
SIGUL2024 Workshop, pages 331–336
21-22 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

331

Tandem Long-Short Duration-based Modeling for Automatic Speech
Recognition

Dalai Mengke,Yan Meng and Péter Mihajlik
Department of Telecommunications and Media Informatics

Budapest University of Technology and Economics, Budapest, Hungary
kedalai.meng@edu.bme.hu, yan.meng@edu.bme.hu, mihajlik.peter@vik.bme.hu

Abstract
This study outlines our duration-dependent modeling experiments on limited-resource Hungarian speech recognition
tasks. As it is well known, very short utterances pose significant challenges in automatic speech recognition due to
the lack of context and other phenomena. In particular, we found that that the exclusion of shorter speech samples
from fine-tuning for longer duration test data significantly improves the recognition rate measured on public Hungarian
datasets, BEA-Base and CommonVoice (CV). Therefore we apply a tandem modeling approach, separate models
are used for short and long duration test data. Our strategy improved the ability to recognize short utterances
while maintaining recognition of long utterances efficiently, which led to a significant increase in overall recognition
accuracy.

Keywords: automatic speech recognition, short utterance, duration dependent modeling, transfer learn-
ing

1. Introduction

End-to-end deep neural approach (Graves and
Jaitly, 2014) and transfer learning have been
proven to be effective techniques (Kunze et al.,
2017) (Huang et al., 2020) used widely for auto-
matic speech recognition (ASR). Transfer learning
allows for a swift transition from a pre-trained model
to another speech recognition model, often more
effective than training from scratch and can be con-
sidered as best practice in low-resource tasks. This
study, however, has identified a significant phenom-
ena when testing ASR models trained in such a
way. It is shown on Figure 1 that utterances in the
test set with higher error rates tend to be shorter.
As can be seen from Table 1, after removing a small
number of shorter test samples from the test set,
the recognition accuracy of the remaining test set
became significantly higher. Obviously, the stan-
dard ASR approach still has limitations in process-
ing short utterances. Further research might be
needed to improve recognition accuracy for short
utterances, thereby enhancing the comprehensive
performance of speech recognition systems.

The phenomenon of degraded accuracy for
shorter chunks may be due to a combination of
factors. First, short utterances in speech recogni-
tion often contain less substantive information and
naturally, the context is reduced, which poses a
challenge both for training and for accurate recog-
nition. Second, there is a potential bias in model
training: if long utterances dominate the training
data, the model may perform poorly in recognizing
short utterances.

Based on these observations, although models

fine-tuned based on transfer learning perform well
in recognizing long utterances, there is room for im-
provement with respect to process short utterances.
This study proposes a hypothesis: developing a
model specifically for short utterances and using
it in parallel with the existing model after transfer
learning for long utterances might improve the over-
all recognition effect. This approach would combine
the advantages of both models, i.e., the efficient
recognition ability of long utterances and the spe-
cialized processing capability optimized for short
utterances, aiming to achieve more comprehensive
and accurate speech recognition performance. Fu-
ture research could explore the effectiveness of this
dual-model parallel strategy and how to optimize
models to provide the best recognition performance
for utterances of different duration.

Recent research advancements reveal that adap-
tation technology can be an effective alternative to
traditional transfer learning, with significant advan-
tages in speed and efficiency (Houlsby et al., 2019),
while achieving comparable performance (Thomas
et al., 2022). Based on this finding, this paper pro-
poses a tandem model methodology, which is to
further fine-tune short utterances using adaptation
technology on model which has been already fine-
tuned through transfer learning. This approach
aims the model to improve its recognition capa-
bility for short utterances while maintaining good
performance for long utterances.

Overall, this study will explore the effectiveness
of adaptation technology in enhancing the recogni-
tion performance of short utterances in automatic
speech recognition. Through this method, we ex-
pect to propose a more precise and efficient au-
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Figure 1: These two bar charts show the error rate vs utterance duration in a tested transcript of two
Hungarian-language models obtained by transfer learning from an English pre-trained model. The left
and right bar charts show the relationship between error rate and utterance duration in the test sets of
BEA-Base and CV, respectively, where the vertical coordinate is time and the horizontal coordinate is the
Word Error Rate (WER). The WER ≥ 0% refers to that the average utterance duration of the entire test set.
And ≥ 50 refers to the average duration of all the utterance with a WER ≥ 50% in the test transcripts, etc.

tomatic speech recognition system, especially in
handling language inputs of varying duration.

