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Abstract
While massively multilingual speech models
like wav2vec 2.0 XLSR-128 can be directly
fine-tuned for automatic speech recognition
(ASR), downstream performance can still be
relatively poor on languages that are under-
represented in the pre-training data. Continued
pre-training on 70–200 hours of untranscribed
speech in these languages can help — but what
about languages without that much recorded
data? For such cases, we show that supple-
menting the target language with data from a
similar, higher-resource ‘donor’ language can
help. For example, continued pretraining on
only 10 hours of low-resource Punjabi supple-
mented with 60 hours of donor Hindi is almost
as good as continued pretraining on 70 hours of
Punjabi. By contrast, sourcing data from less
similar donors like Bengali does not improve
ASR performance. To inform donor language
selection, we propose a novel similarity metric
based on the sequence distribution of induced
acoustic units: the Acoustic Token Distribution
Similarity (ATDS). Across a set of typologi-
cally different target languages (Punjabi, Gali-
cian, Iban, Setswana), we show that the ATDS
between the target language and its candidate
donors precisely predicts target language ASR
performance.

1 Introduction

For developing automatic speech recognition
(ASR), ‘low resource’ languages are typically clas-
sified as such based on the availability of tran-
scribed speech. Untranscribed speech, texts, or reli-
able metadata about the language are often assumed
to be easily obtainable. This assumption may not
hold true for under-described languages with little
digital representation. For such languages, we are
interested in two questions: 1) does leveraging un-
transcribed speech from a similar, higher-resource
‘donor’ language for pre-trained model adaptation
help improve speech recognition in the target lan-
guage, and 2) how do we select the best donor?

These questions are of interest as ASR system
development with little transcribed speech has be-
come viable with multilingual pre-trained trans-
former models for speech (e.g. wav2vec 2.0 XLSR-
128: Babu et al., 2022). Yet, as most languages are
under-represented in the pre-training data, directly
fine-tuning these models for ASR in the target lan-
guage can yield lower performance compared to
their well-represented counterparts (Conneau et al.,
2023). While recent studies have shown the effec-
tiveness of continued pre-training to adapt these
models to the target language (Nowakowski et al.,
2023; Paraskevopoulos et al., 2024), they involved
using 70–200 hours of target language data. For
some languages, it may be quite difficult to source
this much speech data — even untranscribed.

Thus, in our first set of experiments, we investi-
gated whether supplementing target language data
with data from another language could be a vi-
able approach for model adaptation via continued
pre-training (CPT). We selected Punjabi as our
target language to establish top-line performance
when sufficient data is available (70 hours, approx-
imating the setup in Paraskevopoulos et al., 2024),
along with a limited data baseline (when only 10
hours of Punjabi is available). We compared this
baseline to supplementing the 10 hours of Punjabi
with 60 hours of data from 8 other Indic languages
(Indo-Aryan: Hindi, Urdu, Gujarati, Marathi, Ben-
gali, Odia; Dravidian: Malayalam, Tamil). We fine-
tuned each CPT-adapted model using the same 1
hour of transcribed Punjabi speech.

Results indicated that adding data from unre-
lated Dravidian languages (Malayalam, Tamil) or
dissimilar Indo-Aryan languages (Bengali, Odia)
yielded no better than baseline performance, 25%
word error rate (WER). By contrast, we observed
improved WERs from adding more similar lan-
guages (Marathi, Urdu, Gujarati, Hindi), with
adding Hindi coming close to the 70-hour Punjabi
top-line: 23.2% vs. 22.2%, respectively.

100



In our second set of experiments, we investigated
how well measures of similarity between the tar-
get and donor languages predicted target language
ASR performance. We found that commonly used
measures based on external typological databases
such as lang2vec (Littell et al., 2017) were not suffi-
ciently fine-grained for our use case and, crucially,
also varied with the quality/completeness of the
available metadata for a given target language.

To sidestep these issues, we propose the Acous-
tic Token Distribution Similarity (ATDS), which
measures the degree of similarity for two un-
transcribed speech corpora based on frequencies
of occurrence of recurring acoustic-phonetic se-
quences. This measure extends Token Distribution
Similarity (Gogoulou et al., 2023), shown to corre-
late with positive transfer in continued pre-training
for text-based language models. To account for
the text-/token-less nature of untranscribed speech
corpora, we induce them in a bottom-up manner
using wav2seq (Wu et al., 2023), a method for
inducing pseudo-tokens using pre-trained speech
embeddings. We compared the ASR performance
from the Indic language experiments to various
similarity measures and found that ATDS offered
the most accurate ranking. Furthermore, ATDS cor-
rectly predicted the best donor language between
two options for three non-Indic low-resource lan-
guages (Galician, Iban, and Setswana).1

In sum, the main contributions of this paper
are: 1) a systematic study of pairwise transfer be-
tween languages in continued pre-training and its
effects on target language ASR performance, and
2) the development, analysis, and first validation
of ATDS — a fine-grained, bottom-up measure of
acoustic-phonetic similarity to predict this ASR
performance. To facilitate reproducibility and fur-
ther research, we make available all our code,
model checkpoints, and experimental artefacts.2

