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Abstract

Data-to-text (D2T) generation aims to trans-
form structured data into natural language text.
Data-to-text pre-training has proved to be
powerful in enhancing D2T generation and
yields impressive performance. However, pre-
vious pre-training methods either oversimpli-
fied structured data into a sequence without
considering input structures or designed train-
ing objectives tailored for a specific data struc-
ture (e.g., table or knowledge graph). In this
paper, we unify different types of structured
data (i.e., table, key-value data, knowledge
graph) into the graph format and cast different
D2T generation tasks as graph-to-text gener-
ation. To effectively exploit the structural in-
formation of the input graph, we propose a
structure-enhanced pre-training method for
D2T generation by designing a structure-
enhanced Transformer. Concretely, we devise
a position matrix for the Transformer, encod-
ing relative positional information of con-
nected nodes in the input graph. In addition, we
propose a new attention matrix to incorporate
graph structures into the original Transformer
by taking the available explicit connectivity
structure into account. Extensive experiments
on six benchmark datasets show the effective-
ness of our model. Our source codes are avail-
able at https://github.com/AlibabaResearch
/DAMO-ConvAI/tree/main/unid2t.

1 Introduction

Data-to-text (D2T) generation, which aims to gen-
erate a target natural language text conditioned on
source structured data, has attracted noticeable at-
tention due to its many applications such as jour-
nalism (Rebuffel et al., 2020), medical diagnosis
(Nishino et al., 2020), financial and weather re-
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ports (Liang et al., 2009), and sports broadcasting
(Chen and Mooney, 2008). The input structured
data can include tables of records, simulations of
physical systems, spreadsheets, knowledge graphs,
and so on. Transforming structured data into tex-
tual data can facilitate a wide range of users to
understand and use the structured data, which is
needed in many real-life scenarios.

Recently, large-scale pre-trained models have
proved to be powerful in D2T generation and
yield impressive performance (Kale and Rastogi,
2020; Xing and Wan, 2021; Liu et al., 2022),
which benefit from the rich knowledge contained
in large-scale pre-training corpora. Xing and Wan
(2021) proposed a structure-aware table-to-text
pre-training model, which devised three self-
supervised training objectives tailored for mod-
eling tables and their contexts. Ke et al. (2021)
adopted a structure-aware semantic aggregation
module to model the structure of an input graph
at each Transformer layer, and explicitly learned
graph-text alignments instead of directly fine-
tuning text-to-text pre-trained models on graph-
to-text corpora.

Although significant progress has been made
in this field, there are still several technical chal-
lenges with existing D2T pre-training methods.
Most prior studies made a cumbersome design
tailored for a specific data structure such as tables
(Liu et al., 2022) or knowledge graphs (Li et al.,
2022), which could not effectively deal with di-
verse structured data in a unified framework. Kale
and Rastogi (2020) were the first to study the ‘‘pre-
train and fine-tune’’ strategy on several bench-
marks spanning task-oriented dialogue, table-to-text,
and graph-to-text. However, they oversimplified
the input structured data into a flat string and
adopted an original Transformer without captur-
ing the structural information of source structured
data.
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In this paper, we unify the structured data
into the graph format for data-to-text pre-training
(denoted as UniD2T). We convert diverse types
of structured data into a unified graph format,
keeping the structural information of the structured
data. We treat the items in the structured data as
a set of nodes and connect the nodes according to
the connectivity of the structured data. In this way,
we can cast various D2T tasks as the graph-to-text
generation task.

To effectively encode the graph structure, we
propose a structure-enhanced pre-training model,
which can be applied to various downstream D2T
generation tasks. Our proposed D2T pre-training
model is built upon the T5 model (Raffel et al.,
2020). Since the T5 model is a text-to-text trans-
fer Transformer framework and cannot effectively
encode the graph structure, we propose a structure-
enhanced Transformer to encode the structural
information. Concretely, we propose an explicit
position matrix for the Transformer, encoding the
relative positional information of connected nodes
in the input graph. In addition, we build a new
attention matrix to replace the attention mask in
self-attention of the original Transformer, which
encodes graph structures and takes the available
explicit connectivity structure into account.

Our main contributions are three-fold. (1) We
unify diverse types of structured data into a graph
format and cast all D2T tasks as the graph-to-text
generation task taking a graph as input and pro-
ducing a text as output. (2) We propose a structure-
aware pre-training method for D2T generation
based on the T5 model, which incorporates rela-
tive positional information and graph structures
into the original Transformer via two new posi-
tion and attention matrices, respectively. (3) We
conduct extensive experiments on six D2T bench-
marks and achieve substantially better perfor-
mance than strong baselines. We believe that the
release of our unified D2T pre-training model will
advance the research in this area.

2 Related Works

2.1 Data-to-Text Generation
Data-to-text (D2T) generation aims to produce
output texts from structured data and has attracted
noticeable attention from the natural language
processing (NLP) community (Reiter and Dale,
1997). Recently, neural D2T models (Song et al.,
2018; Zhu et al., 2019) have been the mainstream

for this task and made impressive progress. The
end-to-end neural models generate text directly
from structured data by using an encoder-decoder
architecture (Sutskever et al., 2014). These studies
usually focus on improving the encoder structures
based on attention mechanisms (Koncel-Kedziorski
et al., 2019; Mehta et al., 2022) or graph neu-
ral networks (GNNs) (Philipp and Schütze, 2021;
Ribeiro et al., 2021a,b). For example, Wang et al.
(2020) proposed a graph-to-sequence model using
a pairwise interaction function to obtain seman-
tic relations between concepts. Puduppully et al.
(2022) suggested a neural architecture that incor-
porated a planning module to manage high-level
information in a logical and meaningful man-
ner. Liu et al. (2018) proposed a structure-aware
sequence-to-sequence architecture, which incor-
porated the filed information as additional input
to the table encoder. Song et al. (2018) introduced
graph recurrent networks (GRNs) to encode the
AMR nodes directly. Subsequently, Shi et al.
(2020) proposed GNNs as the structural encoder,
which updated the representations of nodes based
on their immediate neighbors. To integrate both
local and non-local features and learn a better
structural representation of a graph, Guo et al.
(2019) introduced dense connection and allowed
deep GCNs. Different from the local informa-
tion aggregation scheme, Cai and Lam (2020)
proposed a graph transformer that used explicit
relation encoding and allowed direct communica-
tion between two distant nodes.

