.

5.2.2 Structural Loss

Table 3 displays in the rows with + Lstruct the im-
pact of training with our structural loss function,
with the best weight λ1 in the total loss in eq.
(1) chosen from {0.25, 0.5, 1.0}. F10.5 and Pr0.5
slightly increase for all models and all λ1 values.
Re0.5 is minimally affected, except for some ex-
plicit syntax models and LLaMA that see a slight
increase.

F1, F1Dpw For implicit syntax models, with
increasing λ1, Re and ReDpw decrease severely.
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Figure 3: Recall on replaced objects Rerepl in USCOCO
vs. structural loss Lstruct weight λ1.

Pr and PrDpw first increase and then decrease
again, resulting in sometimes stable but eventually
decreasing F1 scores. For models with explicit
syntax, Re and ReDpw increase most for small loss
weights (λ1 = 0.25), while Pr and PrDpw top at
λ1 = 0.5 or 1.0. Together this causes an improve-
ment in F1 but mainly a sharp rise in F1Dpw.
These trends are more prominent for small mod-
els, but persist for large models, incl. LLaMA.
F1Dpw peaks for TG/TG-lg with 0.25 · Lstruct at
0.318/0.327, which is a ≈40% increase of the base-
lines’ performance of GPT-2Bllip/GPT-2-lgBllip at
0.229/0.233.

The loss, enforcing explicit constituency tree
structure in the output visual embeddings, trains
the layout predictor to not lose the explicit struc-
ture encoded by TG, PLM and PLMmask. This
compositional structure causes a disentangled, re-
cursive representation of visual scenes (Hawkings,
2021; Hauser et al., 2002), facilitating the replace-
ment of objects with unexpected different objects
for input sentences that contain unexpected com-
binations of objects. For models with implicit
syntax, the loss tries to enforce a structure that
is not explicitly available in the models’ input
(as opposed to for the models with explicit syn-
tax), which may lead to a more difficult learning
objective.

Rerepl Figure 3 shows the recall Rerepl on the
replaced object of USCOCO (the unusual ob-
ject). Rerepl increases for models with explicit
syntax, topping at λ1 = 0.25, while it decreases
sharply for models with implicit syntax GPT-2 and
GPT-2Bllip.

5.2.3 Overview of Explicit vs. Implicit Syntax

Table 4 gathers results on both test sets.7 The re-
sults for all models, but most notably the implicit
syntax models, drop significantly on USCOCO
compared to Dindom, confirming that current
state-of-the-art models struggle with generating
unexpected visual scenes.

Dindom Small models that explicitly model syn-
tax obtain slightly better results than the small
baseline models for all metrics. Models with im-
plicit syntax might perform well on in-domain
test data because they have memorized the
common structures in training data. The large
models that were pretrained on huge text datasets
(GPT-2-lg, LLaMA-xB) outperform TG-lg on
Dindom, showing that their pretraining does help
for this task, but the drop in USCOCO scores
suggests that they might overfit the memorized
patterns. Situations described in COCO captions
are commonly found in pretraining data, so that
syntax is not needed to predict their visual layouts.
The unexpected USCOCO situations however re-
quire the extra compositionality offered by ex-
plicit syntax.

USCOCO We clearly see improvement in re-
sults of models that explicitly model syntax,
showing the generalization capabilities needed to
perform well on the unseen object combinations
of USCOCO, provided it is enforced by a correct
learning objective as discussed in section 5.2.2.
This increase comes without a decrease in perfor-
mance on the in-domain test data. This is important
because it will lead to efficient models for nat-
ural language processing that can generalize to
examples not seen in the training data, exploiting
compositionality.

GPT-2shuffle
Bllip Another indication that the mod-

els that implicitly model syntax do not use the
structure of natural language to the same extent,
but rather exploit co-occurences in training data,
is the fact that GPT-2shuffle

Bllip , which is trained to
generate layouts from sentences with shuffled
words, achieves only slightly worse results than
GPT-2Bllip, even on the position sensitive F10.5
and F1Dpw metrics.

7Although CLIP (Radford et al., 2021) has been pre-
trained on multimodal data, and the other text encoders
were not (ignoring for a moment the ObjLSTM baseline), we
tested CLIP’s sentence embedding, but results were poor.
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Dindom DUSCOCO

Size F10.5 ↑ F1 ↑ F1Dpw ↑ F10.5 ↑ F1 ↑ F1Dpw ↑
GPT-2shuffle

Bllip 125M .286 ± .006 .656 ± .005 .349 ± .012 .166 ± .002 .566 ± .003 .213 ± .004

GPT-2 125M .294 ± .004 .66 ± .01 .353 ± .019 .179 ± .008 .566 ± .02 .207 ± .019

GPT-2Bllip .296 ± .004 .67 ± .014 .375 ± .018 .18 ± .001 .576 ± .026 .229 ± .036

GPT-2-lg 755M .308 ± .001 .702 ± .007 .414 ± .013 .188 ± .005 .61 ± .03 .283 ± .047