2 Background: wav2vec 2.0

In this section, we provide a high-level overview
of the wav2vec 2.0 model and highlight specific
details about its architecture and training objectives
that will be relevant to our later discussions. De-
veloped by Baevski et al. (2020), wav2vec 2.0 is
a type of self-supervised pre-trained transformer
model. In machine learning, supervised learning in-

1Appendix B provides an overview of the languages.
2https://github.com/fauxneticien/

w2v2-cpt-transfer

volves the use of human-generated labels (e.g. tran-
scriptions), which can be time- and cost-intensive
to create. In self-supervised pre-training, the goal
is to first train the model on a proxy task for which
it can derive its own labels, before the resulting
model is adapted or ‘fine-tuned’ to the target task
(e.g. ASR). Leveraging self-supervised pre-training
has shown remarkable success across a variety of
tasks when combined with a transformer-based
model (Vaswani et al., 2017), which excels at learn-
ing how various units in a sequence co-occur (e.g.
words in a sentence). Naturally, this has spurred
on much experimentation for leveraging such mod-
els for low-resource ASR (e.g. Coto-Solano et al.,
2022; Guillaume et al., 2022; Macaire et al., 2022;
Bartelds et al., 2023).

As illustrated below in Figure 1, the wav2vec
2.0 architecture consists of three parts: 1) a con-
volutional feature extractor that extracts learnable
features from strided frames in the audio input, 2)
a quantiser which clusters the audio features into
into a set of discrete code vectors (q1, ..., q5), and 3)
a transformer attention network that learns context-
enriched representations (h1, ..., h5). For self-
supervised pre-training, the model is optimised us-
ing a joint contrastive loss and a diversity loss. The
contrastive loss requires the model to use the neigh-
bouring context to distinguish each masked frame
amongst a set of negative distractors.3 The diversity
loss requires the model to make equal use of all
code vectors, preventing the model from relying on
a small subset which can lead to trivial/sub-optimal
solutions.

Feature extractor (49 Hz)

Quantiser
q5q1 q2 q3 q4

Transformer

Contrastive Loss + Diversity Loss
ℒ

Masked

[ k æ t ]

h1 h2 h3 h4 h5

Figure 1: Illustration of the wav2vec 2.0 architecture.
Adapted from Baevski et al. (2020).

We highlight here two important details relevant
for our later discussions on acoustic tokens. The
first is that the representations learned by the trans-

3A speech variant of a Cloze test: e.g. given “The big ___
chased the small rat.”, select the correct answer from {cat, rat,
small}.
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former network are particularly useful for speech
applications requiring fine-grained comparisons of
acoustic-phonetic content, e.g. speech information
retrieval (San et al., 2021), second language pro-
nunciation scoring (Bartelds et al., 2022; Richter
and Guðnason, 2023), spoken dialect classifica-
tion (Bartelds and Wieling, 2022; Guillaume et al.,
2023) — particularly those learned by the middle
layers of the transformer network (e.g. layers 12–
16 of a 24-layer network).

The second detail is that these representations
are encoded as vectors in a high-dimensional latent
space and emitted at a rate of 49 Hz. Combined
with the diversity loss that requires exploration of
this space, there is a many-to-many relationship
between phonetic categories and these vectors —
both in the latent space and in time. For example,
as illustrated in Figure 1, a single speech sound
such as [æ] may last for three time steps (yielding
h2, h3, h4). The first two vectors (h2, h3) may be
very close in the latent space, as they map to the
start of [æ] sounds while the third h4 may map to
[æ] sounds preceding [t] and is thus located in a
different part of the latent space. Thus to derive
phone-like tokens from these representations, we
must group them in the latent space (e.g. using k-
means clustering) and then again in time according
to how the grouped units themselves routinely co-
occur (e.g. using subword modelling).

In this way, the goal of tokenisation for both
text and speech is driven by the need to derive units
of a practical granularity based on the nature of the
input: from coarser-grained words to finer-grained
sub-words in text and, inversely, finer-grained sub-
phones to coarser-grained phones in speech. We
return to these two details in our development of
the Acoustic Token Distribution Similarity measure
for comparing the acoustic-phonetic similarity of
two untranscribed speech corpora.

3 A systematic study of pairwise transfer

3.1 Motivation

Since the release of the original English wav2vec
2.0 model pre-trained on the 960 hour LibriSpeech
corpus (Panayotov et al., 2015), additional mas-
sively multi-lingual variants have also been devel-
oped: XLSR-53, pre-trained on 56k hours from 53
languages (Conneau et al., 2021); XLSR-128, pre-
trained on 436k hours from 128 languages (Babu
et al., 2022); and MMS, pre-trained on 491k hours
from 1,406 languages (Pratap et al., 2023). In each

case, the vast majority of the pre-training data is
drawn from European language sources.

Given the under-represented nature of most lan-
guages in these wav2vec 2.0 models, several stud-
ies have investigated continued pre-training (CPT)
to adapt them for target languages (e.g. Javed et al.,
2022; DeHaven and Billa, 2022; Nowakowski
et al., 2023; Bartelds et al., 2023; Paraskevopoulos
et al., 2024). Nowakowski et al. (2023) adapted the
XLSR-53 model using 200 hours of Ainu. Using
the same 40 minutes of transcribed Ainu for ASR
fine-tuning, they found that the adapted model re-
sulted in a 8.8% absolute word error rate (WER) de-
crease over the off-the-shelf XLSR-53 model. For
many low resource languages, however, obtaining
200 hours of speech data may not be feasible.