2.2 Data-to-Text Pre-training Models

Recently, we have witnessed the remarkable suc-
cess of pre-training methods in a wide range of
NLP tasks (Kenton and Toutanova, 2019; Radford
et al., 2018; Lan et al., 2019; Bi et al., 2020). Most
pre-training models are initially designed to text-
to-text generation, lacking the ability to encode
structural information. Recently, there exist some
pre-training models designed for D2T tasks (Chen
et al., 2020b; Agarwal et al., 2021; Ke et al., 2021;
Bai et al., 2022). For example, KGPT (Chen et al.,
2020b) proposed a distantly supervised learning
method to exploit large-scale unlabeled web text
for data-to-text pre-training. However, these pre-
training models consider only one specific data
structure and cannot be applied to diverse down-
stream D2T tasks. Although Tang et al. (2022) pro-
posed a multi-task supervised pre-training model

211



Statistics PREDATA DOWNDATA

# Datasets 2 6
# Instances 4,951,267 2,240,927
Avg. input tokens 84.1 63.7
Avg. target tokens 90.8 100.9
Avg. Nodes 17.8 19.4
Avg. Edges 112.3 103.1

Table 1: Statistics of our pre-training data.

(MVP) for a series of D2T generation tasks,
they utilized the original Transformer to encode
the linearized input data without considering the
graph structures. UniLM (Dong et al., 2019) was
a pre-trained universal language model, which
incorporated modified self-attention masks to fa-
cilitate bidirectional encoding or unidirectional
decoding. While UniLM offers the flexibility
of bidirectional encoding, its encoding attention
mask is designed primarily for processing unstruc-
tured text, thereby restricting its ability to capture
the structural characteristics of input graphs.

Different from previous work, we propose a
unified pre-training model that casts all D2T tasks
as the graph-to-text generation task. In addition,
we incorporate graph structures into the original
Transformer via two new position and attention
matrices to effectively model the structured input
data.

3 Pre-training Data Construction

Previous data-to-text pre-training datasets are
usually tailored to specific structured data. In this
paper, we collect eight D2T datasets from previ-
ous works and aggregate these datasets into a large
corpus for pre-training our model. The statistics of
pre-training data are provided in Table 1.

3.1 Existing Pre-training Datasets (PREDATA)

We first collect the table-text dataset TAPAS

(Herzig et al., 2020) and the graph-text dataset
KGTEXT (Chen et al., 2020b), which were orig-
inally designed for table-to-text and graph-to-text
pre-training, respectively. TAPAS contains 6.2M
tables from Wikipedia, and KGTEXT consists of
1.8M hyperlinked sentences from Wikipedia with
the corresponding knowledge subgraphs from

Figure 1: Unifying data in three formats into one graph
structure.

WikiData. We further devise a rule-based data-
cleaning strategy to guarantee data quality.
Finally, we obtain 4.9M data-text pairs (called
PREDATA).

3.2 Existing Downstream Datasets
(DOWNDATA)

We also collect the training sets from six data-to-
text datasets, including WebNLG (Gardent et al.,
2017), DART (Nan et al., 2020), ToTTo (Parikh
et al., 2020), WikiBio (Lebret et al., 2016), Wiki-
TableT (Chen et al., 2021), and CoSQL (Yu et al.,
2019). These datasets were designed for down-
stream data-to-text generation tasks. Concretely,
WebNLG and DART are graph-to-text datasets;
WikiBio and WikiTableT contain key-value pairs;
ToTTo and CoSQL are table-based datasets. In to-
tal, there are about 2.2M instances (DOWNDATA).
Notably, the test sets utilized for downstream tasks
are expressly omitted from the pre-training data,
ensuring the integrity of our experimental results
by eliminating any potential data leakage.

3.3 Unifying Structured Data

As illustrated in Figure 1, we unify different struc-
tured data (knowledge graph, table, key-value
pairs) into an unlabeled and connected graph G =
(V , E) that consists of a set of nodes v ∈ V and
unlabeled edges (vi, vj) ∈ V . Next, we elucidate
the process of transforming the three distinct types
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of data (i.e., knowledge graphs, tables, and key-
value pairs) into a unified graph G.

(1) On the left side of Figure 1’s Graph Data
section, a knowledge graph can be formally ex-
pressed as G0 = (V0, E0,R0), where nodes are
denoted by v ∈ V0, and labeled edges are repre-
sented as (vs, r, vt) ∈ E0, with r ∈ R0 signifying
the relation type. To more effectively model the
relationships between nodes within the knowl-
edge graph G0 without modifying the underlying
model architecture, we transform it into its equiv-
alent Levi graph, as shown on the right side of the
Graph Data section in Figure 1, following similar
methodologies as in prior studies (Ribeiro et al.,
2021b; Li et al., 2022). A Levi graph is formally
characterized as an unlabeled, connected bipartite
graph, denoted as G = (V , E). Specifically, each
relation in R0 is treated as a new graph node
within G and amalgamated with all nodes in V0

to form the comprehensive node set V . Subse-
quently, each edge (vs, r, vt) ∈ E0 labeled with
a relation type is converted into two unlabeled,
undirected edges (vs, r), (r, vt) ∈ E . In addition,
for each unlabeled edge, corresponding reverse
edges (r, vs), (vt, r) are introduced. For instance,
given a labeled edge (Dance of the Seven Veils,
GENRE, incidental music), this conversion results
in four unlabeled edges (Dance of the Seven Veils,
GENRE), (GENRE, Dance of the Seven Veils),
(GENRE, incidental music), and (incidental mu-
sic, Dance of the Seven Veils), constituting the
final Levi graph G.

