
SIGUL2024 Workshop, pages 421–426
21-22 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

421

Work in Progress: Text-to-speech on Edge Devices for
te Reo Māori and ‘Ōlelo Hawaiʻi

Tūreiti Keith, Gianna Leoni, Keoni Mahelona, Hina Puamohala Kneubuhl,
Stephanie Huriana Fong, Peter-Lucas Jones

Te Reo Irirangi o Te Hiku o Te Ika (Te Hiku Media); Awaiaulu, Inc.; Pae Tū Ltd.
1 Melba St., Kaitāia, Aotearoa; 2667 ’Anu’u Pl., Honolulu, Hawai’i; 29 Noall St., Tāmaki, Aotearoa
{tureiti, gianna, keoni, peterlucas}@tehiku.co.nz, hina@awaiaulu.com, stephanie@paetultd.com

Abstract
Existing popular text-to-speech technologies focus on large models requiring a large corpus of recorded speech to train.
The resulting models are typically run on high-resource servers where users synthesise speech from a client device
requiring constant connectivity. For speakers of low-resource languages living in remote areas, this approach does not
work. Corpora are typically small and synthesis needs to run on an unconnected, battery or solar-powered edge device. In
this paper, we demonstrate how knowledge transfer and adversarial training can be used to create efficient models
capable of running on edge devices using a corpus of only several hours. We apply these concepts to create a voice
synthesiser for te reo Māori (the indigenous language of Aotearoa New Zealand) for a non-speaking user and ‘ōlelo
Hawaiʻi (the indigenous language of Hawaiʻi) for a legally blind user, thus creating the first high-quality text-to-speech tools
for these endangered, central-eastern Polynesian languages capable of running on a low powered edge device.
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1. Introduction
Although text-to-speech (TTS) technologies to
support the non-speaking and low-vision
communities have existed for many years, the
languages typically supported are colonial or
high-resource languages. For those who wish to use
voice synthesis in languages like te reo Māori or
ʻōlelo Hawaiʻi, two endangered (Moseley, 2012),
central-eastern Polynesian languages, the typical
option available is either 1) near unintelligible
reproduction using another language’s synthesiser
or 2) being forced to use the language of the
coloniser, who was ultimately responsible for the
near extinction of the language.

The two people who inspired us to begin this work
are a non-speaking woman who wishes to
communicate with her friends, family and the wider
community in te reo Māori and a now legally blind
man whose work analysing and reviving ʻōlelo
Hawaiʻi has been hindered by tools that cannot read
his language to him.

To the best of our knowledge, this work represents
the first and only neural TTS system for either te reo
Māori or ʻōlelo Hawaiʻi targeting an edge device. The
one and only TTS implementation we are aware of in
the literature for either language is a MaryTTS
implementation of te reo Māori (Schröder &
Schröder, 2003; James et al., 2020). Our
organisation, Te Hiku Media, published a
FastPitch-based model for te reo Māori as part of our
Papa Reo Natural Language Processing APIs in
2022 (Łańcucki, 2021; Te Hiku Media, 2022);
however, this model is not capable of running on a
lower powered edge device.

Recent lightweight neural acoustic models, including
SpeedySpeech (4.3M parameters; Vainer & Dušek,
2020), BVAE-TTS (12M; Lee, Shin & Jung, 2020),
Talknet 2 (13M; Beliaev & Ginsburg, 2021),
PortaSpeech (6M; Ren, Liu & Zhao, 2021), and
LightSpeech (1M; Luo et al., 2021), stand out for

their compact sizes compared to established
high-quality TTS systems like Tacotron 2 (28.2M
parameters; Shen et al., 2018), Fastspeech 2 (27M;
Ren et al., 2020) and VITS (29.09M; Kim, Kong &
Son, 2021). However, these lightweight models
specifically focus on converting text to
mel-spectrograms. To synthesise waveforms, they
require an additional neural vocoder, which can
inflate the model size depending on the chosen
vocoder model. On the other hand, complete
end-to-end neural TTS models include LiteTTS (13M
parameters; Nguyen et al., 2021), which relies on
generative adversarial networks, as well as,
Mini-VITS (5.2M; Kawamura et al., 2023), Nix-TTS
(5.23M; Chevi et al., 2023), and Piper-TTS (7M;
Hansen, 2023) which employ knowledge distillation
to compress a VITS model. Among the end-to-end
models, LiteTTS directly reports a Mean Opinion
Score (MOS) of 3.84, while Nix-TTS reports a
Comparative MOS (CMOS) of -0.27 when compared
to VITS, which itself has a MOS score of 4.43.
Notably, Piper TTS benefits from a well-supported
and well-documented project. It has been
successfully applied to over a dozen languages and
features a training framework designed for transfer
learning—a crucial advantage for under-resourced
languages.