In their study of unsupervised domain adapta-
tion for Greek, Paraskevopoulos et al. (2024) found
adapting the XLSR-53 model via CPT using a
small 12-hour dataset of Greek read speech to be
ineffective. However, they found that successful
CPT-based adaptation could be achieved with the
use of multi-domain data, e.g. 12 hours of read
speech mixed with 70 hours of newscasts. Given
these findings, we were motivated to investigate
whether comparable results could be achieved by
supplementing target language data with data from
another language.

3.2 Method

3.2.1 Model training
As our primary interest was in examining how
downstream ASR performance is affected by the
dataset(s) used in continued pre-training (CPT), we
carried out nearly identical experiments as those in
Nowakowski et al. (2023) by obtaining their con-
figuration file for wav2vec 2.0 pre-training using
the official fairseq library.4 Similarly, we follow
the official fine-tuning recipe suitable for 1 hour
of transcriptions. For both procedures, we made
modifications to suit our hardware configuration
and compute budget, as detailed in Appendix A.

3.2.2 Data
For a systematic investigation of how downstream
ASR performance in a given target language varies
with the choice of donor language added during
CPT, we required a dataset with some specific char-
acteristics: a) contains a variety of both similar
and dissimilar languages with, b) at least 60 hours

4https://github.com/facebookresearch/fairseq
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per language, c) and collected in relatively similar
acoustic conditions, and d) not have already been
used in the original pre-training process. Accord-
ingly, for this set of experiments, we sourced data
from IndicSUPERB (Javed et al., 2023), a dataset
of 12 Indic languages containing 65–180 hours of
read speech per language (Indo-Aryan: Bengali,
Gujarati, Hindi, Marathi, Odia, Punjabi, Sanskrit,
Urdu; Dravidian: Kannada, Malayalam, Tamil, Tel-
ugu).

Amongst these 12 IndicSUPERB languages, we
selected Punjabi as our target language as it is rel-
atively low-resourced (cf. Hindi, Tamil), its geo-
graphical and typological location (yielding a va-
riety of closer and farther geographic/typological
distances to the others), and also native speaker-
linguist expertise on our research team for data
validation and error analysis.

As illustrated below in Figure 2, we began by
selecting for our top-line condition a random 70h
subset of Punjabi from the total 136h available in
IndicSUPERB, and then from this subset a random
10h selection for our baseline, and again a random
1h subset for fine-tuning. We also selected a ran-
dom 1h validation and 2h test set both disjoint from
each other and any data to be used for pre-training.

1h Valid

Punjabi (136h) (e.g. Hindi, 150h)

70h

10h2h Test

1h Fine-tune
Audio only
Audio + Transcriptions

*Bengali, Gujarati, Hindi, 
Malayalam, Marathi, Odia, 

Tamil, Urdu

Target language Donor language*

60h 60h60h

3 x random 60h subsets

Figure 2: Data selection for transfer experiments

Additionally, for each donor language (Bengali,
Gujarati, Hindi, Malayalam, Marathi, Odia, Tamil,
Urdu), we created three random 60h subsets. Given
the total amounts of data available in IndicSU-
PERB for each language (e.g. 87h for Urdu but
129h for Gujarati), there is however some unavoid-
able overlap between these subsets for each lan-
guage (i.e. they are not disjoint 60h splits). Using
each of the 60h subsets, we conducted 3 separate
CPT runs per language to obtain estimates for both
within- and between-donor language differences
on downstream ASR performance.

3.3 Results and discussion
Compared to directly fine-tuning the XLSR-128
model, adapting the model first via continued pre-
training (CPT) with 70 hours of Punjabi yields
a large improvement in downstream ASR perfor-
mance (unadapted 30.8% vs. 22.2% CPT-adapted,
70h). This constitutes an absolute WER difference
of 8.6% and is consistent with improvements re-
ported in previous CPT experiments (Nowakowski
et al., 2023; Paraskevopoulos et al., 2024). We
found that model adaptation with only 10 hours
of Punjabi still yielded an appreciable improve-
ment over the unadapted model: 5.8% absolute
(unadapted 30.8% vs. 25.0% CPT-adapted, 10h).

We now turn to our experiment conditions in
which 10h of Punjabi is supplemented with 60h of
data from another language. As summarised below
in Table 1, the effects of donor language on Punjabi
ASR performance can be divided into roughly three
strata. In the bottom stratum (E3), we find unrelated
Dravidian languages (Tamil, Malayalam) or dissim-
ilar Indo-Aryan languages (Bengali, Odia). When
data from these languages are added during CPT,
we find no meaningful difference compared to us-
ing only 10 hours of Punjabi (WERR: -0.8–0.0%).

In the middle stratum (E2), we find relatively
similar Indo-Aryan languages (Marathi, Gujarati,
Urdu). When data from these languages are added,
we find modest improvements over using only 10
hours of Punjabi (WERR: 1.6–2.4%). In the top
stratum (E1), we find Hindi — the most simi-
lar Indo-Aryan language amongst our candidate
donors. When data from Hindi is added, we find
a large improvement over using only 10 hours
of Punjabi (WERR: 6.0%). In fact, adding the
60h of Hindi results in ASR performance that
is in absolute terms close to the 70h Punjabi
topline: 23.5% vs. 22.2%, respectively.

