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Abstract
Transformer models often demand a vast amount of training data to achieve the desired level of performance.
However, this data requirement poses a major challenge for low-resource languages seeking access to high-quality
systems, particularly in tasks like Machine Translation. To address this issue, we propose adding Dropout to
Transformer’s Residual Connections. Our experimental results demonstrate that this modification effectively mitigates
overfitting during training, resulting in substantial performance gains of over 4 BLEU points on a dataset consisting of
merely 10 thousand examples.

Keywords: machine translation, low resource, transformers

1. Introduction

Neural Machine Translation (NMT) has revolution-
ized the field by achieving unprecedented results
compared to previous methods. However, this
progress has come at a cost—the escalating data
requirements for training such systems. Currently,
it is common practice to train models on millions
of parallel sentences, a luxury only available for
a limited number of high-resource languages. On
the other hand, most languages lack access to
this wealth of data and must settle for lower-quality
translations or rely on generic multilingual models
that are ill-suited to their specific linguistic nuances.

The primary factor contributing to this phe-
nomenon is overfitting, wherein neural networks
with millions of parameters tend to memorize train-
ing examples rather than actually learning the task
at hand. Overfitting leads to poor generalization on
unseen data, making models impractical. This is-
sue exacerbates when training on a limited amount
of data, as in the case of low-resource Neural Ma-
chine Translation.

The Transformer architecture, widely adopted
in NMT, addresses overfitting by incorporating
Dropout regularization and Batch Normalization
at the output of attention blocks and feedforward
layers. However, Residual Connections—wherein
the output of previous layers is directly added with-
out regularization—have received less attention in
this regard. Yet recent research has underscored
the significance of Residual Connections in pre-
serving positional and semantic information across
different attention layers.

This work aims to highlight the crucial role of
Residual Connections in Neural Machine Trans-
lation. We explore the impact of incorporating
Dropout regularization into all Residual Connec-
tions within the Transformer architecture. Our find-

ings reveal that this approach effectively delays
overfitting, particularly in scenarios with extremely
limited resources, leading to noteworthy improve-
ments in translation quality of over 4 BLEU points
on average across diverse datasets encompassing
various languages and domains.

2. Related Work

The Transformer architecture (Vaswani et al., 2017)
has become the standard approach for various
tasks, particularly Neural Machine Translation. It
has demonstrated remarkable effectiveness not
only in Natural Language Processing (NLP) tasks
like Language Modeling (OpenAI, 2023) and Ques-
tion Answering (Anil et al., 2023), but also in other
domains such as Computer Vision (Liu et al., 2023)
and Speech (Di Gangi et al., 2019).

At the core of this architecture lies the attention
block, which consists of two main components:
multi-head scaled dot-product attention and a feed-
forward layer. These elements work together to cap-
ture patterns and dependencies among different
positions in a sequence. The attention mechanism
can be applied within a sequence (self-attention)
or between source and target sequences (cross-
attention). The outcome is a contextual represen-
tation of the sequence tokens, enriched with in-
formation from other tokens and their positional
relationships.

Previous studies (Geva et al., 2021) have high-
lighted the significance of the Transformer’s feed-
forward networks as key-value memories that allow
the model to capture novel patterns from the input
data.

The outputs of both the attention and feedforward
blocks are then normalized using Layer Normaliza-
tion and added to the input of the block through a
Residual Connection. This connection prevents the
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model from experiencing vanishing gradients, en-
abling the stacking of multiple Transformer blocks.
Recent research (Ferrando et al., 2022) has em-
phasized the importance of Residual Connection
in propagating information between layers. It has
demonstrated that certain layers may have low at-
tribution to all tokens in the sequence, relying on
the Residual Connection to provide information to
subsequent layers. The impact of Residual Con-
nections has been particularly evident in Multilin-
gual Machine Translation (Liu et al., 2021). When
a Residual Connection is removed from the multi-
lingual encoder, the models rely less on positional
information, leading to a reduction in spurious cor-
relations between trained languages. As a result,
zero-shot translation improves.

One aspect that is often overlooked in the Trans-
former architecture is the utilization of Dropout (Sri-
vastava et al., 2014). Transformer models typically
have millions or even billions of parameters, which
makes them prone to overfitting when insufficient
training data is provided. Dropout helps mitigate
this issue by randomly masking a percentage of the
layer’s outputs as 0. This delay in overfitting allows
the models to generalize better to unseen data. In
the Transformer architecture, Dropout is applied to
both the attention and feedforward networks, during
both self-attention and cross-attention operations.

3. Methodology

Residual Connections are integral to the flow of in-
formation within the Transformer’s layers. However,
during training, these connections lack regulariza-
tion, making it easier for models to memorize pat-
terns from them. Consequently, models are prone
to overfitting, particularly in low-resource scenarios.