2. Method
This section describes our approach to creating
three acoustic models for text-to-speech: two te reo
Māori voices and a voice for ʻōlelo Hawaiʻi.

2.1 Language Codes
For consistency, we have adopted ISO 639-2
language codes for all languages in this article, as
ʻōlelo Hawaiʻi is not defined in ISO 639-1 (Byrum,
1999). This means that readers used to seeing the
ISO 639-1 code “es” for Spanish will see “spa”
instead. Similarly, readers used to seeing “mi” for te
reo Māori will see “mri” instead. The code for ʻōlelo
Hawaiʻi is “haw”.



422

2.2 IPA Phonemisation
It is not unusual for an under-resourced language to
lack some of the basic tools required for natural
language processing. A basic IPA phonemiser for te
reo Māori and ʻōlelo Hawaiʻi was one of the tools we
built as part of this work. The popular eSpeak-ng
package (Duddington, Dunn, 2015) claims to support
the phonemisation of languages like te reo Māori,
however, we were unable to find alignment between
the literature (Harlow, 2007) and the outputs of the
package, as such we developed our own
phonemisers for this work.
The focus of the IPA phonemisers we developed is
to first and foremost support encoding of the
languages for speech synthesis, as opposed to
accurately modelling the pronunciation of a particular
regional variation of the language. This allows us to
make some simplifications to the phonemisation in
the literature, with little to no loss of information.
Where qualitative analysis of the model output points
to a loss of information at the phonemisation stage,
we can modify the phonemiser to improve the
model’s performance.

Long vowels Short vowels Consonants
IPA desc. IPA desc. IPA desc. lang.
aː ā a a ɾ r mri
eː ē e e n n haw, mri
iː ī i i f wh mri
oː ō o o ŋ ng mri
uː ū u u t t haw, mri

m m haw, mri
l l haw
h h haw, mri
v w haw
ʔ ʻokina haw
ɸ wh mri
w w haw, mri
p p haw, mri

Table 1: Combined IPA phonemes for te reo Māori
(mri) and ʻōlelo Hawaiʻi (haw). Both languages use

the same set of vowels.

Table 1 lists the combined IPA alphabet we
considered when phonemising te reo Māori and
ʻōlelo Hawaiʻi. This simplifies the IPA alphabets
defined in the literature (Harlow, 2007; Parker Jones,
Niebuhr, Ward, 2018) by 1) using the vowel set /a/,
/e/, /i/, /o/, /u/ 2) not explicitly modelling diphthongs,
3) overloading variations in the pronunciation of the
“t” in te reo Māori that depend on the following vowel
and 4) overloading variations on the pronunciation of
“w” in ʻōlelo Hawaiʻi that depend on its position by
using only the /v/. Our overloading of /t/ and /v/ was
based on the hypothesis that the model would learn
any context-based variations from the data.

2.3 Knowledge Transfer
Due to the relatively small number of single-speaker
recordings available for training a te reo Māori and
ʻōlelo Hawaiʻi speech synthesiser, we chose to first
train the model on an existing large and open
dataset. The best choice for such a dataset is one

where there is a large overlap of sounds between
the languages. Anecdotal evidence of similarities
between Spanish and te reo Māori was provided to
us by Kāpō Māori Aotearoa New Zealand Ltd, who
reported the use of Castilian Spanish screen-readers
as a workaround for reading te reo Māori text. This
suggests similarities between the linking of
graphemes to phonemes in both languages. As
such, we decided to investigate the phonological
content of Castilian Spanish, te reo Māori and ʻōlelo
Hawaiʻi.

Table 2 describes the results of this analysis. The
first column (IPA) lists the union of IPA phonemes for
both te reo Māori and ʻōlelo Hawaiʻi that we chose
for this work, as discussed in Section 2.2. The
remaining columns list the counts of these
phonemes in each dataset. The phonemes for
Spanish were generated by the eSpeak-ng
phonemiser. See Section 2.4 for more information on
the datasets used here.

Dataset

IPA spa_male mri_male mri_female haw_female

a 77710 3979 1228 594

aː 0 3036 982 432

e 79247 3596 1179 555

eː 0 1149 211 114

f 23973 0 0 0

h 0 3209 990 495

i 70571 3638 1175 563

iː 1 333 100 59

k 64029 3586 1184 564

l 66650 0 0 518

m 62837 2722 857 475

n 72138 2783 984 514

ŋ 7271 1699 744 0

o 77715 3451 1121 557

oː 0 1791 583 247

p 55550 1755 531 369

ɸ 0 1291 500 0

ɾ 71621 3142 1026 0

t 67294 3576 1176 0

u 50871 3297 1102 525

uː 0 533 158 152

v 0 0 0 257

w 28561 1015 397 0

ʔ 0 0 0 479

Table 2: Phonemes counted in single speaker
datasets. Low phoneme counts, between 0 and 100,

are highlighted on a linear scale.