We have established that there are observable
differences in target language ASR performance
that vary with the donor language added during
continued pre-training and that these differences
appear to align with qualitative notions of language
similarity. In the next section, we investigate quan-
titative measures of similarity and evaluate their
correlations to these observed differences.

4 A bottom-up approach to similarity

4.1 Motivation
A common method for calculating similarities be-
tween languages is to use language vectors from the
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Condition
Test set WER (WERR)

Data for continued pre-training
Median Range

T. In-domain top-line 22.2 (11.2%) - 70h Punjabi

E1. Most similar 23.5 (6.0%) 23.4–23.8 10h Punjabi + 60h Hindi

E2. Similar

24.4 (2.4%) 24.3–24.5 10h Punjabi + 60h Urdu

24.4 (2.4%) 24.2–24.4 10h Punjabi + 60h Gujarati

24.6 (1.6%) 24.5–24.7 10h Punjabi + 60h Marathi

B. Only target data baseline 25.0 - 10h Punjabi

E3. Unrelated/dissimilar

25.0 (0.0%) 25.0–25.2 10h Punjabi + 60h Odia

25.1 (-0.4%) 25.0–25.4 10h Punjabi + 60h Tamil

25.1 (-0.4%) 25.0–25.3 10h Punjabi + 60h Malayalam

25.2 (-0.8%) 25.1–25.2 10h Punjabi + 60h Bengali

U. Unadapted XLSR-128 30.8 (-23.2%) - -

Table 1: Automatic speech recognition (ASR) results from fine-tuning wav2vec 2.0 XLSR-128 (Babu et al., 2022)
with and without adaptation via continued pre-training (CPT). CPT-adapted models were trained for 10k updates
using 70 hours of Punjabi for the topline (T), 10 hours of Punjabi for the baseline (B), and 10 hours of Punjabi
combined with 60 hours of data from another language for the experiment conditions (E1, E2, E3). All models were
fine-tuned with the same 1 hour of Punjabi data. ASR performance reported in word error rate (WER) and relative
word error rates (WERR), relative to the 10 hour CPT baseline (B). For each experiment condition, median and
range were obtained from 3 CPT runs per language with different donor data in each run.

lang2vec database (Littell et al., 2017), which itself
draws on other databases (e.g. phonological infor-
mation from WALS: Haspelmath, 2009). Wu et al.
(2021) investigated how well measures based on
lang2vec and other data sources correlated with suc-
cessful transfer learning for ASR. Of the lang2vec
similarity metrics, they found that genetic and ge-
ographic measures correlated highly with better
ASR performance but, surprisingly, inventory and
phonological measures did not. Acoustic similar-
ities as derived from embeddings of a pre-trained
spoken language identification model were also
found to correlate strongly with better ASR perfor-
mance. In the context of continued pre-training, we
questioned whether the to-be-adapted model could
be used for this purpose.

Investigating an analogous question in the text
domain, Gogoulou et al. (2023) evaluated various
measures for predicting transfer characteristics for
transformer language models initially pre-trained
on one language (e.g. English) and subsequently
adapted to another (e.g. Icelandic), and how these
characteristics varied according to the distributions
of data in the respective language corpora. They
propose a novel metric: the Token Distribution Sim-
ilarity (TDS), which correlated with positive trans-

fer. As illustrated below in Figure 3 (a), the TDS
is derived by 1) using the pre-trained model’s to-
keniser to process a sample of data from each lan-
guage, 2) then generating a token frequency vector
for each language, and 3) taking the cosine similar-
ity between these two vectors. Given these promis-
ing results for predicting positive cross-lingual
transfer for continued pre-training on text, we in-
vestigated whether they extended to the speech do-
main.

4.2 Induction and analysis of acoustic tokens

In order to compute token distribution similarity
for two untranscribed speech corpora, we first need
to ‘tokenise’ the corpora. For this purpose, we can
leverage speech representations extracted using a
middle transformer layer (e.g. Layer 12 of 24) of
a pre-trained wav2vec 2.0 model such as XLSR-
128. As previously highlighted above (in §2), these
representations are useful for fine-grained compar-
isons of acoustic-phonetic content and, to make
use for these representations for inducing phone-
like tokens, they must first be grouped in the high-
dimensional latent space and then again in time
based on their co-occurrences.
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Audio input

common_voice_pa-IN_23381804
XLSR-128

10 10 19 19 19 7 23 4

k

Transformer L-12
Embeddings

k-means

Cluster indices
k t t t x o d

sentencepiece

Convert to chars.

Deduplicate k t x o d

ktx x odAcoustic
Pseudo-Tokens

(b) wav2seq(a) TDS (c) ATDS

Language A Language B

Text corpora

1.0
0.3
…

0.9
0.8
…

Cosine sim.

1.0
0.3
…

0.9
0.8
…

Cosine sim.

