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Abstract

The majority of Neural Semantic Parsing
(NSP) models are developed with the assump-
tion that there are no concepts outside the
ones such models can represent with their
target symbols (closed-world assumption).
This assumption leads to generate hallucinated
outputs rather than admitting their lack of
knowledge. Hallucinations can lead to wrong
or potentially offensive responses to users.
Hence, a mechanism to prevent this behavior is
crucial to build trusted NSP-based Question
Answering agents. To that end, we propose
the Hallucination Simulation Framework
(HSF), a general setting for stimulating and
analyzing NSP model hallucinations. The
framework can be applied to any NSP task
with a closed-ontology. Using the proposed
framework and KQA Pro as the benchmark
dataset, we assess state-of-the-art techniques
for hallucination detection. We then present
a novel hallucination detection strategy that
exploits the computational graph of the NSP
model to detect the NSP hallucinations in the
presence of ontology gaps, out-of-domain
utterances, and to recognize NSP errors,
improving the F1-Score respectively by ∼21%,
∼24% and ∼1%. This is the first work
in closed-ontology NSP that addresses the
problem of recognizing ontology gaps.
We release our code and checkpoints
at https://github.com/amazon-science/

handling-ontology-gaps-in-semantic-parsing.

1 Introduction

Semantic Parsing (SP) is one of the long-standing
tasks in Natural Language Understanding, aiming
at mapping complex natural language to machine-
readable languages (e.g., SQL, SPARQL, KoPL
(Cao et al., 2022), and so on). These languages,
which we will refer to as Meaning Representa-
tion Languages (MRLs), are designed to be pre-
cise representations of the natural language’s in-
tent, enabling efficient querying of a Knowledge

Base (KB) to retrieve pertinent answers in a Ques-
tion Answering (QA) agent. Despite the advent of
the Transformer architecture (Vaswani et al., 2017),
which has enabled semantic parsers to achieve ex-
traordinary performance (Cao et al., 2022; Bai
et al., 2022; Conia et al., 2021), Semantic Pars-
ing’s crux remains the handling of out-of-ontology
queries; in other words, since SP models and tasks
(such as KQA-PRO (Cao et al., 2022), LC-QUAD
2.0 (Dubey et al., 2019), and QALD-9 (Cui et al.,
2022)) hold a closed-world assumption, they will
always try to map an utterance to a MRL even if
there is no valid representation for that utterance
in the target ontology, leading to wrong answers to
be delivered to the model’s users, called hallucina-
tions.

In fact, the closed-ontology task formulation en-
forces NSP models to always produce interpreta-
tions without an option to admit their lack of knowl-
edge, inducing the models to hallucinate. There-
fore, the resulting models produce hallucinated out-
puts when they receive an utterance that requires
symbols outside of their ontology, resulting in a
wrong and potentially offensive answer. It is then
of paramount importance to develop a system able
to detect and prevent these hallucinations, so that
users are not exposed to such mistakes. Hallucina-
tions in NSP differs with the notion of hallucina-
tions in Natural Language Generation, we report
the differences in Appendix A.

To better understand different types of halluci-
nations in NSP, we classify errors into four macro
categories. Given a semantic Q&A parsing task T ,
a dataset D, and an ontology O, hallucinations of a
model trained over D are classified as:

• in-ontology NSP errors: utterances within
the scope of T and where O contains all
the symbols required to produce the correct
MRLs, but for which the NSP model produces
an incorrect MRL. For example, the utterance

“What is the capital of France?" is in-ontology
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Figure 1: The proposed pipeline: (1) the NSP model (KQA-PRO Bart model) receives the question from the user
and produces the corresponding MRL; (2) the Hallucination Detection Model extracts features from the NSP model
and decides whether to deliver the MRL to the user or not.

if O contains the symbols for “France” and
“capital of ”. However, if the NSP model er-
roneously translates the utterance to an MRL
referencing e.g. a symbol for “weather of”
instead of “capital of”, this type of hallucina-
tion is categorized as in-ontology NSP error.
We will refer to this kind of errors as NSP
errors for brevity.

• out-of-ontology: utterances that are within T
but for which O does not contain all the sym-
bols required to produce the correct MRLs
(ontology gap). For example, “What is the
crime rate of France?", is out-of-ontology if
O does not contain a symbol for the predicate
“crime-rate-of ”. In this case, the NSP model
will hallucinate another symbol, e.g. it could
generate the MRL for “what is the population
of France” instead.

• out-of-domain (OOD): utterances outside the
scope of T . For example, if T = factual QA,

“Switch on the lights!” is OOD because it is
not a factual question. We expect an empty
MRL because O does not have the necessary
symbols to satisfy the out-of-ontology user
utterance and the NSP model is trained to per-
form the task T .

• non-executable output: in this case, the NSP
model will output a MRL that cannot be exe-
cuted and it thus cannot lead to an answer.

We show actual closed ontology Semantic Pars-
ing hallucination examples in Figure 2 and we re-
port more in Appendix H. High performance in
detecting OOD utterances in NSP can be achieved
(Lukovnikov et al., 2021; Lang et al., 2023), and
non-executable outputs are trivially detectable as
they fail to parse; but identifying both in-ontology
and out-of-ontology errors can be hard even for ex-

perienced annotators, since the sheer size of most
popular ontologies makes it impractical for a hu-
man to have a complete view of all the ontology
symbols1. Moreover, to the best of our knowledge,
there are no works addressing this specific NSP
issue.

