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Abstract
Since American Sign Language (ASL) has no standard written form, Deaf signers frequently share videos
in order to communicate in their native language. However, this does not preserve privacy. Since critical
linguistic information is transmitted through facial expressions, the face cannot be obscured. While signers have
expressed interest, for a variety of applications, in sign language video anonymization that would effectively
preserve linguistic content, attempts to develop such technology have had limited success and generally require
pose estimation that cannot be readily carried out in the wild. To address current limitations, our research
introduces DiffSLVA, a novel methodology that uses pre-trained large-scale diffusion models for text-guided
sign language video anonymization. We incorporate ControlNet, which leverages low-level image features such
as HED (Holistically-Nested Edge Detection) edges, to circumvent the need for pose estimation. Additionally,
we develop a specialized module to capture linguistically essential facial expressions. We then combine the
above methods to achieve anonymization that preserves the essential linguistic content of the original signer.
This innovative methodology makes possible, for the first time, sign language video anonymization that could
be used for real-world applications, which would offer significant benefits to the Deaf and Hard-of-Hearing communities.
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1. Introduction

American Sign Language (ASL), the predominant
language used by the Deaf Community in the US
and parts of Canada, is a full-fledged natural lan-
guage. It employs manual signs in parallel with
non-manual elements, including facial expressions
and movements of the head and upper body, to
convey linguistic information. The non-manual el-
ements are crucial for conveying many types of
lexical and adverbial information, as well as for
marking syntactic structures (e.g., negation, topics,
question status, and clause types (Baker-Shenk,
1985; Kacorri and Huenerfauth, 2016; Neidle et al.,
2000; Coulter, 1979; Valli and Lucas, 2000)). Con-
sequently, in video communications, e.g., on the
Web, involving sensitive subjects such as medical,
legal, or controversial matters, obscuring the face
for purposes of anonymity would result in significant
loss of essential linguistic information.
Despite the fact that several writing systems have
been developed for ASL (Arnold, 2009), the lan-
guage has no standard written form. While ASL
signers could use written English in order to pre-
serve privacy, that is frequently not their preference,
as signers generally have greater ease and fluency
in their native language, ASL, than in English.
Many Deaf signers have shown interest in a mech-
anism that would maintain the integrity of linguistic
content in ASL videos while disguising the identity

of the signer, as discussed in several recent stud-
ies (Lee et al., 2021). There are many potential
applications of such a tool. For example, this could
enable anonymous peer review for academic sub-
missions in ASL. This could also ensure impartiality
in various multimodal ASL-based applications, e.g.,
enabling production of neutral definitions for ASL
dictionaries, not tied to the identity of the signer pro-
ducing them. It could also enable maintenance of
neutrality in interpretation scenarios. Additionally,
such a tool could increase signers’ willingness to
contribute to video-based AI datasets (Bragg et al.,
2019b), which hold significant research value.
For these reasons, privacy preservation for ASL
videos has been explored (Isard, 2020). However,
most of these approaches suffer from limitations
with respect to preservation of linguistic meaning,
and they generally achieve only a limited degree of
anonymity. They also require accurate pose esti-
mation, and some require substantial human labor.
These limitations significantly reduce the potential
for practical applications of such technologies.
To overcome the limitations of existing anonymiza-
tion tools, we introduce DiffSLVA, a novel
anonymization approach leveraging large-scale
pre-trained diffusion models, notably Stable Diffu-
sion (Rombach et al., 2022). DiffSLVA is designed
to tackle text-guided sign language anonymization.
Through a text prompt, it generates a new video in
which the original linguistic meaning is retained, but
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Figure 1: Text-guided Sign Language Video Anonymization. We introduce DiffSLVA, an innovative
approach that leverages the capabilities of diffusion models to achieve text-guided sign language video
anonymization. This method is capable of anonymizing sign language videos with a single text prompt,
effectively masking the identity of the original signer while preserving the linguistic content and nuances.