Untranscribed speech corpora

Pre-trained 
model’s 
tokeniser

Count

Language A
Target

Language B
Donor

wav2seq

Count

1. Train
k-means

sentencepiece 2. Inference

Figure 3: Derivation of the Acoustic Token Distribution Similarity (ATDS) measure for predicting positive transfer
between two languages resulting from continued pre-training (CPT) of a pre-trained speech model (e.g. XLSR-
128). ATDS extends to the speech domain the concept of Token Distribution Similarity (TDS: Gogoulou et al., 2023),
shown to predict positive transfer for CPT in the text domain. To account for the token-less nature of untranscribed
speech, pseudo-tokens are derived using the wav2seq process proposed by Wu et al. (2023). As is the case for
text tokenisation, the goal is to derive units of practical granularity based on the raw input. While typical text
tokenisation sub-divides words into sub-words (e.g. eating → eat,ing), the analogous process for raw speech data
involves grouping sub-frames into more phone-like units: first based on featural similarity (e.g. using a k-means
model on embeddings) then again based on distributional similarity (e.g. using a sub-word modelling).

Accordingly, we use the wav2seq procedure
proposed by Wu et al. (2023).5 As illustrated be-
low in Figure 3 (b), the first step is using a pre-
trained model (e.g. XLSR-128) to extract speech
embeddings from a transformer layer. The second
step involves training a k-means model to cluster
these embeddings (i.e. group similar sounds to-
gether). The cluster indices are converted to charac-
ters (by a simple Unicode table lookup, e.g.10→k,
19→t, etc.) and then deduplicated. To discover fre-
quently occurring sound sequences, the third step
involves using these character strings to train a
subword model (e.g. via sentencepiece: Kudo and
Richardson, 2018). Once these models are trained
on a subset of the corpus, they are used to derive
pseudo-tokens for the rest of the corpus and, in our
application, also for candidate donor corpora.

To discover whether these pseudo-tokens exhib-
ited both within- and cross-language consistency,
we conducted an analysis using the Punjabi and
Hindi datasets of the CommonVoice corpus (Ardila
et al., 2019), for which forced-aligned phoneme
labels are available in the VoxCommunis corpus

5Originally developed for inducing pseudo-tokens for use
in a self-supervised pseudo speech recognition task for jointly
pre-training a speech encoder and text decoder.

(Ahn and Chodroff, 2022). For this analysis, we
trained the k-means and subword models on Pun-
jabi (the target language) and then induced pseudo-
tokens for both Punjabi and Hindi.6

Results of our analyses revealed that the most
frequent pseudo-token in Punjabi, t1, consistently
corresponded to the /A/ label, i.e. P (/A/|t1) =
0.69. Similarly, we found that t2 consistently cor-
responded to high-back vowels: i.e. P (/o/|t2) =
0.56, P (/u/|t2) = 0.18, P (/U/|t2) = 0.09. For Hindi,
we found that t2 also consistently corresponded to
the same vowel labels, while t1 consistently corre-
sponded to /a:/ — also a low vowel. Such minor
differences are likely attributable to VoxCommunis
labels being automatically derived via grapheme-
to-phoneme conversion and thus do not represent
narrow phonetic transcriptions. Given their broad
categorical consistency, these tokens may be useful
for cross-language comparisons.

4.3 Acoustic Token Distribution Similarity

We propose the Acoustic Token Distribution Simi-
larity (ATDS) measure, which, as illustrated above
in Figure 3 (c), is a straightforward composition of

6Appendix A details the analysis procedure.
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Punjabi (PAN)

Donor
Lang.

Median
WERR
(of 3 runs)

Similarity Measure 

ATDS SB
lang2vec

Syn. Geo. Feat. Inv. Gen. Phon.
E1. Hindi 6.0 0.96 0.96 0.67

1.0*
0.6

0.67 0.38 0.41

E2.
Gujarati 2.4 0.93 0.82 0.46 0.72

0.43 1.0*Urdu 2.4 0.93 0.88 0.51

0.9

0.67
Marathi 1.6 0.92 0.89

0.47
0.65

E3.

Bengali -0.8 0.90 0.81

0.5

0.66 0.38 0.38
Malayalam -0.4 0.89 0.83

0.32
0.64 0.00

1.0*Odia 0.0 0.87 0.71 0.65 0.43
Tamil -0.4 0.86 0.76 0.47 0.59 0.00

Correlation of measure to WERR: 0.89 0.78 0.79 0.77 0.83 0.55 0.48 -0.31

Table 2: Acoustic Token Distribution Similarity (ATDS) measure between Punjabi and donor language predicts
downstream speech recognition performance as measured by relative word error rate (WERR) when fine-tuning
the wav2vec 2.0 XLSR-128 model adapted using continued pre-training (CPT) on 10 hours of target and 60 hours
of donor language speech. Other similarity measures for comparison are derived embeddings of the SpeechBrain
language identification model and from the lang2vec database (syntactic, geographic, featural, inventory, genetic,
and phonological). * indicate erroneous similarity scores resulting from identical, imputed vectors within the
database. Correlations (Pearson’s r) calculated using 24 data points (8 donor languages x 3 CPT runs per language
with different donor data in each run).

wav2seq (Wu et al., 2023) and Token Distribution
Similarity (TDS: Gogoulou et al., 2023). We pro-
vide two analyses showing that the ATDS between
a target language and its candidate donors precisely
predicts downstream ASR performance in the tar-
get language resulting from continued pre-training
of a speech model on target and donor data.