The research question that we want to address is:
what is the most effective strategy to prevent a NSP-
based QA agent to deliver wrong, and potentially
offensive, answers to its users? To this end, we
develop the Hallucination Simulation Framework
depicted in Figure 1; in detail, our main contribu-
tions are:

• We propose a framework to stimulate, analyze
and detect hallucinations in closed ontology
NSP;

• We propose the Hallucination Detection
Model (HDM), an architecture that analyzes
an NSP model to determine whether it is hal-
lucinating or not using several hallucination
detection signals;

• We introduce a model’s Activations as hal-
lucination detection signals; when combined
with other signals, they improve the Macro
F1-Score by up to 21% in ontology gaps, 1%
in NSP error, and 24% in OOD detection.

To the best of our knowledge, this is the first work
that addresses the ontology gaps problem in a
closed-ontology NSP task.

2 Related Work

When we do not allow models to admit their lack
of knowledge, forcing them to produce an output
even when they do not have the instruments to do
it, they will inevitably hallucinate. In other words,

1e.g., Wikidata has 10k+ properties.
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in generative NLP, when the generated output dis-
plays a misunderstanding of the input utterance by
the model, we say that the model is “hallucinating”.
Typically, models hallucinate in two ways: (1) in-
venting additional information not included in or
related to the input utterance, or (2) confusing a
symbol/word with another one.

One of the biggest assumptions in existing Se-
mantic Parsing tasks is that every input always has
a valid target logical form. In such a setup, mod-
els are always forced to generate a MRL or, in
other words, to hallucinate a wrong understanding,
instead of admitting a lack of knowledge. How-
ever, recently the NLP community has begun to
investigate this closed-world assumption for other
tasks. For example, the Extractive Question An-
swering dataset SQuAD v1 (Rajpurkar et al., 2016)
was built with the assumption that, given each
question-paragraph pair, it is always possible to
find an answer to the question in the paragraph.
This assumption was removed in the second version
of the dataset (Rajpurkar et al., 2018), which in-
cludes questions without an answer. Another field
in which this problem was addressed is entity link-
ing, where models can produce a NIL entity when
they cannot find a suitable entity for a certain men-
tion (Ruas and Couto, 2022). On the other hand,
most of the hallucination detection in NSP works
rely on two confidence estimation techniques: (1)
the Sequence log-probability (also called Confi-
dence Score) (Guerreiro et al., 2022; Dong et al.,
2018), or (2) Monte Carlo Dropout (or Dropout Per-
turbation) (Gal and Ghahramani, 2016; Guerreiro
et al., 2022; Dong et al., 2018).

3 Closed World Assumption in NSP: A
Logical Theory Perspective

The Closed World Assumption (CWA) originates
from logic theory, and it is the assumption that
only the known facts are correct, and what is not
known is false (Reiter, 1981; Keet, 2013). In other
words, the CWA assumes total knowledge over
a domain, implying that all the possible symbols
(e.g., entities and predicates) are known, and that
only the known facts represented using the known
symbols are true. On the other hand, the Open
World Assumption (OWA) makes no assumption
over what is not known; in other words, the OWA
allows “gaps” in the knowledge, e.g. the existence
of unknown symbols or of unknown, but true, facts.

For some tasks, using the CWA is safe. For ex-

Figure 2: We show the output our NSP model trained
without a symbol for the concept of “cause of death".
Given a question that requires this symbol, the model
produces a wrong but executable MRL leading to a
wrong answer served to its user.

ample, Reiter (1981) notes that: “in an airline data
base, all flights and the cities which they connect
will be explicitly represented. If I fail to find an en-
try indicating that Air Canada flight 103 connects
Vancouver with Toulouse I will conclude that it
does not”. For SP models, however, the CWA can
be dangerous. Let’s take the following scenario:
a CWA NSP model’s input is “what is the crime
rate of France”, but the target ontology does not
have a representation for the predicate “crime rate
of”. Since the model is trained under the CWA it
assumes that there cannot be other predicates other
the ones it can access, hence it will (a) ground

“crime rate of” to a different predicate and then (a)
produce a necessarily incorrect representation of
the input. If this incorrect representation happens
to be syntactically correct, it will then be exectuted,
serving a wrong answer to the customer.

This issue is exemplified in Figure 2, where
we take a NSP model trained on the KQA-Pro
dataset (Cao et al., 2022) and we ask it to generate
a MRL for the question “did Chistopher Colum-
bus die from Covid before 2020?”. The absence
of the "cause of death" symbol in the set of the
model’s known symbols leads to an MRL which er-
roneously uses the "date of death" symbol instead.
Even if this MRL is syntactically correct, it mis-
represents the input due to the limitations of the
training set. Since the MRL is executable, it will
lead to the generation of an incorrect answer.

4 Detecting NSP Hallucinations

4.1 Hallucination Simulation Framework
Building on the CWA and OWA assumptions, we
introduce the Hallucination Simulation Framework
(HSF), a dataset-agnostic approach tailored for
closed-ontology NSP tasks. This framework lever-
ages the closed and open world assumptions to
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force a model to hallucinate at inference time. The
model is trained using a “normal” SP dataset hold-
ing the CWA. However, the validation and test sets
will contain MRLs needing symbols not known
to the model at training time, hence forcing it to
hallucinate. This allows to analyse how the model
behaves when unable to produce ontology symbols,
and to develop a number of hallucination detection
strategies to mitigate the issue.