GPT-2-lgBllip .298 ± .004 .676 ± .01 .38 ± .013 .183 ± .002 .586 ± .019 .233 ± .027

LLaMA-7B 7B .306 ± .001 .701 ± .003 .411 ± .008 .179 ± .007 .583 ± .011 .231 ± .014

LLaMA-33B 33B .305 ± .005 .699 ± .003 .406 ± .002 .181 ± .006 .577 ± .008 .225 ± .011

TGRB 125M .299 ± .005 .683 ± .01 .391 ± .015 .178 ± .004 .571 ± .011 .216 ± .016

TGRB + Lstruct .3 ± .005 .67 ± .01 .358 ± .012 .189 ± .007 .606 ± .017 .278 ± .02

PLM + Lstruct 125M .301 ± .006 .677 ± .022 .378 ± .038 .192 ± .002 .61 ± .033 .282 ± .048

PLMmask + Lstruct .3 ± .004 .683 ± .003 .388 ± .007 .191 ± .007 .612 ± .024 .28 ± .039

TG + Lstruct .305 ± .005 .685 ± .012 .379 ± .028 .192 ± .008 .641 ± .018 .318 ± .026

TG-lg + Lstruct 755M .306 ± .004 .692 ± .002 .392 ± .007 .195 ± .006 .645 ± .01 .327 ± .018

Table 4: Final model results in terms of F1, F10.5, and F1Dpw on the in-domain (left) and USCOCO
(right) test sets. All entries use the PAR layout predictor, and explicit syntax models use λ1 = 0.25 or
λ1 = 0.50. GPT-2(-lg) and LLaMA have been pretrained on much larger text datasets.

TGRB obtains similar scores to TG on in-domain
data with trivial right-branching trees. On un-
expected data, performance drops, proving the
importance of syntax especially for generalizing
to unexpected data. The structured loss improves
generalization shown by USCOCO results, but not
to the same extent as for TG.8

5.2.4 Human Evaluation
Proper automatic evaluation of performance on
the text-to-layout prediction task is hard, since
potentially many spatial layouts may fit the scene
described by a sentence. Our metrics compare
the predictions to one single ground-truth, ig-
noring this fact, so we used AMT for a human
evaluation of predicted layouts for 500 randomly
sampled USCOCO captions. For each caption, 3
annotators chose the layout that best fit the cap-
tion from a pair of two, based on the following
criteria: Whether the layout displays all objects
present in the caption, whether the objects’ spatial
arrangement corresponds to the caption, whether
the objects have reasonable proportions and finally
whether object predictions that are not explicitly

8It is not surprising that performance is partially re-
tained with right-branching trees, since English has a
right-branching tendency: The F1 overlap between the trivial
constituency trees and the silver-truth trees for COCO vali-
dation captions is 0.62. Further, the constituency tags (e.g.,
‘‘NP’’, ‘‘PP’’) are still included, and Nlin syntax tokens are
added to the Nc caption tokens, granting the model more
processing power.

Figure 4: Examples of generated layouts where anno-
tators chose the layout of TG + Lstruct over the layout
of GPT-2Bllip (first 2 examples) and vice versa (last
example).

mentioned in the caption do fit the rest of the
scene (i.e., the layout should not contain any ab-
surd or unexpected objects that are not explicitly
mentioned in the caption). Figure 4 shows some
examples of generated layouts and the annota-
tors’ decisions.

The results in Figure 5 are in line with the quan-
titative results where our structural loss proved
beneficial for TG. This confirms that explicit
structure does not improve layout prediction of
unexpected combinations by itself, but together
with our structural loss it causes a significant
improvement. We calculated the agreement of the
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Figure 5: Human evaluation of generated layouts by
GPT-2Bllip (+ Lstruct) and TG (+ Lstruct) on USCOCO.
Annotators choose the best layout between 2 layouts
(anonymized and order-randomized).

human evaluation with our quantitative metrics,
and found 15.2% for F10.5, 41.7% for F1 and
42.5% for F1Dpw.9 This confirms the previously
mentioned suspicion that F10.5 is far less suitable
for the evaluation of layout generation than F1
and F1Dpw.

5.2.5 Constituency Tree Probes
To test how the loss affects syntax information
in the text embeddings, we run a classifier probe
inspired by Tenney et al. (2019) on the text encoder
output and subsequent layers of the encoder of
the layout prediction model. The probe classifies
random spans of tokens as being a constituent or
not (but ignores their tag).