In our first analysis, we examined how well
ATDS can account for the results of the Indic lan-
guage experiments and how ATDS compares to
other measures. Accordingly, for ATDS, we trained
the relevant wav2seq models on Punjabi (the target
language), induced tokens on Punjabi and all donor
languages, then calculated the token frequency vec-
tors and computed the pairwise cosine similari-
ties. Similar to Wu et al. (2021), we also computed
similarities using lang2vec and corpus-level means
of utterance-level embeddings extracted using a
pre-trained spoken language identification model
(SpeechBrain: Ravanelli et al., 2021).

Results of this analysis revealed that the two
bottom-up acoustic measures provide overall a
finer-grained ranking than top-down lang2vec mea-
sures. For example, as shown above in Table 2 Feat.
(a combination of all lang2vec data sources), the
featural similarity, splits the four languages into
two groups: similar (0.6: Hindi–Marathi) and dis-
similar (0.5: Bengali–Tamil). Additionally, we also
found erroneous, perfect similarity values (1.0),

resulting from identical language vectors for the
category (e.g. Phon.: Marathi-Punjabi), likely an
artefact of data imputation. These results demon-
strate that while top-down data may be suitable for
more noise-tolerant applications (e.g. large-scale
typological comparisons), they may not be well
suited for helping select donors for a specific under-
described target language if the relevant metadata
is unavailable or inaccurate.

While both acoustic measures accurately select
Hindi as the most suitable donor, ATDS provides a
better ranking of the donor languages. As shown in
Table 2 (SB), the measure based on SpeechBrain
embeddings ranks Gujarati as being as dissimilar
to Punjabi as Bengali/Malayalam. We make a sim-
ilar observation as above that using embeddings
from a different pre-trained model than the one to
be adapted via CPT risks adding unwanted noise
to an inherently hard task. Leveraging the repre-
sentations of the pre-trained model to be adapted
reduces this risk, reflected in ASR improvement
being most correlated with ATDS (r = 0.89).

In our second analysis, we examined whether
the ATDS measure generalised beyond the Indic
languages through identical CPT experiments on a
typologically varied set of target languages. We se-
lected triplets of languages consisting of 1) a target
language, 2) a language more similar to the target
as measured by ATDS, and 3) another language
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Galician (GLG) Iban (IBA) Setswana (TSN)

E1. SPA (0.96)
10h GLG + 60h SPA

13.7 (8.7%) ZSM (0.91)
7h IBA + 60h ZSM

15.9 (4.2%) SOT (0.96)
10h TSN + 56h SOT

11.6 (7.9%)

E2. POR (0.89)
10h GLG + 60h POR

13.9 (7.3%) IND (0.88)
7h IBA + 60h IND

16.4 (1.2%) NSO (0.88)
10h TSN + 56h NSO

12.0 (4.8%)

B. 10h GLG 15.0 7h IBA 16.6 10h TSN 12.6

U. - 15.4 (-2.7%) - 21.4 (-28.9%) - 20.8 (-65.1%)

WER (WERR) WER (WERR) WER (WERR)

Table 3: Validation of the Acoustic Token Distribution Similarity (ATDS) measure for predicting target language
automatic speech recognition (ASR) performance as a result of continued pre-training (CPT) of the wav2vec 2.0
XLSR-128 model using mix target and donor language data. For each target language (Galician, Iban, Setswana),
U. indicates ASR performance from using the unadapted XLSR-128 model, B. indicates performance from CPT
adaptation with only target language data (7–10 hours), and E1–E2 using target language data supplemented
with 56–60 hours of donor language data. Parentheses next to donor language names indicate ATDS to the target
language. Percentages within parentheses indicate relative word error rate (WERR), relative the baseline word error
rate (B) within the same column. Donor language codes are: Spanish (SPA), Portuguese (POR), Malay (ZSM),
Indonesian (IND), Sesotho (SOT), Sepedi (NSO).

relatively farther. As summarised below in Table 3,
the target languages were Galician (West-Iberian),
Iban (Malayic), and Setswana (Sotho–Tswana). For
Galician, ATDS predicted that Spanish (SPA: 0.96)
was more similar than Portuguese (POR: 0.89);
for Iban, Malay (ZSM: 0.91) more than Indonesian
(IND: 0.88); and for Setswana, Sesotho (SOT: 0.96)
more than Sepedi (NSO: 0.88).

Results of these CPT experiments are sum-
marised below in Table 3. We first note the large dif-
ference between Galician and the other languages
in the improvement yielded by CPT baselines
(B) compared to fine-tuning the unadapted XLSR-
128 (U). As we sourced Galician data from Com-
monVoice (on which XLSR-128 was already pre-
trained), CPT yields little further gain (U. 15.4%
vs. B. 15.0%). By contrast, ASR performance was
much improved via CPT adaptation for both Iban
(U. 21.4% vs. B. 16.6%) and Setswana (U. 20.8%
vs. B. 12.6%). These results constitute further evi-
dence that directly fine-tuning massively multilin-
gual models can yield sub-optimal performance
for under-represented languages and that continued
pre-training can help close this performance gap.