In practical terms, the HSF operates by con-
sidering the ontology used for a CWA SP
dataset Odataset, and decomposing it into two
disjoint sub-ontologies, called Oknown_symbols and
Ounknown_symbols. Oknown_symbols contains the on-
tology symbols that are used to train the model,
while Ounknown_symbols contains the symbols that
are used to stimulate hallucinations; we have that
Oknown_symbols ∪ Ounknown_symbols = Odataset and
Oknown_symbols ∩ Ounknown_symbols = ∅.

These sub-ontologies are used to construct two
datasets, a NSP dataset and an Hallucination De-
tection Dataset (HDD), whose construction is de-
tailed in Section 4.1. The NSP dataset, contain-
ing only Oknown_symbols, is used to train the model,
while the HDD, containing both Oknown_symbols and
Ounknown_symbols, is used to stimulate the model to
hallucinate wrong ontology symbols and develop
hallucination detection strategies (Section 5) .

Thanks to this framework, we can now program-
matically induce hallucinations in a NSP model
at inference time. Thus, we can train, tune, and
test hallucination detection strategies to recognize
unwanted signals from the model.

4.2 Hallucination Detection Dataset

The HDD comprises two types of samples: each
natural language sentence is paired either with
(1) MRLs that require only symbols from the
Oknown_symbols set, or (2) MRLs that require at least
one symbol from the Ounknown_symbols set. To build
the HDD, we first define Ounknown_symbols; then, we
split Ounknown_symbols in three sets, that are used
to build the HDD train, development, and test set.
We report the complete Ounknown_symbols set in Ap-
pendix E.

In the following, we describe the methodology
we followed to we ensure that the out-of-ontology
symbols are sufficiently diverse and challenging,
providing a rigorous test of the hallucination detec-
tion strategies.

Disjoint HDD train, validation and test sets
To ensure that Ounknown_symbols cannot be shared
across train, dev and test set, we create three dis-
joint set one for each data split, as shown in Ap-
pendix E. Furthermore, we eliminate any sentences
that require symbols from multiple out-of-ontology
splits. This allows the development of robust hallu-
cination detection strategies that are able to gener-
alise over unseen ontology symbols.

Diversification of unknown symbols To im-
prove the generalization of our methods, we also
aim to maximize the number of out-of-ontology
symbols across all splits. This is essential, as hav-
ing few unknown symbols might lead hallucination
detection strategies to recognize them throw their
sentence context than isolating the underlying hal-
lucination signal. For this purpose, we place sym-
bols in Ounknown_symbols based on their frequency
of occurrence within the original dataset; we prior-
itize symbols with lower frequency (symbols with
maximum 2 occurrences), as this approach maxi-
mizes the number of unique symbols in the HDD
while maintaining a robust volume of samples for
the NSP training set.

Ensuring Independent Feature Extraction by
Dataset Segregation As detailed above, the
framework employs two datasets: the NSP dataset
and the HDD, each divided into training, dev, and
test splits.

To construct the known symbol portion of the
HDD we used utterances from the NSP dataset. It
is crucial not to include utterances from the NSP
train split, otherwise the hallucination detection
strategies could simply learn to recognize as non-
hallucinated only the utterances that were used to
train the NSP model.

To circumvent this issue, the training and vali-
dation sets of the HDD are built by splitting NSP
validation set. The HDD test set is instead simply
built by appending samples containing the test sym-
bols from Ounknown_symbols to the existing NSP test
set. We depict this process in Figure 3.

Out-Of-Domain sentences Besides out-of-
ontology sentences, also out-of-domain (OOD)
sentences are a common cause of hallucinations
for NSP models. For example, consider a system
trained to answer questions like “In what state
does the Pope live?". Given an input sentence
such as “Set an alarm at 8 am for Monday!"
from a distinct domain (i.e., not a question), the
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Figure 3: Construction of the Hallucination Detection Dataset (HDD). The first row represents the dataset used to
train and test the NSP model, containing only Oknown_symbols. To construct the Oknown_symbols portion of the HDD
while avoiding overfitting of the hallucination detection strategies, we sourced sentences only from the validation
and test splits of the NSP dataset as explained in Section 4.2.

question answering system will always produce
wrong MRLs, because its ontology is not suitable
for this type of utterances. We include OOD
only in the validation and test sets for two main
reasons: 1) to evaluate the zero-shot capabilities in
recognizing OOD utterances as a different source
of out-of-ontology; 2) to avoid the need for specific
training for OOD detection, as addressing the wide
range of potential OOD instances is beyond the
scope of this study. We report the OOD dataset
statistics in Appendix D.

5 Hallucination Detection Strategies

In this Section, we introduce the Hallucination De-
tection Strategies that we use in our experiments.

Autodetect Hallucinations A baseline approach
to detect hallucinations is to enable the NSP model
itself to decide whether to reject the MRL or not,
in a similar fashion to the NIL entity in Ruas and
Couto (2022). Therefore, we add a new ontology
symbol called <Reject-MRL> in the NSP model,
as a label for all the out-of-ontology sentences, i.e.
moving from a CWA approach to a OWA one. In-
stead of using the NSP and HDD datasets, as we
don’t rely on external hallucination detection strate-
gies, we train the NSP model using the full Odataset,
marking MRLs containing Ounknown_symbols sam-
ples as utterances to reject. In preliminary experi-
ments, this approach resulted in zero true positives.
This happens because the model memorized the ut-
terances marked as out-of-ontology, hence failing
to generalize on the “unseen” unknown symbols in
the development and test set (see Section 4.2 for
how the disjoint train, validation and test sets are
constructed).