Duration BEA-Base (eval-spont)(%)
T ≥ 0s 25.42
T ≥ 2.0s 24.85
T ≥ 2.5s 24.70
T ≥ 3.0s 24.72
T ≥ 3.5s 24.65

Table 1: This table shows the change in the word
error rate (WER) of the test after excluding some
of the shorter utterances from BEA-Base’s test set
(enval-spont). T ≥ 0s means that no data from
the test set is excluded, i.e., the entire test set is
used, T ≥ 2.0s means that the test is performed
with samples of 2 seconds and more, etc.

2. Relationship Between Utterance
Duration and Error Rate

Here we explore the relationship between utterance
duration and error rate, and we use two different
datasets, BEA-Base (Mihajlik et al., 2022a) and
CommonVoice (CV) (Ardila et al., 2019), and con-
duct experiments in the Conformer (Gulati et al.,
2020) modeling framework. Both models were
transferred from an English pre-trained model (STT
En Conformer-CTC Small1) to Hungarian and were
trained with their respective training sets and tested
with their test sets.

1https://catalog.ngc.nvidia.com/
orgs/nvidia/teams/nemo/models/stt_en_
conformer_ctc_small

During the test phase, we evaluated the test set
on each dataset to observe the performance of
the models trained by the respective training sets.
After the test was completed, we filtered out the
samples with word error rates (WER) higher than
0.5, and for these samples, we plotted histograms
of sample duration versus error rate for different
error rate thresholds. The results show the higher
the error rate threshold, the shorter the average du-
ration of the utterances in both the BEA-Base (Mi-
hajlik et al., 2022a) and CommonVoice (Ardila et al.,
2019) datasets.

However, a significant improvement in the accu-
racy of the test was then found when doing the test
on the first fine-tuned model with samples below
a certain duration threshold(s) removed. Here the
treatment was done on two separate datasets, Ta-
ble 1 shows the results of applying this operation
on BEA-Base (eval-spont), and Table 2 shows the
results of applying the same operation on CV15.0
test.

3. Methodology

3.1. Initial Fine-tuning

The first step of the method is to fine-tune an En-
glish pre-trained model (STT En Conformer-CTC
Small) to the speech recognition task in Hungarian
using a transfer learning approach. This process in-
volves applying the pre-trained model to a corpus of
the target language (Hungarian) and optimizing the
model parameters through fine-tuning with a view
to obtaining a model that recognizes Hungarian.

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_conformer_ctc_small
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_conformer_ctc_small
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_conformer_ctc_small
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Duration CV15.0 (test)(%)
T ≥ 0s 23.72
T ≥ 3.0s 23.62
T ≥ 3.5s 23.47
T ≥ 4.0s 23.33
T ≥ 4.5s 23.25
T ≥ 5.0s 23.02
T ≥ 5.5s 23.05
T ≥ 6.0s 23.00
T ≥ 6.5s 22.96

Table 2: This table shows the change in the word
error rate (WER) of the test after excluding some
of the shorter utterances from CommonVoice’s test
set (CV15.0 test). The T ≥ 0s refers to no data
from the test set is excluded, i.e., the entire test set
is used, T ≥ 3.0s refers to the test is performed
with utterances duration ≥ 3 seconds, etc.

3.2. Model Fine-Tuning by Short
Utterances

During the training and validation phases, a thresh-
old T is set based on the duration of the speech
samples, dividing them into long and short utter-
ances. For short utterances, adaptation technique
is used to further fine-tune the transferred model.
Adapter layers are embedded into the initial fine-
tuned model, specifically training by short utterance
samples to enhance the model’s performance in
recognizing short utterances.

4. Experimental Set-up

4.1. Common Setting
In this study, the hardware configuration consists of
a system equipped with dual Nvidia A6000 graphics
cards, ensuring efficient processing capabilities for
deep neural network training and inference. The
model chosen for this investigation is the Conformer
Small model (Gulati et al., 2020), renowned for
its effectiveness in speech recognition tasks. The
linear adapter (NVIDIA, 2024) was applied for fine-
tuning the model with short utterances.

Regarding hyper-parameter settings, a learning
rate of 0.002 is applied to optimize the training pro-
cess, a batch size of 32 is used, coupled with the
utilization of Connectionist Temporal Classification
(CTC) loss function (Graves et al., 2006). This
loss function is particularly suited for sequence-to-
sequence problems typical in speech recognition.