We found that the ATDS predictions are borne
out for all three target languages (even for Gali-
cian in spite of relatively reduced benefits). As
shown above in Table 3 for each of the target lan-
guage columns (Galician, Iban, Setswana), larger
improvements in target language ASR performance
are observed as a result of continued pre-training on
target language data supplemented with data from
a more similar language as measured by ATDS

than a less similar one (respectively, rows E1. vs.
E2). Combined with results for Punjabi above, our
findings altogether provide strong evidence for the
effectiveness of ATDS for predicting positive trans-
fer between target and donor languages for CPT-
based model adaptation.

5 Limitations and future directions

We limited the scope of this paper to exploring the
transfer between languages and as such used the
standard wav2vec 2.0 pre-training recipe for model
adaptation. We acknowledge that this requires a
large compute budget beyond what is affordable in
many low resource scenarios. In future, we hope to
investigate whether or to what extent transfer learn-
ing can be combined with more compute-efficient
adaptation methods.

To conduct a systematic study of pairwise trans-
fer, we used domain-matched, high-quality ASR
datasets containing mostly read speech and only
examined sourcing data from a single donor lan-
guage. Questions relating to multi-donor and multi-
domain transfer and how such interactions affect
downstream performance in the target language
will need to be addressed in future research.

6 Conclusion

For developing automatic speech recognition
(ASR) systems for languages with very few re-
sources, we demonstrated that massively multilin-
gual pre-trained models for speech can be suc-
cessfully adapted via continued pre-training us-
ing a mix of data from the target language and
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supplemental data from a similar, higher-resource
‘donor’ language. Additionally, we motivate and
propose the Acoustic Token Distribution Similarity
(ATDS) — a novel measure of similarity to predict
positive transfer between a donor and target lan-
guage. Across a set of typologically different target
languages (Punjabi, Galician, Iban, Setswana), we
show that the ATDS between the target language
and its candidate donors precisely predicts target
language ASR performance.

We attribute this predictive capability of ATDS
to leveraging the knowledge of the pre-trained
model to be adapted, its inductive biases and train-
ing objectives, and the distributions within the can-
didate datasets that will be used to adapt it. It
is indeed expected that this measure then is able
to predict downstream task improvements better
than measures based on other models or exter-
nal information — the latter of which is not al-
ways available or reliable for under-described lan-
guages. Given the high cost associated with con-
tinued pre-training, however, we argue that using
a well-calibrated, task-specific measure minimises
the chance of costly, unexpected outcomes.

We make a final observation here that various
target-donor language pairs where we observed suc-
cessful transfer exist in linguistic situations with
significant, sustained contact. For example, Gali-
cian is a minoritised language in Spain and virtu-
ally all Galician speakers are bilingual in Spanish
(de la Fuente Iglesias and Pérez Castillejo, 2020).
Similarly, Macaire et al. (2022) report that fine-
tuning a model pre-trained on French was particu-
larly successful for Gwadloupéyen and Morisien,
two French-based creole languages. These findings
suggest that to develop truly inclusive speech tech-
nologies in a resource efficient manner, what will
be required is a nuanced understanding of what fac-
tors linguistic and non-linguistic yield sufficiently
high levels of cross-lingual similarity which in turn
permit positive transfer.
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A Materials and methods

A.1 Data

Galician, Spanish, Portuguese, and Indonesian
data were sourced from CommonVoice (Ardila
et al., 2019); Setswana, Sesotho, and Sepedi from
NCHLT (Barnard et al., 2014); Malay from MASS
(Tan et al., 2009); and Iban from Juan et al.
(2015). For Iban only 7 hours of target data was
available and for Sesotho/Sepedi only 56 hours per
language of donor data was available. Experiments
were otherwise identical to the Indic experiments.

A.2 Continued pre-training

We carried out nearly identical experiments as the
single-language experiments in Nowakowski et al.
(2023) for Ainu, as we obtained their configura-
tion file for wav2vec 2.0 pre-training using the
fairseq library.7 We made approriate modifications
to suit our hardware configuration (4 x A100 40GB
GPUs), setting the batch size to 1.5M samples per
GPU and gradient accumulation to 16 steps, yield-
ing an effective batch size of 100 minutes.

As in other wav2vec 2.0 multilingual pre-
training configurations (Conneau et al., 2021; Babu
et al., 2022; Javed et al., 2023), we form multi-
lingual batches (specifically, bi-lingual in our
case).8 We set our sampling alpha to 0.0, which
results in data being drawn uniformly from the
two languages (i.e. target is over-sampled). We
make this modification based on the CPT method
in Paraskevopoulos et al. (2024), where in- and out-
of-domain Greek data were evenly sampled in each
batch. In this way, we consider this method akin to
“similar-language regularisation” (Neubig and Hu,
2018), as we are more concerned with preventing
over-fitting rather than learning about the donor
data.

For each CPT run, we start from the official
XLSR-128 model checkpoint and update the model
for 10k steps. We determined this value based on
our pilot runs. We found that 10k updates were
sufficient to observe improved downstream ASR
performance comparable to previous results (e.g.
Nowakowski et al., 2023). This choice permitted us
to maximise the number of languages compared in
this paper, as each run required on average 15 hours
(for 10k steps). For select runs, we also verified

7https://github.com/facebookresearch/fairseq
8Specifically, we use the implementation adapted from

https://github.com/AI4Bharat/IndicWav2Vec/
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that no further improvements could be obtained
with additional updates (up to 20k).