Confidence Score Confidence Score (CS) is a
standard method to detect hallucinations (Dong
et al., 2018) that measures the confidence level of a

statistical model about the output it generates. How-
ever, this method relies on the strong assumption
that the model will not be confident when gener-
ating hallucinations, and vice versa. This is not
always guaranteed in practice: as we can see in the
CS distribution in Figure 4, the confidence distribu-
tions of correct and wrong model predictions over-
lap. For this reason, rejecting model predictions
below a certain threshold would not be sufficient to
remove all the wrong MRLs.

To compute the CS, we calculate the Posterior
Probability (PP) of a generated MRL wn, ..., w1

from the beam search tree, and then we normalize it
by the length n of the generated output, by applying
the nth-root.

CS = n
√
PP (wn, wn−1, ..., w1) (1)

We test CS in two ways: (1) by setting a threshold
to the best CS value found in a sample from the
HDD train set that maximizes the hallucination
detection in the HDD dev set; (2) and by using it
as a feature in the Hallucination Detection Model
(HDM) that we will define in Section 6.

Monte Carlo Dropout The Monte Carlo
Dropout (MCD) strategy was introduced by Gal
and Ghahramani (2016): the idea is to use the
dropout technique as a Bayesian approximation
to represent the model uncertainty. Dropout is a
well-known regularization technique that randomly
disables a subset of the neurons in a neural network
layer in order to prevent overfitting. MCD involves
enabling dropout at inference time and running
inference multiple times to create a random pertur-
bation in the model; a small perturbation indicates
that the model is confident with the input, while a
large perturbation suggests a likely mistake from
the model. We follow the formulation by Dong
et al. (2018), using 30 trials, beam size of 2, and
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Figure 4: Overlap between the distributions of correct
predictions, out-of-ontology, NSP errors, and OOD w.r.t.
Confidence Score (CS). The model is overconfident
over wrong predictions, hence the CS is not sufficient
to separate good and Hallucinated MRLs. Specifically,
the CS struggles to distinguish between NSP Errors
and correct predictions (i.e., both types of MRLs that
contains only Oknown_symbols).

taking the variance of the CS value. Similar to CS,
we use the MCD in two ways: (1) identifying a
threshold value that maximizes hallucination de-
tection between out-of-ontology/NSP Errors and
in-ontology, and (2) using it as a feature for the
HDM.

Model Activations Looking at the activations of
the model’s computational graph is a powerful way
to debug neural networks and is usually used for
explainability, such as in the Grad-Cam algorithm
(Selvaraju et al., 2017). For this reason, we propose
for the first time to use the forward activations of
the NSP model encoder at inference time to detect
whether there is a hallucination or not. To encode
the activation features for all layers, we pool the
sequence length and compute the variance. Then,
we use the encoding of the model’s activations as a
feature to recognize the hallucinations in the HDM.
Although it can be argued that both the Autodetect
and Activations strategies use the encoder’s hidden
states, these approaches are different. The first
approach uses only the last hidden states of the
encoder as input to the decoder, which has then the
duty of producing an MRL or the rejection symbol.
On the other hand, in the HDM all the encoder’s
activations are used as input, allowing the HDM to
have a complete view of the hidden states of the
NSP model during the generation.

Hallucination Detection Model The Halluci-
nation Detection Model (HDM) is a neural net-
work trained on the HDD that learns to classify
whether an NSP model is hallucinating or not us-
ing as features the signals extracted from the NSP
models, such as CS, activations, and MCD. The
HDM consists of a MultiHead-Attention and two
feed-forward layers with RELU function, batch
normalization, dropout, and a binary classification
head.We report a Figure of the architecture in Ap-
pendix G, the complete list of hyper-parameters
in Appendix I and hardware infrastructure in Ap-
pendix L.

6 Experimental Setup

Dataset While the HSF is dataset-agnostic, in
our experiments, we use the KQA-PRO dataset
(Cao et al., 2022), based on the KoPL (Knowledge-
oriented Programming Language) MRL; this
dataset is built on top of a large ontology, which
is a subset of Wikidata. We instead sourced OOD
sentences from the TOP v2 Dataset (Chen et al.,
2020), that contains task oriented utterances, such
as “Turn on the lights!".

To create a test set, we merged the train and
the validation set, and we split the data as follows:
60%, 20%, and 20%, respectively, for the train,
validation and test set. The statistics of the HSF
framework applied to the KQA-PRO dataset are
reported in Appendix B.

NSP model Following the KQA-PRO paper, we
train the BART-base model (Lewis et al., 2019),
using the NSP training dataset. We report the hyper-
parameters that we use to train the NSP model in
Appendix M. Note that as the original KQA-PRO
test set is not publicly available, we cannot compare
our results with the original dataset paper.