Figure 6 shows that all text encoders’ outputs
(probe layer 0) get good F1 scores and hence do
encode syntax. Without the proposed structural
loss, probing results quickly deteriorate in subse-
quent layers, presumably because the encoder has
too little incentive to use and retain constituency
structure, because COCO training data contains
only situations common in pretraining data and
requires no syntactical reasoning. The figure also
shows that it is easier to predict constituency struc-
ture from outputs of text encoders with explicit
syntax than of those with implicit syntax, which is
not surprising because of the former’s pretraining
and the presence of parentheses and tags.

The structural loss helps to almost perfectly re-
tain the constituency structure. The loss matches
the output (in our case visual objects) to con-
stituency tree positions, and as the probe shows,
to do so, it propagates the constituency tree in-
formation present in the text through the model.
For GPT-2Bllip, except for an initial drop caused
by the linear projection to a lower dimension, the

9The low percentages were to be expected since metrics
often rank layouts equally (when both layouts obtain the same
score), while annotators were not given that option.

Figure 6: Constituency tree probe results for
GPT-2Bllip, TG, PLM, and PLMmask on USCOCO. Layer
0 corresponds to text encoder output (with model-
dependent dimensions), layer 1 to the 256-dimensional
embedding after linear projection, layer 2 to the out-
put of the 1st encoder layer, etc.

loss improves probing F1 in later layers, even be-
yond the F1 for raw text encoder output. That this
increase does not lead to improved layout predic-
tions could be explained by the relevant syntax
being encoded in a different, more implicit form
that is harder for downstream models to learn
to use.

5.2.6 Computational Cost
The addition of structural (parenthesis and tag)
tokens to explicit syntax model input causes the
number of tokens Nc + Nlin to be larger than
the number of tokens Nc that implicit models
use to encode the same sentence. GPT-2 needs
only 11 tokens on average per sentence in the
COCO validation set, versus TG that needs 38 and
PLM that needs 30. This translates in a greater
computational cost for the explicit syntax models.

Nevertheless, the small TG + Lstruct, pre-
trained only on BLLIPLG, outperforms the large
GPT-2-lg that has been pretrained on a much
larger dataset. This entails multiple computational
advantages: smaller memory footprint and fewer
resources and less time needed for pretraining.

6 Limitations & Future Work

One limitation of layout decoding with explicitly
structured language models is the reliance upon a
syntax parsing model to obtain the constituency
trees for input captions. While syntax parsing
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models have shown very high performance (the
parser of Kitaev and Klein [2018] obtains an F1
score of 95.13 on the Penn Treebank [Marcus
et al., 1993], which contains longer and more syn-
tactically complex sentences than typical COCO
captions), grammatical errors in the used prompts
might result in incorrect parses and hence in worse
layout generations, compared to language models
without explicit syntax (that do not need a parser).
We leave an investigation into this phenomenon
for further research. However, we do note an in-
creased performance of layout generation even
with only trivial right-branching trees over im-
plicit syntax models (visible in Table 4), which
might be an indication of robustness against gram-
matical errors for models that explicitly encode
syntax.

Furthermore, while we show that explicitly
modeling syntax improves layout prediction for
absurd situations, this out-of-distribution genera-
tion task still remains difficult even for the best
layout predictor models: there is a 35%–37% drop
in F1 score and 17%–26% drop in F1Dpw on
USCOCO compared to the in-domain test set.
The introduction of USCOCO allows further re-
search to evaluate new layout generation models
on their out-of-distribution and absurd generation
capabilities.

Very recent work has prompted the GPT-4 API
to generate SVG or TikZ code that can be ren-
dered into schematic images, which can then be
used to guide the generation of more detailed im-
ages (Bubeck et al., 2023; Zhang et al., 2023). The
layout prediction models discussed in our paper
generate bounding box coordinates and class la-
bels, which are hard to directly compare to code
or rendered images. Moreover, we studied the role
that explicit grammar can play for robustness with
respect to absurd inputs, which would not have
been possible with the GPT-4 API. However, us-
ing LLMs for layout prediction can be a promising
direction for future work.

7 Conclusion

We evaluated models that implicitly and explicitly
capture the syntax of a sentence and assessed how
well they retain this syntax in the representations
when performing the downstream task of layout
prediction of objects on a 2D canvas. To test com-
positional understanding, we collected a test set
of grammatically correct sentences and layouts

describing compositions of entities and relations
that unlikely have been seen during training. We
introduced a novel parallel decoder for layout pre-
diction based on a transformer architecture, but
most importantly we proposed a novel contrastive
structural loss that enforces the encoding of syntax
structure in the representation of a visual scene and
show that it increases generalization to unexpected
compositions resulting in large performance gains
in the task of 2D spatial layout prediction con-
ditioned on text. The loss has the potential to be
used in other generation tasks that condition on
structured input, which could be investigated in
future work. Our research is a step forward in
retaining structured knowledge in neural models.
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