(2) In the Table Data section of Figure 1,
situated on the left side, Tabular data is conven-
tionally structured with numerous cells organized
based on their respective roles and interrelations.
A table can be formally represented as T =
vi,j |i ∈ [1, N ], j ∈ [1,M ], where vi,j denotes a
table cell, and N and M represent the number
of rows and columns in the table, respectively.
Inspired by recent studies (Wang et al., 2022; Li
et al., 2023a), we use a heuristic rule to transform
the tabular data into a unified graph G by introduc-
ing unlabeled edges between cells based on their
roles and relationships. This structural transforma-
tion serves to maintain the invariance of the table
content and proficiently articulate the relation-
ships among cells in the table. More precisely, all
cells within T are considered as graph nodes in G,
denoted as V = T . Furthermore, we establish the
set of unlabeled edges E in accordance with two
guiding principles. First, for any two cells vi,j and

vi,z situated within the same row, we introduce a
forward edge (vi,j , vi,z) along with a correspond-
ing reverse edge (vi,z, vi,j) into E . Second, for
any two cells vi,j and vi,z located in the same
column, we append a forward edge (vi,j , vz,j) and
its corresponding reverse edge (vz,j , vi,j) to E .
For instance, contemplating the right Table Data
section in Figure 1, the cell ‘‘Arthur III’’ is linked
not only to cells ‘‘1457’’ and ‘‘1458’’ in the same
row but also to cells ‘‘Name’’ and ‘‘Peter II’’ in
the same column. This intentional configuration
is based on empirical observations and insights
gained from data analysis. However, we acknowl-
edge that there exists room for further exploration
and experimentation concerning diverse node con-
nectivity settings in future research. Given that
the ToTTo dataset exclusively generates text for
highlighted data, only the highlighted cells are
considered as nodes.

(3) For Key-Value data in Figure 1, both key
and value are regarded as nodes within V . In ad-
dition to the requisite connection edges linking
each (key, value) pair (e.g., the connection be-
tween the key name and the value walter extra),
we extend our connectivity framework to include
connections among keys themselves (e.g., the con-
nection between nationality and birth date) and
value themselves (e.g., the connection between
walter extra and gernman), drawing inspiration
from the graph construction methodology com-
monly employed in table data analysis. In line
with tabular data, we introduce both forward and
reverse edges for any connected nodes within V .

To ensure clarity and context in the generated
text, we introduce two specific prefixes before
the actual input data: (1) A data-independent
prefix that universally states ‘‘describe the fol-
lowing data.’’ (2) A data-specific prefix, tailored
according to the nature and structure of the
data at hand. We provide the data-specific pre-
fixes for the three data structures in Table 2.
For example, the triple ‘‘Jens Hartel | club
|Berliner AK 07’’ from the DART dataset will
add the common prefix and its special prefix to
form an input ‘‘[Prefix] describe the following
data: [Prefix] The category of the DBpedia enti-
ties is: SportsTeam. [Node] Jens Hartel [Node]
club [Node] Berliner AK 07’’. We simplify the
data-independent and data-specific prefixes to
‘‘[Prefix-I]’’ and ‘‘[Prefix-S]’’, respectively. The
final input sequence with connectivity information
is shown in Figure 2.
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Type Dataset Prefix-S

ToTTo
The table page title is: A,

Table The table section title is: B

CoSQL select A from B where C

Graph
DART The source is: A

WebNLG
The category of the entities is: A,
The number of RDF triples is: B

Key-Value
WikiBio The article title is: A

WikiTableT
the document title is: A,
the section title is: B

Table 2: The data-specific prefixes that are tai-
lored for different types of data. Here, A, B, and C
can be replaced by the content of specific samples.

Figure 2: Simplified version of model input and con-
nections between nodes.

4 Methodology

4.1 Problem Definition

We convert different structured data into a graph
format and cast all data-to-text tasks as the
graph-to-text (G2T) generation task. Formally,
the G2T model takes a graph G = (V , E) as input
and produces a text Y = {y1, . . . , yn} as output,
where V represents the entity set, E represents the
relations between entities, andn is the length of the
output text. Following previous studies (Ribeiro
et al., 2020), we convert the graph G into an input
sequence Glinear = {x1, . . . , xm} consisting of m
tokens.

4.2 Model Architecture

Our model is built upon the pre-trained T5 model
given the impressive performance of T5 on text
generation tasks. It is noteworthy that our pre-
training strategy is model-agnostic and potentially
applicable to any Transformer-based backbone
networks. The encoder of Transformer is com-
posed of a stack of blocks, each of which contains
a self-attention layer followed by a feed-forward
network. The decoder has a similar structure to the
encoder except that it adopts a standard attention
mechanism following a self-attention layer.

Figure 3: Transformer blocks on the T5-encoder side.
The relative position and attention matrices in the
self-attention calculation will be replaced by two novel
position and attention matrices.

Preliminary In the case of the T5-encoder, a
‘‘fully-visible’’ attention mask is used, which per-
mits the self-attention mechanism to consider all
input entries when generating each output entry. In
addition, T5 adopts a simplified form of position
embeddings, where each embedding is a scalar.
Formally, as illustrated in Figure 3, the attention
calculation of encoder can be expressed as:

Q = XWQ,K = XWK ,V = XWV (1)

α =
1√
d

(
QKT +Pemb +Amask

)
(2)

Z =
exp(α)∑
exp(α)

×V (3)

where X is the input sequence. WQ ∈ R
d×dQ ,

WK ∈ R
d×dK and WV ∈ R

d×dV are learnable
project parameters. α is the attention weight be-
tween the query vector Q and the key vector K.
d is the dimensionality of the hidden represen-
tations. Z is the output of the attention module.
Pemb is position embedding and Amask is attention
mask.

The original attention mechanism is designed to
process unstructured natural language texts proves
inadequate in effectively capturing the inherent
structures within graphs. To better process our
structured graph data, we replace the position
embeddings Pemb and attention mask Amask in
Equation (2) with two new position and attention
matrices respectively, ensuring their awareness of
the underlying graph structures. Next, we will
elaborate on the processes of constructing the
position and attention matrices.
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4.3 Structure-enhanced Transformer

T5 is based on an encoder-decoder Transformer,
which does not necessarily capture graph struc-
tures. To address this issue, we propose a structure-
enhanced Transformer, which is built upon the
new position and attention matrices on the T5
encoder side. As illustrated in Figure 3, we use
new position embedding and attention mask ma-
trices (denoted as Pnew

emb and Anew
mask) to replace the

Pemb and Amask in the Equation (2), respectively.
Specifically, we devise a position matrix for the
Transformer to encode the relative positional in-
formation of connected nodes in the original input
graph G. In addition, we propose a new attention
matrix to replace the attention mask in the self-
attention, which takes the available explicit con-
nectivity structure of the input graph into account.