Evaluation To measure the hallucination detec-
tion capabilities, we use the Macro F1-Score due to
the imbalance of the dataset, as shown in Appendix
D and, E. We compute the individual F1-Score
for each type of hallucination defined in Section
1: in-ontology NSP errors caused by the model
hallucinating wrong symbols from Oknown_symbols,
out-of-ontology errors caused by the need of sym-
bols in Ounknown_symbols to correctly represent the
input, and zero-shot OOD detection. As mentioned
in Section 7, we excluded non-Executable MRLs
from our evaluation protocol because they are triv-
ially detected by simply trying, and failing, to ex-
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Split Answer Accuracy MRL EM

NSP model (baseline) 93% 85%
NSP model + Threshold CS 96% 94%
NSP model + Act. + CS 97% 95%

Table 1: Performance of baseline KQA-PRO BART
model and of the best hallucination detection models
on the NSP task; the NSP model is trained as in (Cao
et al., 2022), and on top of it we apply our hallucination
detection strategies. We compute metrics only on the
executable outputs that lead to an answer to be delivered
to a user; for more details, see Appendix F.

ecute them on the KB. To increase the robustness
of our results, we repeat the training of the HDM
model in all the configurations using 10 different
random seeds, and then we report the mean and the
standard deviation of the F1-Scores.

7 Discussion

We report the performance of our NSP model using
Execution Accuracy and the MRL Exact Match
metric in Table 1. In this work, we focused on
four major causes for hallucinations: in-ontology
NSP errors, out-of-ontology utterances and out-of-
domain utterances. Specifically, we propose the
first work that addresses the problem of ontology
gaps, i.e., exposing an NSP model to utterances
that require unknown ontology symbols to be rep-
resented in the output vocabulary. As mentioned
in Section 1, recognizing ontology gaps is a chal-
lenging task even for experienced annotators due
to the large size of the most popular ontologies.
Our methodology induces ontology gaps and forces
the model to hallucinate programmatically through
a Hallucination Simulation Framework (§4). We
developed a number of hallucination prevention
strategies (§5) to detect and prevent the delivery
of hallucinated answers to users. In Table 2, we
report the individual Macro F1-Score of the tested
systems on the three scenarios: out-of-ontology,
NSP Errors, and zero-shot out-of-domain.

From a baseline where only non-executable
MRLs are not delivered to the user, the HDM with
Activations + CS is our best-performing model, im-
proving answer accuracy by 4% and MRL exact
match by 10%, effectively reducing a user’s exposi-
tion to wrong answers. The HDM with Activations
+ CS’s performance is achieved by increasing the
Macro F1-Score by approximately 21% and 24%
for out-of-ontology and out-of-domain detection
w.r.t. baseline, respectively. On the other hand, the

NSP Errors detection performance is comparable
to that of Threshold CS, with only the HDM with
the Activations + CS + MCD combination showing
a 1% improvement over the baseline in NSP Error
detection. This marginal gain can be attributed to
the limited number of errors produced by our NSP
model over utterances with known symbols only,
which constitutes about 11% of the in-ontology
utterances (see statistics in Appendix J).

However, we can notice that both CS and MCD,
if optimized through the HDM, obtain large gains
in terms of Macro F1-Score. In fact, CS improves
by 17% and 10% in out-of-ontology and out-of-
domain detection, and MCD by 4%, 3%, and 10%
in out-of-ontology, NSP Errors, and out-of-domain
detection. In addition, the HDM can combine mul-
tiple hallucination signals to obtain higher perfor-
mance, as in the case of our most-performing sys-
tem. For further insight, we report the Precision
and Recall over each error category in Appendix
N.

Executable vs Non-Executable MRLs To high-
light the scale of the issue we are tackling, it is
important to measure how many times wrong an-
swers would be served to users without a proper
hallucination detection pipeline. As shown in Ap-
pendix K, in 46.3% of the utterances requiring
Ounknown_symbols the NSP model generates a syntac-
tically valid MRL, which would then be executed,
causing a wrong answer to be delivered to the user.
This happens because NSP models tend to replicate
executable patterns using known symbols from the
training set, even when receiving utterances that
cannot be represented with the known vocabulary.

Effect of the number of changed ontology sym-
bols To further analyze the results, we analyze
the behavior of the NSP model on the halluci-
nated MRLs in Figure 5. Specifically, this analysis
highlights the MRLs where the NSP model added
wrong ontology symbols (left plot), or omitted re-
quired symbols (right plot) from the ground truth
sequence. In the Figure, we show a comparison
between two systems: (1) Threshold CS (the best
non-model based strategy) and (2) HDM with Ac-
tivations and CS (our best model-based strategy),
expressed as a percentage of errors in relation to
the number of modified symbols. The plots sug-
gest that (a) when the model adds symbols, the
hardest errors to detect happen when the model
adds up to 2 unnecessary symbols, leaving ≥ 50%
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Figure 5: In this plot on the y-axis the percentage of remaining error (↓ is better) and on the x-axis we distinguish
between the various hallucinated MRLs that omit (right plot) or add (left plot) incorrect ontology symbols with
respect to the ground truth. Residual error compares two systems: Threshold CS and HDM with Activations and CS.