the identity of the signer is altered. Figure 1 illus-
trates the method. Unlike traditional methods that
require skeleton extraction, our approach uses the
Stable Diffusion model enhanced with ControlNet
(Zhang et al., 2023) to process language videos
with Holistically-Nested Edge (HED) (Xie and Tu,
2015), which can more easily and robustly process
videos in the wild. To adapt the image-based Stable
Diffusion for video, we follow Yang et al. (2023), but
modify the methods. We replace the self-attention
layer in U-Net with a cross-frame attention layer and
implement an optical-flow-guided latent fusion for
consistent frame generation. Additionally, to cap-
ture fine-grained facial expressions, we have devel-
oped a specialized facial generation module using
a state-of-the-art image animation model (Zhao and
Zhang, 2022) fine-tuned on our mixed dataset (see
Section 4.1). The outcomes are integrated via a
face segmentation technique (Yu et al., 2018). Our
results show substantial promise for anonymiza-
tion applications, which would be invaluable for the
Deaf and Hard-of-Hearing communities.
Our work makes several key contributions to the
field of sign language video anonymization:
(1) We propose text-guided sign language
anonymization. The anonymized videos are based
on computer-generated humans, transforming
the original signer’s appearance to that of a
computer-generated individual.
(2) We have developed a specialized module dedi-
cated to improving facial expression transformation.
Our ablation studies show that this significantly
enhances the preservation of linguistic meaning.
(3) Our approach relies solely on low-level image
features, such as edges, enhancing the potential
for practical applications.
(4) Our anonymization can accommodate a diverse
range of target humans. The anonymized signers

can have any ethnic identity, gender, clothing, or
facial style, a feature many ASL signers want; this
simply requires changing the text input.

2. Related Work

2.1. Video Editing with Diffusion Models

Diffusion models (Ho et al., 2020; Song et al.,
2020) have shown exceptional performance in the
field of generative AI. Once trained on large-scale
datasets (e.g., LAION (Schuhmann et al., 2022)),
text-guided latent diffusion models (Rombach et al.,
2022), e.g., Stable Diffusion, are capable of produc-
ing diverse and high-quality images from a single
text prompt. Additionally, ControlNet (Zhang et al.,
2023) presents a novel enhancement. It fine-tunes
an additional input pathway for pre-trained latent
diffusion models, enabling them to process vari-
ous modalities, including edges, poses, and depth
maps. This innovation significantly augments the
spatial control capabilities of text-guided models.
Image-based diffusion models can also be used
for video generation or editing. There have
been efforts to modify image-based diffusion mod-
els for consistent generation or editing across
frames. Tune-A-Video (Wu et al., 2023) inflates
a pre-trained image diffusion model, modified with
pseudo 3D convolution and cross-frame attention
and then fine-tuned on a given video sequence.
During the inference stage, with the DDIM inver-
sion noises (Song et al., 2020) as the starting point,
the fine-tuned model is able to generate videos
with similar motions but varied appearance. Edit-
A-Video (Shin et al., 2023), Video-P2P (Liu et al.,
2023), and vid2vid-zero (Wang et al., 2023) uti-
lize Null-Text Inversion (Mokady et al., 2023) for
improved reconstruction of video frames, which
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provides better editing results. Fine-tuning or op-
timization based on one or more input video se-
quences is required by these methods. Moreover,
the detailed motion in the video cannot be captured
properly without having a negative impact on the
editing abilities. Therefore, they are not suitable for
the sign language video anonymization task.
Other methods use the cross-frame attention mech-
anism or latent fusion to achieve the video editing or
generation ability of image-based diffusion models.
Text2Video-Zero (Khachatryan et al., 2023) modi-
fies the latent codes and attention layer. FateZero
(Qi et al., 2023) blends the attention features based
on the editing masks detected by Prompt-to-Prompt
(Hertz et al., 2022). Pix2Video (Ceylan et al., 2023)
aligns the latent features between frames for bet-
ter consistency. Rerender-A-Video (Yang et al.,
2023) utilizes a cross-frame attention mechanism
and cross-frame latent fusion to improve the con-
sistency of style, texture, and details. It can also be
used with ControlNet for spatial guidance. However,
these methods cannot accurately transfer facial ex-
pressions from the original videos. Therefore, they
lose a significant amount of the linguistic meaning
from the original video. Our approach is based on
the Rerender-A-Video (Yang et al., 2023) method,
without the post video processing, to best capture
manual signs. To overcome the loss of linguistically
important non-manual information, we designed a
specialized facial expression translation module
(Zhao and Zhang, 2022), which we combine with
the rest of the anonymized body using a face parser
model (Yu et al., 2018).