4.3.1 Position Matrix Construction

Integrating relational information about the graph
structure into the Transformer architecture is es-
sential for graph-to-text generation. Nevertheless,
most previous Transformer-based methods (Xing
and Wan, 2021; Han and Shareghi, 2022) learned
position embeddings automatically, instead of ex-
plicitly encoding the structural relationships. For
the input graph, we should only consider the rela-
tive position between connected nodes but ignore
the relative position between irrelevant nodes. To
this end, we replace the positional embeddings of
the original Transformer with a position matrix
that only establishes the relative position between
each relevant node pair (connected items). In this
way, we can explicitly capture the relative posi-
tions of all relevant nodes precisely.

Specifically, we first establish an auxiliary po-
sition matrix for each pair of connected nodes,
similar to the green and yellow boxes in Figure 4.
No matter how physically distant the two relevant
nodes may be, the corresponding auxiliary posi-
tion matrix solely takes into account the relative
distance between these two nodes’ internal to-
kens, disregarding the nodes situated between the
two target nodes. For example, consider the input
nodes ‘‘[Node] club’’ and ‘‘[Node] Jens Hartel’’,
since ‘‘club’’ is 3 units to the right of ‘‘Jens’’,
the value of cell [Jens, club] is 3. Notably, we
only compute the relative distance between each
connected note pair, while the distances of nodes
lacking direct connections will be set to ‘‘±inf ’’,
signifying an infinite distance between them. For

Figure 4: We construct a new position matrix Pnew
emb

to replace the original position matrix Pemb used in
Equation (2). We first set an auxiliary matrix for each
edge between two nodes, and then copy the content of
the auxiliary matrix into the final position matrix. The
distances of nodes lacking direct connections will be
set to ‘‘±inf’’. The lighter the color, the farther the
distance is.

instance, the value assigned to the cell [Jens,
Berliner] is ‘‘+inf ’’ due to the absence of a di-
rect connection between ‘‘[Node] Jens Hartel’’
and ‘‘[Node] Berliner AK 07’’.

After obtaining the auxiliary position matrix
for each pair of connected items, we can con-
struct the position matrix for the entire input
sequence by copying the cell values from the
corresponding auxiliary position matrices. It is
noteworthy that we seek to endow the prefixes
(denoted as ‘‘[Prefix-I]’’ and ‘‘[Prefix-S]’’) em-
bedded within the input with the capacity to
encapsulate comprehensive global information.
Therefore, we postulate that these prefixes es-
tablish direct connections with other nodes within
the input. Finally, we replace the positional em-
beddings Pemb of original Transformer with the
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Figure 5: We construct a new attention matrix Anew
mask

to replace the attention mask Amask used in Equation
(2). The attention matrix used to replace the attention
mask of self-attention in Transformer. The values of
the cells with colors are set to 1, while the values of
the cells without colors are set to 0. The blue color
represents global attention, the gray color represents
the self-connection of nodes, and the green and yellow
colors represent the two connected edges.

learned position matrix Pnew
emb, so as to effectively

capture the explicit relative distance between each
pair of connected items.

4.3.2 Attention Matrix Construction

The self-attention in the original Transformer pro-
cesses the input sequence by transforming the
input sequence through the substitution of each
element with a weighted average. Without re-
fining the conventional attention mechanism, the
present input data would be perceived as a fully
interconnected graph, potentially hindering the
optimal extraction of inherent structural infor-
mation. Given the above reasons, we construct a
relation-aware attention matrix to replace the orig-
inal attention mask in self-attention. Concretely,
if two elements have a direct relationship, we set
the value of the corresponding cell to 1; otherwise,
the value is set to 0. For example, as illustrated
in Figure 5, since the items ‘‘Jens Hartel’’ and
‘‘club’’ have direct connection, the values of cells
(Jens, club) and (Hartel, club) are set to 1; while
since ‘‘Jens Hartel’’ and ‘‘Berliner Ak 07’’ have
no direct connection, the values of the corre-

sponding cells such as (Jens, Berliner) and (Jens,
AK) are set to 0. Here, we hope that the pre-
fixes (i.e., ‘‘[Prefix-I]’’ and ‘‘[Prefix-S]’’) within
the input can carry global information, thus we
make the prefixes attend to all other elements.
After obtaining the attention matrix (denoted as
Anew

mask), we replace the attention matrix Amask of
self-attention in Equation (2) with our new atten-
tion matrix Anew

mask so as to effectively capture the
graph structures as shown in Figure 3.

4.4 Pre-training Objectives

Similar to Andrejczuk et al. (2022), we first use
the publicly available T5 checkpoints provided by
Herzig et al. (2020) as the initialization. Then, we
pre-train our model on our pre-training data. We
employ two objectives to pre-train our model in a
multi-task learning paradigm, including struct de-
noising and text generation objectives. In Table 3,
we provide two specific training instances (input
and output pairs) for the struct denoising and
graph-to-text generation objectives.

Struct Denoising Objective We design a struct
denoising strategy for table-like data, following
the method used in T5, by training the model to
predict a target sequence containing the missing
or corrupted tokens in the input graph. We apply a
noise function to construct a noisy input graph. In
particular, the noise function is implemented by
masking 15% of nodes while maintaining related
edges in the graph. The goal of struct denois-
ing objective is to reconstruct the target output
that contains all the dropped-out nodes, delimited
by the sentinel token. This pre-training objective
helps the UniD2T model capture relationships
between neighboring nodes in the input graph.

Graph-to-Text Generation Objective Given
the linearized graph Glinear and its explicit con-
nectivity structure E , the graph-to-text generation
task is carried out to produce the appropriate text
to describe the given graph in an auto-regressive
manner. We adopt the standard negative log-
likelihood loss LTG for the graph-to-text genera-
tion task:

LTG = − 1

N

n∑

i=1

log p(yi|y1, . . . , yi−1;Glinear, E) (4)

where n is the length of the target sequence Y .
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Task Inputs Targets

Struct Denoising
The category of the DBpedia entities is: < extra id0 >.