EXP NAME - END2END out-of-ontology NSP error out-of-domain average

Autodetect (Baseline) 0.490 0.471 0.466 0.476
Threshold CS 98.5% (Baseline) 0.480 0.653 0.456 0.530
Threshold MCD (Baseline) 0.452 0.439 0.428 0.440
ActivationsHDM 0.498 ± 0.013 0.474 ± 0.003 0.466 ± 0.003 0.479
CSHDM 0.648 ± 0.040 0.591 ± 0.023 0.552 ± 0.089 0.597
MCDHDM 0.490 ± 0.001 0.471 ± 0.003 0.541 ± 0.163 0.501
CS + MCDHDM 0.654 ± 0.021 0.617 ± 0.018 0.537 ± 0.030 0.603
Activations + CSHDM 0.701 ± 0.030 0.643 ± 0.027 0.703 ± 0.086 0.682
Activations + MCDHDM 0.496 ± 0.012 0.474 ± 0.004 0.466 ± 0.002 0.479
Activations + CS+ MCDHDM 0.659 ± 0.026 0.660 ± 0.025 0.618 ± 0.077 0.646

Table 2: We report the Macro F1-Score (↑ is better) in the three scenarios: out-of-ontology detection, NSP Error
detection and zero-shot OOD detection. These features are combined (+) concatenating their vector representations.
The superscript HDM indicates the system optimized with the HDM.

of the errors undetected for CS and ≥ 30% for
the HDM; (b) when the model removes symbols,
there seems to be no discernible pattern based on
the amount of removed symbols; and (c) in both
cases, the HDM model performs considerably bet-
ter than the Threshold CS strategy, with a relative
error reduction of ∼50%.

Latency While adding a second neural network
in the QA pipeline might be considered penalising
in terms of latency, it’s worth noting that the HDM
is very small model compared to the main NSP
model. In detail, the HDM requires only 184k
Floating Point Operations (FLOPs), which amounts
to less than 1% of the FLOPs required by the BART-
base architecture of the NSP model, which is 2.49
Billion FLOPs.

8 Conclusions

Current studies of Neural Semantic Parsing (NSP)
models revolve around improving performance on
academic benchmarks, but they do not take into

account the trustworthiness of the model in a real
world scenario where the model is used to serve
answers to users of a QA system. In such scenario,
NSP models can hallucinate syntactically correct,
but semantically wrong MRLs, that can be used
to serve incorrect answers to users. This is partic-
ularly true when users ask questions that require
knowledge beyond the one used by the model’s
target ontology, as in these cases the model simply
cannot generate a correct MRL.

To test NSP models under this more realistic
scenario, we propose the Hallucination Simulation
Framework (HSF), where we programmatically in-
duce NSP models to hallucinate, and then, using the
Hallucination Detection Model, we detect model
errors at inference time using several different sig-
nals, including the model’s activations or Confi-
dence Score, or by using Monte Carlo Dropout.

We find that the best way to prevent detect hal-
lucinations is using the HDM model with Activa-
tions and CS as features, which leads to an average
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improvement of more than 20% w.r.t. a baseline
where the only non-served MRLs are just the syn-
tactically incorrect ones.

Limitations

There are some limitations in this work that do
not concern the framework construction. First of
all, the framework imposes the construction of two
datasets leading to a strong reduction of the train-
ing data. Hence, the framework to work properly
requires a larger dataset. We are eager to expand
our work in the future by taking advantage of the
proposed framework in the following directions:
(1) We pooled the activation sequences and did
not take full advantage of the information in the
sequences. (2) We have not tested the individual
probability of each token in the generated MRL.
(3) We have not tested the HDM with a multi-class
output differentiating between in-ontology, out-of-
ontology, NSP Errors, and OOD. (4) We did not
test with other datasets, ontologies, or MRLs. (5)
Our work has not been tested with other seq2seq
architectures (e.g., mT5, Bart-large) and provides
no multilingual tests.
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A Differences between Hallucinations in
Natural Language Generation and
Neural Semantic Parsing

Hallucinations manifest differently in Neural Se-
mantic Parsing (NSP) versus Natural Language
Generation (NLG) systems. In NSP, hallucinations
occur when the predicted logical form or query dif-
fers substantively from the gold reference form,
despite appearing to be a valid query. This in-
dicates the model fails to accurately capture the
full semantic meaning conveyed in the input utter-
ance. However, in NLG, hallucinations arise when
the generated text contains false or ungrounded
information not directly inferable from the input
meaning representation. Whereas NSP hallucina-
tions demonstrate misunderstanding of utterance
semantics, NLG hallucinations reflect the model
losing contextual grounding to fabricate or halluci-
nate statements not reasonably justified by reason-
ing through the implications of the input symbols
provided. This suggests brittleness in establish-
ing contextual coherence to match input constraint
meanings.

B Hallucination Detection Dataset Stats

We report the dataset statistics of the Hallucination
Simulation Framework in Table 3.

Split in-ontology out-of-ontology

NSP Train 59,120
NSP Dev 19,700
NSP Test 19,679

HDD Train 19,154 3,893
HDD Dev 546 546
HDD Test 19,679 1,467

Table 3: Count of sentences for the NSP dataset and for
the Hallucination Detection Dataset (HDD) applied to
KQA-PRO dataset. We use the term in-ontology and out-
of-ontology sentences to refers to the sentences that uses
only Oknown_symbols and Ounknown_symbols respectively.

C Selection of Unknown symbols

As mentioned above, we select the symbols for the
Ounknown_symbols starting from less frequent sym-
bols. We took all the symbols with at maximum 2
occurrences, this is done b

This is done in order to maintain a good trade
off in maximizing the number of

D Out-Of-Domain Dataset Stats

Split NSP Dataset Test TOP OOD

OOD Test 17,524 35,420

Table 4: Size of the TOP v2 out-of-domain dataset used
for zero-shot evaluation. The NSP Dataset Test does not
include the NSP Errors.