To facilitate the experiments, the NVIDIA NeMo
toolkit (Kuchaiev et al., 2019), version 1.22.0, is
employed. This toolkit is widely recognized for its
robust features in speech and language processing.
For all other parameters not mentioned, NeMo’s
default recipe is used.

Figure 2: Workflow. The figure shows the training
process for both long and short models. Firstly,
a pre-trained model in English and the entire
dataset was fine-tuned to obtain the model for long
utterances(ML), and then utterances of duration <
T , i.e., short utterances, short utterances, were
identified from this dataset and fine-tuned again
using short utterances to obtain the model for short
utterances (MS).

4.2. Transfer Learning Phase

Here, an English pre-trained model is used initially
and then it is fine-tuned on two Hungarian datasets
(BEA-Base and CV15.0). The fine-tuning process
consists of training the models on the BEA-Base
and CV datasets for 200 and 100 epochs, respec-
tively, which results in two different models specif-
ically adapted to each dataset. After the training
phase, these models will be evaluated on their re-
spective test datasets. The purpose of the eval-
uation is to establish a baseline error rate, which
serves as a benchmark for the performance of dual-
model.
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Split by Time(s) ERS on ML(%) ERS on MS(%)
2.5 26.30 25.51
3.0 25.67 25.10
3.5 25.63 25.12

Table 3: This table shows the results of testing eval-spont on ML and MS with short utterance datasets
that have been segmented with different thresholds(T ), ERS refers to the error rate of the short dataset.
Such a comparison is to demonstrate that the model MS, fine-tuned with shorter sentences, achieves
better recognition of short sentences compared to the initial fine-tuning of the obtained model ML.

Split by Time(s) ERS on ML(%) ERS on MS(%)
4.5 26.04 25.86
5.0 25.46 24.46
5.5 24.71 23.79
6.0 24.34 23.17
6.5 24.14 22.90

Table 4: This table shows the results of testing CV15.0 test set on ML and MS with short utterance datasets
that have been segmented with different thresholds(T ), ERS refers to the error rate of the short dataset.
Such a comparison is to demonstrate that the model MS, fine-tuned with shorter sentences, achieves
better recognition of short sentences compared to the initial fine-tuning of the obtained model ML.

T(s) NErrorL/NWordL ERL on ML(%) NErrorS/NWordS ERS on MS(%) Av. ER(%)
- - - - - 25.42(Baseline)
2.5 7083 / 28673 24.70 1660 / 6505 25.51 24.85
3.0 6291 / 25445 24.72 2443 / 9733 25.10 24.82
3.5 5484 / 22241 24.65 3249 / 12937 25.12 24.82

Table 5: This is the result of testing on the ML model using the full BEA-Base’s test set(eval-spont),
compared with the test results using ML and MS working together(Test separately according to duration).
It shows that the test set (eval-spont) was segmented into long utterances set, and short utterances set
from 2.5 to 3 seconds according to different duration thresholds T. The results of long utterances tested
on ML are labeled as ERL on ML, while the results of short utterances tested on MS are denoted as ERS
on MS. The average word error rate, Av.ER is computed from Equation 1. Additionally the baseline was
only measured directly with the first fine-tuned model using the full test set(eval-spont), so it was not
calculated using this formula.

T(s) NErrorL/NWordL ERL on ML(%) NErrorS/NWordS ERS on MS(%) Av. ER(%)
- - - - - 23.72(Baseline)
4.5 16162 / 69513 23.25 3550 / 13726 25.86 23.68
5.0 13786 / 59888 23.02 5712 / 23351 24.46 23.42
5.5 11436 / 49612 23.05 8001 / 33627 23.79 23.35
6.0 8895 / 38658 23.00 10330 / 44581 23.17 23.09
6.5 6775 / 29497 22.96 12310 / 53742 22.90 22.92

Table 6: This is the result of testing on the ML model using the full CV15 test set, compared with the test
results using ML and MS working together(Test separately according to duration). It shows that the test set
(CV15.0 test) was segmented into long utterances set, and short utterances set from 4.5 to 6.5 seconds
according to different duration thresholds T. The results of long utterances tested on ML are labeled as ERL
on ML, while the results of short utterances tested on MS are denoted as ERS on MS. The average word
error rate, Av.ER is computed from Equation 1. Additionally the baseline was only measured directly with
the first fine-tuned model using the full test set(CV15.0 test), so it was not calculated using this formula.