2.2. Sign Language Video Anonymization

Various strategies have been explored for privacy
preservation in ASL video communication (Isard,
2020). Early approaches used graphical filters,
such as a tiger-shaped filter (Bragg et al., 2019b),
to disguise the face during signing. However, these
filters often lead to a loss of critical facial expres-
sions, thereby hindering comprehension. Alterna-
tives like blocking parts of the face (Bleicken et al.,
2016) also result in significant information loss. Ap-
proaches involving re-enacting signed messages
with actors (Isard, 2020) or using virtual humans for
anonymous sign language messaging (Heloir and
Nunnari, 2016; Efthimiou et al., 2015) are labor-
intensive, challenging, and time-consuming.
Some approaches to avatar generation for sign
language, e.g., that of Bragg (2019a), use cartoon-
like characters to replace signers. Cartoonized
Anonymization (Tze et al., 2022b) proposes use of
pose estimation models (Li et al., 2018; Xiu et al.,
2018; Lugaresi et al., 2019) to automatically enable
the avatars to sign. Yet, these methods often lead
to unrealistic results (Kipp et al., 2011).

Deep-learning approaches, such as AnonySign
(Saunders et al., 2021) or Neural Sign Reenac-
tor (Tze et al., 2022a), leverage GAN-based meth-
ods for photo-realistic sign language anonymization
using skeleton keypoints for accurate image gen-
eration. The results are encouraging. However,
they require accurate skeleton keypoints and face
landmarks. In sign language videos, rapid hand
movements can lead to blurring in the video frames.
Occlusions of the face by the hands also occur fre-
quently. For these reasons, the performance of
existing human pose estimation models is often
inadequate when applied to sign language videos,
which leads to errors in the anonymized video.
Recent work (Lee et al., 2021) applies the facial ex-
pression transfer method of Siarohin et al. (2019b)
for sign language anonymization. This method in-
volves replacing the signer’s face in the video with
another individual’s face, while transferring the fa-
cial expressions to the new face. As a result, this ap-
proach successfully preserves the linguistic mean-
ings conveyed by facial expressions and alters the
identity of the signer in the video. However, in Lee
et. al (2021), the extent of the anonymization is not
complete, since only the face is replaced, while the
arms, torso, and hands remain the same as in the
original video. Another method (Xia et al., 2022)
uses an unsupervised image animation method
(Siarohin et al., 2021; Ren et al., 2020) with a high-
resolution decoder and loss designed for the face
and hands to transform the identity of a signer to
that of another signer from the training videos. The
results are promising. However, this method can
work well only in the training data domain with lim-
ited signer identities and is hard to adapt to sign
language videos in the wild.
To address the above limitations, we propose Diff-
SLVA, a method that is based on the modifica-
tion of large-scale diffuson models and ControlNet
for consistent high-fidelity video generation, which
can be used to achieve effective sign language
video anonymization in the wild. Our approach is
a text-guided sign language video anonymization,
as shown in Figure 1. For the anonmyization of
signers’ body, arms and hands, we use large-scale
diffusion models, which do not rely on the use of
sign language video data for training and can per-
form zero-shot sign language video anonymization.
With the help of ControlNet, we use low-level fea-
tures instead of accurate skeleton data as signal for
generation guidance, so that the results are not ad-
versely affected by inaccurate skeleton estimations.
To further improve the facial expression translation,
we designed a specialized model for facial expres-
sion enhancement and combine it with the model
that anonymizes the rest of the body using a face
parser model. Our method can anonymize sign lan-
guage videos based on a single text prompt. The
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anonymized video is based only on a wide range of
computer-generated humans. Our anonymization
technique thereby offers great promise for applica-
tions that would benefit the Deaf community.