E Out-of-ontology symbols list

Train =[’award rationale’, ’of’, ’separated from’,
’quote’, ’performer’, ’latest date’, ’author’, ’cap-
tain’, ’military branch’, ’reason for deprecation’,
’location’, ’has effect’, ’doctoral thesis’, ’DOI’,
’relative to’, ’discontinued date’, ’applies to part’,
’mother’, ’quantity’, ’conscription number’, ’iden-
tity of subject in context’, ’end cause’, ’central
bank/issuer’, ’dissolved, abolished or demolished’,
’employer’, ’earliest date’, ’located at street ad-
dress’, ’member of political party’, ’direction’,
’valid in place’, ’inventory number’, ’series ordi-
nal’, ’religious order’, ’manufacturer’, ’nominee’,
’place of marriage’, ’creator’, ’organizer’, ’number
of points/goals/set scored’, ’nickname’, ’number
of matches played/races/starts’, ’killed by’, ’lo-
cated on street’, ’nature of statement’, ’position
held’, ’statement supported by’, ’together with’,
’street number’, ’position played on team / special-
ity’, ’located in or next to body of water’, ’instru-
ment’, ’doctoral advisor’, ’statement disputed by’,
’located at street address (DEPRECATED)’, ’mem-
ber of’, ’married name’, ’stated age at event’, ’field
of work’]

Dev = [’academic degree’, ’platform’, ’type of
kinship’, ’present in work’, ’appointed by’, ’sex or
gender’, ’image’, ’proportion’, ’significant event’,
’cause of death’]

Test = [’catalog code’, ’direction relative to lo-
cation’, ’valid in period’, ’sourcing circumstances’,
’academic major’, ’approved by’, ’item oper-
ated’, ’length’, ’has cause’, ’instance of’, ’sRGB
color hex triplet’, ’operating area’, ’conferred by’,
’name’, ’subject has role’, ’applies to jurisdiction’,
’prize money’, ’conflict’, ’head of state’, ’affilia-
tion’, ’proxy’, ’use’, ’replaces’, ’replaced by’, ’writ-
ing system’, ’located on terrain feature’, ’distribu-
tion’, ’diplomatic mission sent’, ’acquisition trans-
action’, ’lyrics by’, ’medical condition’, ’number
of speakers’, ’has quality’, ’sport number’, ’cri-
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terion used’, ’object has role’, ’retrieved’, ’basic
form of government’, ’military rank’, ’drafted by’,
’timezone offset’, ’named as’]

F Metrics

We report two metrics to measure the accuracy of
our NSP model within the HSF framework. The
MRL Exact Match (EM) consinsts in the ratio be-
tween the number of MRL predicted that exactly
match with the ground truth MRL over the number
of MRLs.

EM =
1

|MRLs|

|MRLs|∑

k=1

MRLpred
i == MRLgt

i

(2)
The Answer Accuracy (AA) instead takes in con-

sideration the retrieved answered from the Knowl-
edge Base and compare it between the ground truth
and the predicted one.

AA =
1

|MRLs|

|MRLs|∑

k=1

anspred == ansgt (3)

These two metrics differs because sometimes an
MRL that does not match with the ground truth
can lead to the right answer. For both metrics,
we consider only MRLs that are well-formed and
executable, and thus will lead to an answer to be
delivered to the customer, as our main concern is
preventing the model’s users to wrong answers; if
an MRL is not executable, it will not lead to answer
to be delivered to the user, which in our vision
it’s better than delivering a wrong (and potentially
offensive) answer.

G Model Architecture design

In Figure 6, we report an high level overview of
the Hallucination Detection Model architecture, the
hyper-parameters used are specified in Section I.

H Hallucinations in NSP

In Figure 2, we show how the model hallucinate by
omitting portion of the MRL when it encounters
the needs of a unknown ontology symbols. How-
ever, often, as highlighted in the the discussion, the
model replaces the unknown symbols with other
known but leading to a complete wrong understand-
ing, thus producing an MRL that is completely hal-
lucinated, we show that behaviour in Figure 7. A
similar behaviour is observable for NSP Errors. In
NSP error the NSP model is under trained on some

Figure 6: Hallucination detection model architecture

symbols and then it shows this hallucination be-
haviour. Instead, in out-of-domain we expect an
empty MRL because the model does not have any
symbols and syntax to support the out-of-domain
user request.

Figure 7: We show the output our NSP model trained
without a symbol for the concept of “killed by". Given a
question that requires this symbol, the model produces a
wrong but executable MRL. In that case is it possible to
notice that the model avoid to produce the unknown on-
tology symbol (killed by) and then starts to hallucinate
the remaining MRL with wrong known symbols (i.e.,
place of birth) leading to a complete wrong understand-
ing of the user question. Retrieving a wrong answer.
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I Hallucination Detection Model
configuration

We train the HDM using both executable and non-
executable MRLs; its training objective is to maxi-
mize the number of correctly delivered MRLs and
maximize the number of correctly rejected MRLs,
regardless of the type of MRLs (e.g., NSP Errors,
ontology gap). The HDM in our Hardware Infras-
tructure L takes less than a minute to complete each
epoch. In Table 5 we report the Hyper-paramters
of the best Hallucination Detection Model with
Activations + CS. For sake of brevity, we report
the other hyper-parameters configurations in the
Github repository.