The data in Table 2 demonstrates a significant
overlap between the phonemic sounds of the three



423

languages. The short vowels (listed in Table 1) are
represented in all three languages. However, this
cannot be said for the long vowels (also listed in
Table 1). We have hypothesised that the /ː/ would be
sufficiently modelled by the Polynesian data as a
lengthening of the short vowel. Similarly, the
consonants /k/, /m/, /n/ and /p/ are found in all three
datasets. The /w/ sound is present in all datasets;
however, due to our decision to represent this sound
with a /v/ (Section 2.2), this is not listed in the table
and won’t therefore be subject to knowledge transfer
from the Spanish or te reo Māori models.

Of the phonemes listed in Table 2, there are a total
of 2 phonemes from ʻōlelo Hawaiʻi that aren’t
represented at all in the other datasets: /ʔ/, the
ʻōkina or glottal stop and the /v/ sound. For te reo
Māori, only the /ɸ/ sound is not found in the other
datasets.

Despite significant overlap of /f/ and /w/ across the
datasets, we chose to phonemise ‘wh’ in te reo
Māori as /ɸ/ rather than /f/, and ‘w’ in ʻōlelo Hawaiʻi
as /v/. Our goal was to train these specific sounds
from the Polynesian data only; however, fine-tuning
/f/ and /w/ may produce improved results, which will
be the subject of future experiments.

2.4 Data Curation
Four datasets were used in the work. Public domain
single-speaker data in Spanish and data recorded
specifically for this project in te reo Māori and ʻōlelo
Hawaiʻi. Table 3 summarises the length of each
dataset in minutes and the source of the data. We
used approximately 99.4 hours of a male Spanish
voice, 5.5 hours of a male Māori voice, 2.4 hours of
a female Māori voice and 58 minutes of a female
voice speaking ōlelo Hawaiʻi.

We obtained single-speaker Spanish data from the
public domain via LibriVox (LibriVox, 2005).

The female te reo Māori data was sourced from
recordings made by Pae Tū Ltd, specifically for this
work. These recordings were performed in a
recording studio by the co-author and broadcaster
Stephanie Huriana Fong and sound engineer Ed
Waaka.

The male te reo Māori data was sourced from
recordings made by Te Hiku Media from recorded
interviews of, and readings by, broadcaster and
co-author Peter-Lucas Jones in our radio studios.

The ʻōlelo Hawaiʻi data was carefully curated,
prepared, read and recorded by co-author, Hina
Puamohala Kneubuhl of Awaiaulu, Inc.

Our Data Team at Te Hiku Media curated and
prepared the data for readings in te reo Māori. This
team also performed quality checks of transcripts in
both te reo Māori and ʻōlelo Hawaiʻi to ensure that
they match the audio recorded. Each utterance was
reviewed by two independent reviewers.

2.5 The Acoustic Model
After evaluating several models for this task (see
Section 1), we followed the example set by coqui.ai
(Coqui, 2020) and Nabu Casa choosing the

end-to-end VITS-based model, specifically the Piper
TTS (Hansen, 2023) training framework which was
designed to target the Raspberry Pi 4, and
supported by Nabu Casa (Nabu Casa, 2019). Given
that a low-powered edge device is the target, we
chose the x-low model which uses knowledge
distillation to compress a VITS model to 7.07M 32-bit
floating-point parameters and uses a 256-character
alphabet.

Dataset Minutes Source
spa_male 5,966.22 LibriVox
mri_female 146.08 Pae Tū Ltd.
mri_male 333.17 Te Hiku Media

haw_female 58.36 Awaiaulu, Inc.

Table 3: The number of minutes in and the source of
each dataset

2.6 The Training Process
The models were trained in a Kubeflow pipeline
developed for our NVIDIA A100 servers. We chose
to train on a single GPU with 80GB of GPU memory.
Due to the end-to-end nature of the VITS model, the
pipeline is of relatively simple linear design with
fetch, data preparation, training and publishing
components.

Table 4 summarises the four training phases
performed to produce the two te reo Māori and the
ʻōlelo Hawaiʻi models and the number of epochs
trained at each stage. The ordering of the training
runs determines the direction of knowledge transfer.
For example, the te reo Māori models reused
knowledge of Spanish phonemes, while the ʻōlelo
Hawaiʻi model in turn reused knowledge of te reo
Māori.