< extra id0 > Food‘Bakewell pudding’, ‘dish variation’, ‘< extra id1 >’,
< extra id1 > Bakewell tart‘main ingredients’, ‘Ground almond, jam, butter, eggs’

Graph-to-Text Generation

Describe the following data: The category of the Bakewell tart is a variation of BakewellDBpedia entities is: Food. ‘Bakewell pudding’, pudding and some of the main ingredients‘dish variation’, ‘Bakewell tart’, ‘main ingredients’, are ground almonds, jam, butter and eggs.‘Ground almond, jam, butter, eggs’

Table 3: The examples of input-output pairs for struct denoising and graph-to-text generation objectives.

Dataset Train Valid Test

ToTTo 120,761 7,700 7,700
CoSQL 7,845 1,074 −
WebNLG 13,211 1,667 1,779
DART 62,659 6,980 12,552
WikiBio 582,657 72,831 72,831
WikiTableT 1,453,794 4,533 4,351

Table 4: Statistics of downstream datasets.

5 Experimental Setup

5.1 Tasks and Datasets

To verify the generality and effectiveness of
UniD2T, we conduct experiments on three types
of data-to-text datasets. In particular, WebNLG
(Gardent et al., 2017) and DART (Nan et al., 2020)
are used for evaluating graph-to-text generation;
WikiBio (Lebret et al., 2016) and WikiTableT
(Chen et al., 2021) are utilized for evaluating key-
value-to-text generation; ToTTo (Parikh et al.,
2020) and CoSQL (Yu et al., 2019) are used for
evaluating table-to-text generation. Table 4 pro-
vides the statistics of these six datasets.

5.2 Implementation Details

In the pre-training stage, our model is initialized
with T5-Large. We pre-train our UniD2T model
on NVIDIA A100 GPUs. The maximum sequence
lengths of the input and target sequences are set
to 1024 and 512, respectively. We set the batch
size to 8. Gradient clipping is applied to the model
with a maximum gradient value of 1. To allevi-
ate the overfitting issue, the maximum number of
training steps is 500k. Moreover, a patient step
number is set to 25k, i.e., if the evaluation metrics
does not increase for the patient step number, the
training process will carry out an early stop. We
set the maximum learning rate to 1e-5.

6 Experimental Results

6.1 Table-to-Text Generation

We conduct experiments on two table-to-text
datasets, including ToTTo and CoSQL. The SQL
queries within CoSQL and the table header infor-
mation from ToTTo are strategically positioned
within the data-specific prefixes, denoted as
‘‘[Prefix-S]’’, as illustrated in Table 2.

ToTTo ToTTo is an open-domain table-to-text
task dataset that uses crowd annotators to high-
light the table cells and revise the corresponding
natural language descriptions. We compare our
UniD2T with several strong baselines, includ-
ing BERT2BERT (Rothe et al., 2020), LATTICE
(Wang et al., 2022), CoNT (An et al., 2022), Plan-
Gen (Su et al., 2021), and TABT5 (Andrejczuk
et al., 2022). TABT5 is a pre-trained model tai-
lored for table-to-text generation. We adopt BLEU
(Papineni et al., 2002) and PARENT (Dhingra
et al., 2019) as the evaluation metrics. The ex-
perimental results on ToTTo are summarized in
Table 5. Our model achieves substantially bet-
ter performance than the compared methods on
ToTTo in terms of overall, overlap, and non-
overlap settings. First, our model shows an im-
provement over T5 and TABT5, especially in
terms of PARENT. Second, our model also
achieves better results than the strong down-
stream methods.

CoSQL CoSQL serves as a prevalent benchmark
for evaluating table-to-text models (Fang et al.,
2022b; Li et al., 2023b). Each instance within
CoSQL comprises an SQL query, the resultant
table, and the corresponding response, where the
SQL query gives explicit signals for models on
what to generate. The generated description could
provide a concise and easy-to-understand sum-
mary of the result table and help users verify
whether the queried result is consistent with the
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Models Overall Overlap Non-Overlap

BLEU PARENT BLEU PARENT BLEU PARENT

ChatGPT(gpt-3.5-turbo) 20.5 49.5 24.4 51.2 17.5 47.7
BERT-to-BERT(Rothe et al., 2020) 44.0 52.6 52.7 58.4 35.1 46.8
LATTICE (Wang et al., 2022) 48.4 58.1 56.1 62.4 40.4 53.9
CoNT (An et al., 2022) 49.1 58.9 56.7 63.2 41.3 54.6
PlanGen (Su et al., 2021) 49.2 58.7 56.9 62.8 41.4 54.2

T5-3B 49.5 58.4 57.5 62.6 41.4 54.2
TABT5 (Andrejczuk et al., 2022) 49.2 57.2 − − 41.0 52.7
UniD2T 49.9 59.8 57.8 64.0 42.0 55.7

Table 5: Results on the ToTTo test set.

Models BLEU ROUGE-L

GraphWriter 16.86 47.44
FALCON 25.65 57.89

BART-Base 24.60 57.39
T5-Large 25.25 57.54
UniD2T 32.68 61.47

Table 6: Results on CoSQL development set.

original question. We compare our model with
GraphWriter (Koncel-Kedziorski et al., 2019),
BART-Base, T5-Large, and FALCON (Fang et al.,
2022a) which is a faithful contrastive genera-
tion framework based on T5. We adopt BLEU
(Papineni et al., 2002) and ROUGE-L (Lin, 2004)
as evaluation metrics. Since CoSQL does not re-
lease the test set, we follow FALCON and report
the experimental results on the development set in
Table 6. Our UniD2T model achieves signifi-
cantly better performance than baselines. The
BLEU and ROUGE scores increase by 7.03 and
3.58, respectively, over the best-performing base-
line FALCON.

6.2 Graph-to-Text Generation

We conduct experiments on two graph-to-text
datasets, including DART and WebNLG.