HParams Value

Max Epochs 100
Optimizer AdamW

Learning Rate 1e−3

Weight Decay 1e−3

Checkpointing Max Dev Macro F1-Score
Early Stopping Max Dev Macro F1-Score

Early Stopping Patient 50
Batch Size 32

Non linear activation function RELU
Loss Function Cross Entropy
1st layer dim 1024
2nd layer dim 128

classification head dim 2
Precision fp16

Table 5: Hyper-paramters used to train the Hallucination
Detection Model.
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J HDD statistics on NSP Errors

In Table 6 we report the statistics of the NSP Errors
in the Hallucination Detection Dataset.

Split NSP Errors percentage

NSP Dataset - Train 11.01%
NSP Dataset - Dev 13.66%
NSP Dataset - Test 10.95%

Table 6: Percentage of NSP Errors over the executable
NSP Dataset. Computed using the NSP model at infer-
ence time by comparing the predictions with the ground
truth.

K HDD statistics on Executable MRLs

In Table 7 we report the percentage of executable
MRLs in the Hallucination Detection Dataset w.r.t
the KQA-PRO BART inference trained on the NSP
in-ontology dataset.

L Hardware Infrastructure

We performed all the experiments on a x86-64 ar-
chitecture with 748GB of RAM, 4x 24-core CPU
Intel Xeon Platinum 8175M, and a single NVIDIA
V100 with 32GB of VRAM.

M KQA-PRO Bart hyper-parameters

To fine-tune the BART model on the KQA-PRO
dataset, we stick with the same hyper-parameters
used by the Cao et al. (2022). Below are the only
changes in hyper-parameters we have made. We re-
duce the number of epochs from 25 to 3, which we
found to be sufficient to achieve high performance
while vastly reducing the training time. We also en-
able beam search with a beam size of 4, to compute
the aforementioned Confidence Score feature.

N Precision and Recall

We report the Macro Precision and Macro Recall
performance in Tables 8 9, 10 for out-of-ontology,
NSP Errors, and OOD.

Split Executable

HDD Train

in-ontology 92.69%
out-of-ontology 42.97%

HDD Dev

in-ontology 92.49%
out-of-ontology 30.04%

HDD Test

in-ontology 92.63%
out-of-ontology 46.27%

Table 7: Percentage of executable MRLs in HDD,
after KQA-PRO BART inference. We use the term
in-ontology and out-of-ontology sentences to refers
to the sentences that uses only Oknown_symbols and
Ounknown_symbols respectively.
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EXP NAME - OUT-OF-ONTOLOGY Precision Recall

No-Filter (Baseline) 0.480 0.5
Threshold CS 98.5% (Baseline) 0.479 0.482
Threshold MCD (Baseline) 0.477 0.430
ActivationsHDM 0.557 ± 0.110 0.504 ± 0.007
CSHDM 0.671 ± 0.056 0.663 ± 0.034
MCDHDM 0.591 ± 0.208 0.500 ± 0.001
CS + MCDHDM 0.654 ± 0.027 0.657 ± 0.019
Activations + CSHDM 0.682 ± 0.041 0.717 ± 0.019
Activations + MCDHDM 0.593 ± 0.159 0.502 ± 0.007
Activations + CS + MCDHDM 0.642 ± 0.033 0.691 ± 0.018

Table 8: We report the Macro F1-Score (↑ is better) in out-of-ontology detection. We have repeated the train of the
HDM using 10 random seeds, we report the mean of the scores along with their standard deviation. These features
are combined (+) concatenating their vector representations.

EXP NAME - NSP ERRORS Precision Recall

No-Filter (Baseline) 0.444 0.500
Threshold CS 98.5% (Baseline) 0.706 0.627
Threshold MCD (Baseline) 0.442 0.436
ActivationsHDM 0.547 ± 0.060 0.501 ± 0.002
CSHDM 0.698 ± 0.009 0.571 ± 0.018
MCDHDM 0.444 ± 0.002 0.500 ± 0.004
CS + MCDHDM 0.695 ± 0.006 0.594 ± 0.016
Activations + CSHDM 0.712 ± 0.007 0.619 ± 0.029
Activations + MCDHDM 0.515 ± 0.044 0.501 ± 0.001
Activations + CS+ MCDHDM 0.705 ± 0.008 0.641 ± 0.034

Table 9: We report the Macro Precision and Recall (↑ is better) in NSP Errors detection, NSP Error detection. We
have repeated the train of the HDM using 10 random seeds, we report the mean of the scores along with their
standard deviation. These features are combined (+) concatenating their vector representations.

EXP NAME - OUT-OF-DOMAIN Precision Recall

No-Filter (Baseline) 0.436 0.500
Threshold CS 98.5% (Baseline) 0.434 0.482
Threshold MCD (Baseline) 0.427 0.429
ActivationsHDM 0.479 ± 0.116 0.499 ± 0.002
CSHDM 0.614 ± 0.039 0.632 ± 0.052
MCDHDM 0.644 ± 0.019 0.563 ± 0.151
CS + MCDHDM 0.595 ± 0.061 0.534 ± 0.021
Activations + CSHDM 0.760 ± 0.108 0.662 ± 0.071
Activations + MCDHDM 0.447 ± 0.018 0.498 ± 0.002
Activations + CS+ MCDHDM 0.671 ± 0.101 0.599 ± 0.063

Table 10: We report the Macro Precision and Recall (↑ is better) in zero-shot out-of-domain detection. We have
repeated the train of the HDM using 10 random seeds, we report the mean of the scores along with their standard
deviation. These features are combined (+) concatenating their vector representations.
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