A.3 ASR fine-tuning and evaluation
For ASR fine-tuning, we follow the official
wav2vec 2.0 fine-tuning recipe suitable for 1
hour of transcriptions, modified for our hardware
setup. We use a single A6000 48 GB GPU with
a batch size of 5.6M samples per GPU and accu-
mulate gradients for 2 steps, yielding an effective
batch size of 11.6 minutes. As standard, the feature
extractor is kept frozen across all updates and the
transformer is frozen for the first 10k of 13k total
updates, optimised using a CTC loss. Each fine-
tuning run required on average 3.5 hours. For our
findings to be applicable for languages with little
external text data, we use Viterbi decoding without
a language model to obtain transcriptions from the
fine-tuned model for evaluation.

A.4 ATDS analyses
For all analyses, we trained the necessary k-means
and sentencepiece models on a random 5-hour sub-
set of target language data (except for Common-
Voice Punjabi, which had in total 4 hours available
in the latest 15.0 release). We adopted hyperparam-
eters based on previous findings: extracting embed-
dings from the mid-point layer (12 of 24) of the
XLSR-128 model (e.g. San et al., 2021; Bartelds
et al., 2022), and k=500 for k-means and V=10k
for the subword model which were reported as op-
timal values in Wu et al. (2023). Using a 12GB
3060 GPU, embedding extraction required about
10 minutes per data subset. The k-means models
trained in about 8 minutes and subword models in
less than a minute.

For CommonVoice (CV) Punjabi and Hindi, we
conducted similar analyses as those reported by
Baevski et al. (2020, Appendix D) for analysing
correspondences between the wav2vec 2.0 code
vectors and hand-aligned phone labels from TIMIT
(Garofolo et al., 1993). In our case we used the
labels for CV Punjabi and Hindi via grapheme-
to-phoneme conversion, forced-aligned to the au-
dio, and released as Praat TextGrids in the Vox-
Communis corpus (Ahn and Chodroff, 2022). We
then added tiers containing the wav2seq-induced
labels. We hand-inspected several TextGrids for
data validation then compiled the correspondences
between the wav2seq induced tokens and phoneme
labels. We make available all TextGrids as well as
the aggregated data.

B Languages

B.1 Indo-Aryan and Dravidian

Punjabi (PAN) is a Northwestern Indo-Aryan lan-
guage spoken by over 100 million people along the
five major tributaries of the Indus river, spanning
the state of Punjab in India and the province of
Punjab in Pakistan. Hindi (HIN) and Urdu (URD)
are mutually-intelligible yet sociolinguistically dis-
tinct registers of one Central Indo-Aryan language
(usually termed Hindi–Urdu), spoken across the
Indian subcontinent and by a majority in the north-
ern part. Gujarati (GUJ) is a Central Indo-Aryan
language and Marathi (MAR) is a Southern Indo-
Aryan language, spoken in the western Indian states
of Gujarat and Maharashtra, respectively. Bengali
(BEN), spoken in Bangladesh and the Indian state
of West Bengal, and Odia (ORI), spoken in the In-
dian state of Odisha, are both Eastern Indo-Aryan
languages. Finally, Tamil (TAM) and Malayalam
(MAL) are both Dravidian languages spoken in the
Indian states of Tamil Nadu and Kerala, respec-
tively. The Indo-Aryan and Dravidian language
families are phylogenetically unrelated but have a
long history of contact and cross-family bilingual-
ism.

B.2 Malayo-Polynesian

Iban (IBA) is a Malayo-Polynesian language spo-
ken by over 2 million people in Brunei as well as
the Indonesian and Malaysian parts of the island
of Borneo. Iban has some use as a medium of edu-
cation in the Malaysian state of Sarawak but does
not possess official status. It is related to Indone-
sian (IND) and Malay (ZSM), which are the official
languages of Indonesia and Malaysia, respectively.

B.3 Sotho-Tswana

Setswana (TSN) is a Bantu language spoken by
over 8 million people Botswana, South Africa,
and Zimbabwe, where it is an official lan-
guage. Setswana also possesses minority language
status in Namibia. Two other languages of the
Sotho-Tswana subgroup of Bantu are Sesotho
(SOT, also known as “Southern Sotho”) and Sepedi
(NSO, “Northern Sotho”). Sesotho is an official lan-
guage of South Africa, Lesotho, and Zimbabwe,
and Sepedi is an official language of South Africa.

B.4 West Iberian

Galician (GLG) is a Romance language spoken in
Galicia, an administrative division of northwestern
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Figure 4: Family trees of the languages studied in this paper. Language families are in red and languages are in blue.

Spain bordering Portugal where it is the official
language and spoken by over 2 million people. It
is closely related to Spanish (SPA) and Portuguese
(POR), and all three are classified under the West
Iberian subgroup of Romance languages. Gali-
cian and Portuguese split in the late Middle Ages
(c. 15th century) and thus are the most closely re-
lated pair of the three. Sociolinguistically, Galician
speakers use Spanish in literary contexts and thus
the two languages have a diglossic relationship.
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