DART DART is a large dataset for open-domain
text generation that treats the input as a set of RDF
entity-relation triples. We compare our UniD2T
model with several pre-training models including
Transformer, BART, T5, and the state-of-the-art
method CONTROL PREFIXES (Clive et al.,
2021). BLEU (Papineni et al., 2002), METEOR
(Banerjee and Lavie, 2005), and TER (Snover
et al., 2005) are adopted as evaluation metrics.

Models BLEU METEOR TER

End-to-End Transformer† 27.24 0.25 0.65
LSTM with Attention† 29.66 0.27 0.63
CONTROL PREFIXES 51.95 0.41 0.43

ChatGPT(gpt-3.5-turbo) 40.51 0.37 0.53
BART-Base† 47.11 0.38 0.46
BART-Large† 48.56 0.39 0.45
T5-Small† 47.69 0.39 0.46
T5-Base† 49.21 0.40 0.44
T5-Large† 50.66 0.40 0.43
UniD2T 54.96 0.42 0.42

Table 7: Evaluation results on DART test set.
Results with † are token from DART (Nan et al.,
2020).

As shown in Table 7, our model surpasses the
best-performing model CONTROL PREFIXES
by a 3.0% BLEU.

WebNLG WebNLG (Zhou and Lampouras,
2020) consists of a set of triples collected from
DBpedia and the corresponding manually anno-
tated text. BLEU (Papineni et al., 2002), METEOR
(Banerjee and Lavie, 2005), chrF++ (Popović,
2015), TER (Snover et al., 2005), and BLEURT
(Sellam et al., 2020) are adopted as evalua-
tion metrics. We compare our method with both
pre-trained language models and strong down-
stream baselines. The overall experimental results
on WebNLG are shown in Table 8. Our model
achieves the highest performance among all base-
line models, including the graph pre-training
model TRIPLE (Han and Shareghi, 2022).

6.3 Key-Value-to-Text Generation

We conduct experiments on two key-value-based
datasets, including WikiBio and WikiTableT.
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Model BLEU METEOR chrF++ TER BLEURT

CP 54.97 41.7 69.3 39.8 0.62
CP + DART 55.41 41.9 69.8 39.2 0.63

T5-Large 51.74 40.3 66.9 41.7 0.61
TRIPLE 57.64 42.24 − 38.9 −
UniD2T 60.41 44.35 73.4 34.1 0.65

Table 8: Evaluation results on WebNLG test set.
CP stands for CONTROL PREFIXES (Clive et al.,
2021).

WikiBio WikiTableTModels
BLEU PARENT BLEU PARENT

Transformer 44.3 74.0 19.5 42.8
SANA 45.7 76.9 − −
CoNT 47.1 − − −

KGPT 45.1 76.3 31.8 48.5
T5-Large 48.6 77.5 31.4 47.6
UniD2T 50.4 79.8 33.7 50.7

Table 9: Results on WikiBio and WikiTableT test
sets.

WikiBio WikiBio is designed to generate de-
scriptions from a Wikipedia infobox and aims
to generate the first sentence of a biography. We
compare UniD2T with previous state-of-the-art
model (i.e, CoNT [An et al., 2022]), pre-trained
models (T5-Large, KGPT) and Non-autoregressive
model SANA (Wang et al., 2021) on WikiBio.
BLEU and PARENT are adopted as evaluation
metrics. The results are reported in Table 9.
UniD2T outperforms the best baseline CoNT by
3.7% on BLEU.

WikiTableT WikiTableT is collected from
Wikipedia sections with their corresponding tabu-
lar data, which contains millions of instances. We
compare UniD2T with Transformer, T5-Large and
KGPT (Chen et al., 2020b). Experiment results on
Table 9 show that UniD2T exceeds the best com-
petitor KGPT by 1.9% on BLEU and 2.2% on
PARENT.

6.4 Further Analysis

6.4.1 Ablation Study

We conduct experiments to investigate the impact
of pre-training with graph structure and linear
structure. The ablation results are summarized in
Table 10, which is divided into two parts: The
first part shows the results of directly fine-tuning

the pre-trained language model (i.e., T5-Large) on
the downstream datasets, referred to as DOWN-
DATA, while the second part presents the results
of incorporating additional pre-training data, de-
noted as PREDATA, on top of T5-Large. Through
careful analysis, we observe that UniD2T (T5-
Large+PGraph+FGraph) consistently outperforms
T5-Large+FGraph across all six data-to-text da-
tasets, resulting in a notable improvement in the
total score of +20.6. In addition, we observe that
T5-Large+FGraph outperforms T5-Large+FLinear

in terms of the total score by +6.1. This result
clearly indicates that our method significantly im-
proves the performance of the data-to-text mod-
els which linearize the structured data as input
during fine-tuning the models on downstream
datasets. Finally, we delve into the effects of the
pre-training datasets. By comparing the results
of P ∗

Graph + FGraph and PGraph + FGraph, P ∗
Linear +

FLinear and PLinear + FLinear, we observe that the
downstream datasets contribute to improving the
model’s performance and accelerating the pre-
training process. It is noteworthy that the pre-
training involving both PREDATA and DOWNDATA

achieves the best performance across all the ex-
perimental datasets.

We also delve into the effects of two Trans-
former modifications (position and attention
matrix construction). The results are illustrated in
Table 11. From the results, we observe a signifi-
cant performance drop when either the structure-
aware position or attention matrices are removed,
demonstrating the benefits of two Transformer
modifications. It is no surprise that combining all
the factors achieves the best performance. These
findings collectively demonstrate the effective-
ness of our proposed method, which explicitly
models its graph structure through the use of
structure-aware position and attention matrices.