4.3. Dataset Segmentation

In this step, a specific time threshold T was set
to distinguish between long and short utterances

in the dataset. Specifically, utterances with a du-
ration ≥ T were classified into a set of long ut-
terances, while those with a duration < T were
classified into a set of short utterances. This re-
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search involved two different Hungarian language
datasets, namely BEA-Base (Mihajlik et al., 2022b)
and CV15.0 (Ardila et al., 2019). For the BEA-Base
dataset, the threshold T was set between 2.5 to
3.5 seconds for the training set (Train-114), vali-
dation set (dev-spont), and test set (eval-spont).
For the CV15 dataset, referred to as CV15.0, the
T value ranged from 4.5 to 6.5 seconds, applied
to the training set (train), validation set (dev), and
test set (test). Furthermore, to avoid issues related
to limited data amount of short utterances during
further fine-tuning, the threshold T for the BEA-
Base dataset was set starting from 2.5 seconds,
unlike the starting point of 2 seconds as Table 1, the
CV15.0 dataset was set starting from 4.5 seconds,
unlike the starting point of 3 seconds as Table 2.

4.4. Training Short Utterance Model
We employ the method of embedding adapters
into the post-transfer learning model for fine-tuning,
which serves to efficiently retain the original model
information while also achieving rapid adjustments.
Specifically, in the BEA-Base and CV15.0, utter-
ances from the training and validation sets that are
shorter than the defined time threshold T , are used
for this purpose. The adapter is trained for a du-
ration of 50 epochs, a "linear" type adapter was
applied (NVIDIA, 2024).

4.5. Test and Evaluation
After completing the steps described, we have de-
veloped two models: ML, a model fine-tuned for pro-
cessing longer utterances, and MS, a model adept
at handling short utterances, created by embedding
an adapter and performing additional fine-tuning.
In the test phase, these two models are employed
in a collaborative manner.

For utterances in the test set that are longer than
the threshold T , ML is used to calculate the error
rate for long utterances (ERL). Conversely, for ut-
terances shorter than T , the MS is utilized to de-
termine the error rate for short utterances (ERS).
This dual-model strategy is designed to optimize
speech recognition accuracy across varying utter-
ance duration.

4.6. Combined Accuracy Calculation
In assessing the composite accuracy of a speech
recognition model, it is important to consider both
the error rates of long utterances (ERL) and short
utterances (ERS). This evaluation also involves
accounting for the number of erroneous words in
long utterances, denoted as NErrorL, and the total
number of words in long utterances, represented as
NWordL. Similarly, for short utterances, the number
of erroneous words, NErrorS, and the total number of

words, NWordS, are also factored into the calculation.
The average error rate (Av.ER) is given by Formula
1.

Av.ER =
NErrorL +NErrorS
NWordL +NWordS

(1)

5. Results Analysis

The experimental results of this study reveal some
key findings. First, as demonstrated in Table 3 and
Table 4, for the task of processing short utterances,
the model obtained by using the adapter technique
to fine-tune it again exhibits a significant perfor-
mance improvement compared to the model that
has only been fine-tuned by initial transfer learning
both on BEA-Base and CV15.0. This result shows
that the model fine-tuned again by using short utter-
ances has a stronger short utterance recognition
ability.

Furthermore, to address the lack of performance
of the model fine-tuned with transfer learning using
the full dataset for short utterance recognition, this
study proposes a two-model strategy that works
in tandem. This strategy combines two models: a
model that has been fine-tuned by full-parameter
transfer learning optimized specifically for long utter-
ances, and a model that has been fine-tuned again
for short speech using an adapter technique. With
this combination, the two models work together on
speech samples of different duration.

The results, shown in Table 5 for BEA-Base, and
the results, shown in Table 6 for CV15.0, indicate
that when the two models co-work, there is a 2.4%
relative boost in WER for BEA-Base, and a 3.2%
relative boost on CV15.0 compared to baseline that
uses transfer learning and all training set to fine-
tune the model.

6. Conclusion

In this paper, it was found that the automatic recog-
nition of short utterances are generally more difficult
than long ones. For this challenge, we proposed a
tandem modeling approach: separate models are
obtained by various fine-tuning steps for short and
long utterances and these models work together
achieving a noticeable improvement on WER on
two publicly available Hungarian datasets (BEA-
Base, CV15.0).

However, this tandem model approach has limi-
tations. The added step of determining the length
of utterances might lead to delays and other prob-
lems in practical applications. Moreover, training
the model can be challenging for datasets where
the distinction between short and long sentences
is not clearly defined.
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As for future work, we want to generalize the
use of the two-model cooperation strategy across a
wider range of datasets as well as a wider range of
languages to explore the potential of this approach.
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