Training Phase Dataset Epochs
1. Initial train spa_male 157
2. Fine-tune mri_male 9304
3. Fine-tune mri_female 10539
4. Fine-tune haw_femle 10000

Table 4: The training phases

3. Trials on an Edge Device
To trial the male te reo Māori voice we worked with
TalkLink Trust a provider of technology solutions to
the non-speaking community. They provided us with
an Accent 1000 device from PRB-Satillo running
Windows 11 and the NuVoice software for
non-speaking users.

The VITS model, a PyTorch implementation, was
converted to an optimised onnx model of
approximately 20 MB. The model was wrapped in a
C interface to the onnx runtime version 1.16 and
C++ interfaces to the Windows SAPI version 5.4
interface. An installer was also developed to register
the resulting library and the te reo Māori voice with
the operating system and the SAPI engine. We
installed this to the Accent 1000 and provided the
voice to TalkLink for testing with the NuVoice
software.
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We measured the real-time factor of synthesis
(synthesis_duration / audio_duration) on the Accent
1000 as being approximately 0.5. The library
synthesises per sentence, which allows it to maintain
the prosodic elements of speech; however, this
impacts response time when synthesising longer
sentences.

4. Initial Findings
The te reo Māori models went through an initial
qualitative assessment with attention to special
cases in pronunciation that were not captured in the
phonemisation. A detailed analysis of the ʻōlelo
Hawaiʻi model has yet to be performed.

4.1 General Comments
The quality of the female te reo Māori and ʻōlelo
Hawaiʻi models demonstrate clear pronunciation with
some glitching where sentences are not correctly
terminated with punctuation. Adjacent punctuation
generates noise which may be attributed to some
recordings of the male Māori speaker made outside
of the studio and indicates that these recordings
should be removed from the dataset. We observed
some cases where the male māori speaker does not
pronounce the ‘r’.

As we have observed good performance with the
female Māori speaker, whose voice is fine-tuned on
the Māori male voice using high-quality studio
recordings, we believe more and better (studio)
quality data of the Māori male voice will resolve
these issues. Alternatively, fine-tuning the female
Māori voice with the male Māori voice data only
recorded in the studio may also resolve some of
these issues.

An initial review of the ʻōlelo Hawaiʻi model returned
positive results, however, a reviewer noted that the
\l\ seemed overly elongated and the emphasis on
some three and four-syllable words was not in the
correct place, reflecting a more te reo Māori
pronunciation than a ʻōlelo Hawaiʻi pronunciation.

4.2 “Whakairo”
The word “whakairo” (“to carve”) is composed of the
prefix “whaka” and the noun “iro”, the joining of
which builds the diphthong “ai” with emphasis on (in
bold) “whakairo” and a corresponding shortening of
the diphthong (Harlow, 2015). A contra example is
captured by the word “whakairi” (“to hang”), here the
emphasis is (in bold) “whakairi”.

Despite our phonemiser not explicitly accounting for
the variation in pronunciation observed in “whakairo”
and “whakairi” as spoken by the voice artists, both
female and male te reo Māori models have
successfully learnt this difference from the data.

4.3 “[k]i a ia”
The Māori grammar requires that the particle “a” is
placed before proper nouns and pronouns in many
situations. The pronunciation of this particle
lengthens and is emphasised when placed before
the pronoun “ia” (“she / he / it”) or “koe” (“you” -
singular) (Biggs, 1998).

The female Māori model has learnt this contextual
difference in the pronunciation from the data. The
male model also demonstrates this pronunciation;
however, the male model did not lengthen or
emphasise the “a” in “I a ia” when placed at the
beginning of the synthesised text.

4.4 “Ta”, “te”, “to” vs “ti”, “tu”
In general, the pronunciation of the consonant ‘t’ in
te reo Māori changes depending on the vowel that
follows, this is a consequence of a slightly different
tongue position in the case of “ta”, “te” and “to” vs
the tongue position when pronouncing “ti” and “tu”
(Harlow, 2015). Additionally, there are slight
variations on this depending on the region from
which the speaker comes.

Both the female and male Māori models have learnt
this difference from the data, further to this, there is a
slight variation in tongue position used in the region
from where the male speaker comes, this is also
audible in the synthesised recordings.

5. Discussion
Through this work we have demonstrated that it is
possible to train a 7M parameter TTS model to
generate te reo Māori and ʻōlelo Hawaiʻi that runs on
a Windows-based edge device for assistive
technologies, the Accent 1000. This allows
non-speaking and low-vision users from these
language communities the opportunity to hear, for
the first time, their own language expressed on these
devices.