To address this issue, we propose the introduc-
tion of Residual Dropout. In addition to applying
Dropout to the outputs of both the attention and
feedforward networks, we suggest applying it to
the input utilized during the Residual Connection
(He et al., 2016). By incorporating this additional
step, we aim to mitigate the overfitting tendency
observed in standard Transformer models.

Figure 1 illustrates our proposed modification,
highlighting the inclusion of Residual Dropout. It is
worth noting that the proposed modification does
not add any new trainable parameters to the model,
hence does not affect its hardware requirements.

Our approach holds dual importance. Firstly, by
randomly removing information from the Residual
Connection, it forces the model to not rely exclu-
sively on the most salient features. This variation
helps delay overfitting and facilitates the learning
of more robust representations. Secondly, by re-
ducing the reliance on positional information, our
models become more adaptable and robust, par-

ticularly in scenarios with limited available data.

Figure 1: Transformer’s attention block diagram
with Residual Dropout.

4. Experimental Details

To assess the applicability of our method, we con-
ducted a series of experiments focused on low-
resource Machine Translation. Given the chal-
lenging nature of such datasets, particularly for
extremely low-resource language pairs, we con-
ducted our experiments using approximately 100k
examples for standard evaluation. To analyze the
impact of our method under different data condi-
tions, we defined a range of training corpora sizes,
ranging from 5k to 1M sentences.

Training corpora: Our training data comprised
several datasets from diverse language families.
For standard evaluation, we utilized the IWSLT
2017 (Nguyen et al., 2017) German-English corpus,
which consists of 135 thousand sentences. Addi-
tionally, we chose the Tatoeba (Tiedemann, 2012)
corpus, containing approximately 168 thousand
sentences, for the Turkish-English translation task.
To test a moderate-to-poor resource scenario, we
randomly sampled 1M sentences from an in-house
corpus that includes Europarl v7 (Koehn, 2005),
CoVost 2 (Wang et al., 2021), CCAligned (El-Kishky
et al., 2020), OpenSubtitles (Lison and Tiedemann,
2016), Wikimatrix (Schwenk et al., 2021), and Wiki-
media. 1 For the size experiments, we randomly
sampled subsets from this corpus. All datasets
are tokenized using Sentencepiece with a subword
vocabulary of 8000 tokens.

Evaluation corpora: To ensure comprehensive
comparisons, we evaluated all translation directions

1Full disclosure of the datasets used can be found
here

https://huggingface.co/projecte-aina/mt-aina-ca-en
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on both the FLORES (Goyal et al., 2022) dev and
devtest sets. Furthermore, for the English-Catalan
translation, we conducted tests on multiple test sets
from different domains, including the Spanish Con-
stitution and United Nations (Ziemski et al., 2016)
from the administrative domain, WMT 19 from the
biomedical domain, and WMT newstest 2013 from
the news domain. All results are reported using
SacreBleu’s (Post, 2018) standard configuration.

Implementation: In all our experiments, we
adopted the standard "en-de-iswslt" Transformer
configuration from Fairseq (Ott et al., 2019). This
architecture consists of 6 Transformer layers in both
the encoder and decoder. Each layer is equipped
with 4 attention heads, a hidden size of 512 dimen-
sions, and a feedforward size of 2048. We trained
all models using 0.1 Dropout and the Adam opti-
mizer (Kingma and Ba, 2015) with betas (0.9, 0.98)
and a learning rate of 5e − 4." If not stated other-
wise, Residual Dropout is applied on all encoder
and decoder layers.

5. Results

When incorporating Dropout into a model, it is cru-
cial to consider the tradeoff between regularization
and the potential delay in overfitting, as well as the
extent to which information is removed from the
model. An excessively high Dropout value may pre-
vent the model’s ability to fully learn the task or even
impair its overall performance. To determine the
optimal value for our experiments, we conducted
tests on the English-Catalan translation direction
using 100 thousand sentences, exploring a range
of values from 0.1 to 0.4.

Table 1 demonstrates that setting the Residual
Dropout to 0.1 resulted in an average performance
improvement of 3 BLEU points over the baseline.
Remarkably, this improvement was consistently ob-
served across all domains, including the biomedi-
cal domain, which was not present in the training
data. Increasing the Dropout to 0.2 reduced the
improvement to 0.6, and further increasing it led to
a significant decline in the model’s performance.

Furthermore, we observed that introducing
Residual Dropout exclusively to either the encoder
(RD 0.1 Enc) or decoder (RD 0.1 Dec) layers re-
sulted in performance improvements. Upon com-
paring both models, we noted greater improve-
ments when Residual Dropout was applied only
to the decoder, particularly in the biomedical do-
main. However, when Residual Dropout was added
to both the encoder and decoder layers, the over-
all performance improvement was even higher.
Hence, for all subsequent experiments, we will em-
ploy a value of 0.1 on both encoder and decoder.