6.4.2 Few-Shot Results
We conduct few-shot experiments on the E2ENLG
(Dušek et al., 2020) dataset sourced from the res-
taurant domain other than Wikipedia. This serves
as an additional validation of the model’s gen-
eralization capabilities. The E2ENLG dataset,
assembled through the CrowdFlower platform,
encompasses details about restaurants and com-
prises over 50,000 combinations of dialogue-act-
based meaning representations (MRs) with an
average of 8.1 references. We fine-tune UniD2T
using varying proportions of the training instances
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Model ToTTo CoSQL DART WebNLG WikiBio WikiTableT Total Score

Only Fine-tuning

Previous SOTA 49.2 25.6 51.9 57.6 48.6 31.8 −
T5-Large +FLinear 48.1 25.2 50.6 51.7 48.6 31.4 255.6
T5-Large +FGraph 49.1 26.7 51.2 53.1 49.4 32.2 261.7

With Additional Pre-training

T5-Large + PGraph + FGraph (UniD2T) 50.2 32.7 54.9 60.4 50.4 33.7 282.3
T5-Large + P ∗

Graph + FGraph 49.3 27.9 53.6 54.7 50.1 32.4 268.0
T5-Large +PLinear + FLinear 48.7 25.8 53.1 56.7 49.1 31.7 265.1
T5-Large + P ∗

Linear + FLinear 48.3 25.7 50.9 52.8 48.7 31.5 257.9

Table 10: Ablation test results on six benchmark datasets. PLinear and PGraph represent the models
pre-training with linear structure and graph structure, respectively. FLinear and FGraph represent the
models fine-tuning with graph structure and linear structure, respectively. P ∗ stands for pre-training
only with PREDATA; P indicates pre-training with both PREDATA and DOWNDATA.

Models BLEU METEOR chrF++ TER BLEURT

UniD2T 60.4 44.4 73.4 34.1 0.65
- attention 58.6 42.7 70.3 37.2 0.64
- position 58.3 42.6 70.2 36.7 0.64
- all 56.7 42.3 69.8 37.8 0.63

Table 11: Ablation test results on WebNLG test
set.

Model 0.1% 0.5% 1% 5%

TGen 3.6 27.9 35.2 57.3
Template-GPT-2 22.5 47.8 53.3 59.9
KGPT-Graph 39.8 53.3 55.1 61.5
KGPT-Seq 40.2 53.0 54.1 61.1
UniD2T 45.6 57.3 57.6 64.8

Table 12: Few-shot results on the E2ENLG test
set.

(i.e., 0.1%, 0.5%, 1%, 5%, and 10%) from E2ENLG
(Dušek et al., 2020). We compare UniD2T with
several few-shot learning methods including TGen
(Dušek and Jurčı́ček, 2016), Template-GPT-2
(Chen et al., 2020a), and KGPT (Chen et al.,
2020b). The experimental results are summarized
in Table 12. We can see that UniD2T significantly
outperforms all baselines in various few-shot
settings.

6.4.3 Human Evaluation
We also conduct a human evaluation to analyze
the generated sentences following Chen et al.
(2020b). It is worth noting that each evaluator is
unaware of which model generates the text being
evaluated so as to avoid evaluation bias. Specifi-
cally, we choose 100 test samples from WebNLG

Figure 6: Human evaluation of the factual consistency
of different models on WebNLG samples.

and observe the factual consistency between the
gold sentences and generated sentences. We invite
four NLP workers to assign each text a label from
{Hallucination, Missing Fact, Accurate}, similar
to (Chen et al., 2020b). As shown in Figure 6, our
UniD2T is less prone to hallucinating non-existing
facts and can generate more accurate sentences.

6.4.4 Impact on Graph Sizes

To illustrate the effectiveness of the graph struc-
ture, we further investigate the performance of
PLinear +FLinear and P ∗

Graph +FGraph by concerning
different graph sizes on the WebNLG validation
set. Experimental results in terms of BLEU are
shown in Figure 7. When the graph structure is
simple, the impact of the graph structure is lim-
ited. However, as the graph structure becomes
complex, the model with graph structure (P ∗

Graph+
FGraph) performs much better than the model
with linear structure (PLinear + FLinear). Thus, the
structure-enhanced model UniD2T demonstrates
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Figure 7: Comparing PLinear +FLinear and PGraph+
FGraph BLEU score changes in increasing the number
of triples on WebNLG’s seen and unseen.

greater stability and better performance on large-
scale inputs when compared to linear sequence
models.

6.4.5 Impact on Model Sizes

To investigate the influence of different model
scales on the experimental results, we conducted
experiments using FGraph on T5-Small, T5-Base,
T5-Large, and T5-3B on the DART and ToTTo
dev sets without pre-training. It is important to
note that for our experiments, we conduct eval-
uations on the dev sets rather than the test sets.
This decision is made due to the constraints im-
posed by the ToTTo dataset, where obtaining test
results requires submitting predictions to the lead-
erboard and awaiting the evaluation process,
which can be time-consuming. Therefore, to expe-
dite our research and streamline the experimen-
tation process, we relied on the readily available
development sets for conducting our evaluations.
The results are presented in the Table 13. Notably,
the transition from T5-Large to T5-3B resulted in
a substantial increase in the number of parameters
by approximately 3.9 times. However, the corre-
sponding improvement in efficacy was found to
be less than 1%. This analysis sheds light on the
limited impact of scaling up the model size be-
yond a certain threshold, given the marginal gains
in performance despite the significant increase in
parameter count.

6.5 The Zero-shot Performance of ChatGPT

We conducted zero-shot experiments using Chat-
GPT on the ToTTo and DART datasets to estab-
lish baselines for performance evaluation. The

ToTTo DART

BLEU PARENT BLEU METEOR TER

T5-Small + FGraph 45.5 53.3 48.8 0.39 0.45
T5-Base + FGraph 48.6 58.8 50.2 0.40 0.44
T5-Large + FGraph 49.1 59.4 51.2 0.40 0.43
T5-3B + FGraph 49.8 59.7 51.4 0.41 0.43

Table 13: The performance of T5 with different
model scales on the dev sets of DART and ToTTo
datasets, without performing any pre-training.

ToTTo

PROMPT: Put the highlighted-table together to form
a sentence:

STRUCTURED INPUT: <page title> List of Malay-
alam films of 1976 </page title><table> <cell>
Surveykkallu <col header> Film </col header>
</cell> <cell> Thoppil Bhasi <col header> Direc-
tor </col header> </cell> </table>

DART

PROMPT: Put the triples together to form a sentence:

STRUCTURED INPUT: Mars Hill College: joined:
1973 | Mars Hill College: location: Mars Hill,
North Carolina

Table 14: Input examples for ChatGPT on ToTTo
and DART. Here, PROMPT represents task descrip-
tion, and STRUCTURED INPUT represents data input
with specific formats.

results of these experiments are presented in
Table 5 and Table 7 as baselines. The prompt
structure of ChatGPT comprises two parts, and
detailed information regarding these prompts can
be found in Table 14.