The initial qualitative findings demonstrate that the
female te reo Māori model has good pronunciation of
te reo Māori and is able to simulate key features of
pronunciation that differentiate native from
non-native speakers. This is despite having only 146
minutes of recordings for this voice. This
demonstrates the benefits of transfer learning to
fine-tune a TTS for an under-resourced language, in
this case, transfer learning from over 99 hours of a
Spanish voice and 5.6 hours of a male te reo Māori
voice, languages with a significant overlap in
phonemic content. The male te reo Māori voice
demonstrated some anomalies which may be
alleviated by better cleaning of the data.

Similarly, although a detailed analysis of ʻōlelo
Hawaiʻi is to be performed, the model was positively
received with specific comments around an
elongated \l\ and incorrect emphasis on some three
and four-syllable words, both of which may be due to
the influence of transfer learning from Spanish and
te reo Māori models. As less than 60 minutes of
ʻōlelo Hawaiʻi were used to fine-tune the voice, we
believe that, with additional data, these issues can
be resolved.

Despite still being a work in progress, we believe
that these models for te reo Māori and ʻōlelo Hawaiʻi
could be of use to the wider Pacific community. The
models produced here demonstrate how transfer
learning from one central-eastern Polynesian
language can be used to create a voice with a
minimal amount of data from another language
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within the same family. Given that all Polynesian
languages are under-resourced, models such as
those produced in this work could form a basis for
using transfer learning to fine-tune other
central-eastern, eastern, and perhaps even wider
Polynesian languages.

6. Conclusion
Inspired by two people from the non-speaking and
low-vision communities who wish to have
text-to-speech technology for te reo Māori and ʻōlelo
Hawaiʻi, we created three synthetic voices using the
VITS model and the Piper TTS training pipeline. We
used public domain Spanish recordings to create a
base model which we then fine-tuned for te reo
Māori and ʻōlelo Hawaiʻi based on the high
intersection of common IPA phonemes between the
three languages. We developed tools to deploy
these voices to edge devices running the Windows
operating system and demonstrated usable real-time
performance on an Accent 1000, assistive
technology device. We analysed the performance of
the synthetic voices and found that the female Māori
voice fulfils our qualitative criteria, whereas the male
Māori voice demonstrates some anomalies that may
be alleviated through improvements to data quality.

7. Future Work
Based on the findings from the work we have
performed thus far, we see the potential for
improvement of the male te reo Māori voice. We
believe we can obtain this through either additional
training data or through fine-tuning the female Māori
voice with only the high-quality portions of the male
voice. Further recordings for both the female and
male Māori voice are planned which we expect will
improve the quality of both voices once added to the
training dataset.

The noise produced by adjacent punctuation may be
due to low-quality recordings of the male te reo
Māori voice being included in the pipeline. Removal
of these recordings and subsequent retraining of the
model (from the 157th epoch) may resolve these
issues.

For the ʻōlelo Hawaiʻi voice, we will work with native
speakers to evaluate the model and make
improvements if necessary. As less than an hour of
data was available at the time of writing, we may
need to increase the amount of training data to see
improvements.

Further and more thorough testing of all voices is
planned including a deeper qualitative analysis of the
te reo Māori and ʻōlelo Hawaiʻi voices. We also plan
to gather opinion scores from native speakers to
assess the overall quality and acceptance of the
voices.

While deployment to the edge device demonstrated
a reasonable response time, due to the synthesis of
speech at the sentence level, longer sentences can
result in an unreasonable delay. As such we plan to
investigate implementing synthesis at the
sub-sentence level.

Although we have developed tools for Windows
devices, many users in the non-speaking and
low-vision communities rely on Apple’s MacOS or
iOS software. Unfortunately, neither of these
operating systems allows for easy extension of their
voice libraries, which means those wishing to
introduce a voice to the Apple ecosystem must either
engage directly with each of the existing producers
of assistive software or build their own assistive
technology

One important consideration is that virtually all
speakers of te reo Māori and ʻōlelo Hawaiʻi are at
least bilingual, speaking English as well. Given the
need to communicate in both languages in a
day-to-day context, it would be advantageous for
users to be able to express themselves in both
languages without having to switch voices. As such,
we are designing a bilingual speech package that
can be deployed to an edge device as a single voice.
This will involve implementing reliable language
detection for te reo Māori, ‘ōlelo Hawaiʻi and English
that is capable of distinguishing the language of
words that appear in two or all languages e.g. “one”
which is the number 1 [ˈwʌn] in English, but means
“sand” in both ‘ōlelo Hawaiʻi and te reo Māori.
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