In order to test whether the gains observed in the
EN-CA pair can be replicated in the other direction
and for other language pairs, we chose our best
value of RD and applied it to the training of three lin-
guistically diverse models. Table 2 presents the re-
sults for the different models trained on datasets of
approximately 100 thousand sentences. These re-
sults demonstrate that across all tested translation
directions, the incorporation of Residual Dropout
yields a consistent performance improvement of
+2 BLEU points on both FLORES dev and devtest
datasets.

Figure 2: Performance comparison (BLEU) at differ-
ent corpora sizes at 100k updates. In blue, baseline
system, in orange, Residual Dropout at 0.1

Figure 3: Number of updates until best checkpoint
at different corpora sizes at 100k updates. In blue,
baseline system, in orange, Residual Dropout at
0.1

Our hypothesis for the observed performance im-
provement, regardless of the translation direction
or language pair, is that delayed overfitting plays
a crucial role in enhancing translation quality. To
substantiate this hypothesis, we conducted exper-
iments training multiple English-Catalan models
using varied corpus sizes ranging from 5 thousand
to 1 million sentences. Each model underwent
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Dataset Baseline RD 0.1 RD 0.2 RD 0.3 RD 0.4 RD 0.1 Enc RD 0.1 Dec
Spanish Constitution 21.9 23.7 22.1 17.2 0.0 22.4 22.4
United Nations 24.7 28.3 26.5 20.3 0.0 26.4 27.1
FLORES dev 23.0 27.7 24.3 18.3 0.0 25.3 26.1
FLORES devtest 23.2 26.9 24.1 18.1 0.0 25.4 26.0
WMT 19 Biomedical 12.7 13.9 12.1 9.6 0.0 13.2 14.4
WMT 13 news 22.0 25.6 23.1 18 0.0 23.6 24.3
Average 21.4 24.4 22.0 16.9 0.0 22.7 23.35

Table 1: English-Catalan translation performance for different Residual Dropout values. All results are
measured using BLEU.

Dataset EN-CA CA-EN EN-DE EN-TR
Model Baseline RD 0.1 Baseline RD 0.1 Baseline RD 0.1 Baseline RD 0.1
FLORES dev 23 27.7 25.5 28.3 20.4 23.4 12.0 14.0
FLORES devtest 23.2 26.9 25.3 27.5 18.7 22.4 11.3 14.1

Table 2: Translation results for all tested translation directions. All results are measured using BLEU.

training for 100 thousand updates, with the best
checkpoint determined based on the lowest valida-
tion loss.

Figure 2 illustrates the translation quality
achieved with the different corpus sizes. Notably,
the most significant improvements were obtained
with smaller corpora, showcasing a consistent en-
hancement of nearly 5 BLEU points between 10
and 50 thousand sentences. A special case is ob-
served with only 5 thousand sentences, where both
baseline and proposed models struggle to learn
the task effectively. As the dataset size increases,
the disparities between the two systems diminish,
and they become almost identical when trained on
1 million sentences. Furthermore, examining the
updates until the best checkpoint, as depicted in
Figure 3, we observe that models employing Resid-
ual Dropout consistently require more updates to
reach their peak performance.

6. Conclusions

Our research provides further evidence support-
ing the significance of Residual Connections in en-
hancing the performance of Transformer models.
The introduction of Residual Dropout presents a
straightforward and transparent approach to im-
proving Transformer models, particularly in ex-
tremely low-resource scenarios. The experimental
results demonstrate that our proposed modification
can significantly enhance translation performance.
For instance, on a dataset consisting of just 10
thousand sentences, our approach achieves an im-
provement of over 4 BLEU points over a standard
Transformer configuration. Moreover, across multi-
ple language pairs and a dataset of 100 thousand
examples, the proposed modification yields a gain
of more than 2 BLEU points.

As a potential future research, Residual Dropout
can be applied to a wide range of tasks involv-

ing Transformers. The modification is agnostic to
modalities, making it applicable across different
domains.

7. Limitations

Our findings clearly demonstrate that the benefits
achieved through the inclusion of Residual Dropout
are closely linked to the postponement of overfitting.
It is important to note that in high-resource scenar-
ios or with models that do not exhibit pronounced
signs of overfitting, e.g, model finetuning, the ob-
served improvement may be significantly smaller
or, in some cases, due to the model getting stuck
on local minima.

8. Ethical Statement

The proposed method primarily emphasizes en-
hancing the data efficiency of the Transformer ar-
chitecture, specifically in the domain of Machine
Translation. Although the technique does not intro-
duce any new ethical considerations into the archi-
tecture itself, it is important to note that it does not
address the mitigation of societal biases or potential
harms that may arise from such architectures.

Furthermore, it is essential to take into account
the environmental implications of training neural
models. The addition of Residual Dropout, while
beneficial in delaying overfitting, also leads to an
increase in the average number of updates required
until convergence by approximately 10.75%. This
increase in training iterations subsequently results
in higher power consumption and CO2 emissions.

By considering both ethical aspects and envi-
ronmental impact, we can foster a more holistic
approach to the development and deployment of
Transformer architectures in Machine Translation
and other domains.
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