From the results, we observe that ChatGPT
demonstrates consistent performance across var-
ious measures. For instance, in the non-overlap
subset of the ToTTo dataset, when compared
to BERT-to-BERT, the BLEU score shows a
decrease of 17.6%, while the PARENT score ex-
hibits a slight increase of 0.9%. This divergence in
BLEU performance indicates that ChatGPT gener-
ates responses with different word choices, leading
to reduced word overlap with the reference. How-
ever, the improvement in the PARENT score
suggests enhanced structural and content-related
aspects in the generated responses. These findings
underscore the importance of employing multiple
evaluation metrics to comprehensively assess the
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Figure 8: Examples of generated sentences. The main entity is highlighted in green, and the words that are not
faithful to the input are in red. Important information common to both models is indicated in blue.

performance of sophisticated language generation
systems in future work.

6.5.1 Impact on Edge Directionality

We take an examination into the significance
of edge directionality and present the experi-
mental results of incorporating the edge direction
in Table 16. For UniD2Tdirected, we consider the
input directed graph using only its original di-
rected edges (uni-directional) and remove the re-
verse edges added by UniD2T. Please refer to
Section 3.3 for more details about the reverse
edges. From Table 16, we can observe that the
incorporation of edge direction has a deleterious
effect on the performance of pre-trained mod-
els. There are several possible factors that may
underlie these observed outcomes. (1) First, the
pre-training models aim to learn the general rep-
resentations of structured data. However, due to
the vast scale of multi-source data, it is often un-

feasible to assign a direction to each data pair.
For example, the tabular format constitutes a fun-
damental type of structured data; however, the
absence of explicit edge directionality is a typ-
ical characteristic between individual data pairs
within this format. Therefore, we default to us-
ing bidirectional edges to signify mutual relation
ships between two entities. (2) Second, we antici-
pate learning the coarse relationships between two
entities through undirected graphs during the pre-
training phase offer greater flexibility to accom-
modate various types of relationships in different
fields. For instance, the directional link ‘‘Jay Chou
→ Common Jasmine Orange’’ conveys that Jay
Chou released the album Common Jasmine Or-
ange, while the reverse link ‘‘Common Jasmine
Orange → Jay Chou’’ signifies that Common Jas-
mine Orange is one of Jay Chou’s albums. In
most cases, it is unnecessary to provide elaborate
descriptions of specific relationships, as the data
primarily requires indicating connections.
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Models Distinct-1 Distinct-2 Distinct-3 Distinct-4

ChatGPT 7.56 18.93 28.33 35.75
T5-Large 6.94 13.94 19.00 23.00
UniD2T 6.58 14.72 21.22 26.38

Table 15: The results of diversity evaluation on
DART test set.

6.6 Case Study

As illustrated in Figure 8, we further verify the
effectiveness of UniD2T qualitatively by demon-
strating some generated sentences by UniD2T and
T5-Large. Both UniD2T and T5-Large are capa-
ble of generating main entities. However, there
are notable differences in the quality and coher-
ence of the generated sentences. Specifically, the
sentences generated by T5-Large tend to exhibit
shortcomings in terms of including key informa-
tion and logical reasoning. For instance, in the first
case, T5-Large fails to infer that the ‘‘Baltimore
World Trade Center’’ is the tallest building. This
illustrates the limitation of T5-Large in capturing
and incorporating specific facts with logical rea-
soning. In contrast, UniD2T can produce sentences
that are more accurate, complete, and encom-
pass the main entities and logical information
with greater precision. This highlights the advan-
tages of UniD2T in generating more contextually
appropriate and logically grounded sentences.

6.7 The Diversity of Generated Sentences

We conduct an evaluation of the diversity ex-
hibited in the target sentences generated by
UniD2T and compare it with strong baselines
(i.e., T5-Large and ChatGPT). To quantify the
diversity of the generated sentences, we utilized
the Distinct-N metric (Li et al., 2016), which cal-
culates the number of distinct N-grams divided by
the total number of generated tokens. The experi-
mental results are presented in Table 15, providing
insights into the diversity performance of the mod-
els. By analyzing the results, it is evident that
UniD2T achieves notably higher Distinct-2/3/4
scores compared to T5-Large. This suggests that
UniD2T generates sentences with a greater variety
of unique unigrams and bigrams than T5-Large,
indicating a higher level of linguistic diversity
in the output. However, ChatGPT achieves better
diversity scores than UniD2T. It tends to gener-
ate more diverse words which are not included

Edge WikiBio WikiTableT

BLEU PARENT BLEU PARENT

UniD2T 50.4 79.8 33.7 50.7
UniD2Tdirected 48.8 78.5 31.7 48.3

Table 16: The results of our models with undi-
rected graphs (i.e., UniD2T) and directed graphs
(denoted as UniD2Tdirected), respectively.

in our vocabulary, although these words may be
non-existing content.

6.8 Limitations

Based on our empirical observation, we reveal sev-
eral limitations of this work, which can be divided
into three primary categories. (1) Our pre-training
data is limited, which only contains two existing
pre-training datasets and six downstream datasets.
In the future, we would like to collect more D2T
datasets so as to construct a large-scale diverse
pre-training corpus. (2) In this work, we unify
different structured data into the graph format by
using a simple and direct method. We will attempt
to exploit more advanced strategies to construct
graphs from different structured data. (3) This
study focuses on modeling the graph structures
and incorporating the structural information into
Transformer. However, the pre-training objectives
can be further improved so as to further improve
the representation learning.

7 Conclusion

In this paper, we proposed a unified data-to-text
pre-training method, which could be applied to
various downstream data-to-text generation tasks.
Concretely, we first converted different types of
structured data into graph format. Then, we de-
vised a structure-enhanced Transformer to capture
graph structures by introducing two new position
and attention matrices to replace the position em-
bedding and attention mask in the self-attention
of the Transformer. Extensive experiments on
six data-to-text benchmark datasets demonstrated
that UniD2T achieved substantially better per-
formance than strong baselines by enabling better
information sharing and representation learning of
data structures across diverse data-to-text datasets.
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