3. Methodology

In this section, we introduce our method for text-
guided sign language video anonymization. The
process is structured as follows: Given a sign
language video with N frames {Ii}Ni=0, we use
a pre-trained latent diffusion model, augmented
with ControlNet, to execute the anonymization. A
text prompt cp serves as guidance for the desired
anonymization identity or style. Our goal is to gen-
erate an altered video sequence, represented by
{I ′i}Ni=0, that conceals the identity of the original
signer while preserving the linguistic content.
In 3.1, we introduce the text-guided latent diffusion
models and the ControlNet, which serve as the
foundation for text-guided image generation. Sec-
tion 3.2 details the methods for adapting the text-
to-image method for consistent video editing. To
ensure preservation of linguistic meaning through
accurate facial expression translation, we introduce
a specialized facial enhancement module in 3.3.
Figure 2 shows an overview of our method.

3.1. Latent Diffusion Models
Latent diffusion models operate in the latent space
for faster image generation. The input image I is
first input to an encoder ε to obtain its latent features
x0 = ε(I). The following diffusion forward process
adds noise to the latent features:

q(xt|xt−1) = N (xt;
√
αtxt−1, (1− αt)I), (1)

where t = 1, ..., T is the time step indicating the
level of noises added; q(xt|xt−1) is the conditional
probability of xt given xt−1; and αt are hyper-
parameters that adjust the noise level across the
time step t. Leveraging the property of Gaussian
noise, we can also sample xt at any time step by
the following equation:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (2)

where ᾱt =
∏t

i=1 αi.
In the diffusion backward process, a U-Net ϵθ is
trained to estimate the above added noise to re-
cover x0 from xT . For the conditional diffusion
model, ϵθ takes the conditional information cp as
input to guide the generation process. After ϵθ has
been trained, the xt−1 can be sampled by strate-
gies such as DDIM sampling (Song et al., 2020):

xt−1 =
√
ᾱt−1x̂0 +

√
1− ᾱt−1ϵθ(xt, t, cp), (3)

where ϵθ(xt, t, cp) is the predicted noise at time step
t. For the DDIM sampler, we can estimate the final

clear output x̂0 at each time step t. x̂0 can also be
represented as the following equation:

x̂0 = (xt −
√
1− ᾱtϵθ(xt, t, cp))/

√
ᾱt, (4)

During inference, for a Gaussion noise xT , we can
sample a clear latent x0 with the DDIM Sampler
and decode it to the generated image I ′ = D(x0).
Our methodology also incorporates ControlNet, in-
troducing an additional signal to the text-guided
latent diffusion models. This structure makes it
possible for the text-guided diffusion model to take
diverse inputs like edges, human poses, and seg-
mentation maps for more spatial constraints. Con-
sequently, with incorporation of an additional input
cn, the predicted noise at each time step t is repre-
sented as ϵθ(xt, t, cp, cn). This approach enhances
the alignment of the final outputs with the spatial
features specified by the input condition cn.

3.2. Consistent Video Generation
Although Stable Diffusion models exhibit outstand-
ing performance in image generation, application
to videos is challenging. Directly applying Stable
Diffusion to videos gives rise to significant frame
inconsistency issues. To address this, we adapt
text-to-image diffusion models for video editing
tasks, drawing upon the framework established
by Yang et al. (2023). Our approach begins by
encoding and sampling the original frames Ii, i =
1, . . . , N , of the sign language video into noisy la-
tents xi

t, i = 1, . . . , N , serving as starting points
for the generation of anonymized video frames,
following the method described by Meng et al.
(2021). An anchor frame Ia is selected from the
sequence Ii, i = 1, . . . , N . The corresponding la-
tent feature xa

t , along with the Holistically-Nested
Edge, is processed through ControlNet to create
the transformed anchor frame I ′a, which constrains
the global consistency in general. Empirically, we
find that selecting the anchor frame from the middle
of the video, where both hands of the signer are
visible, yields optimal results. For each frame Ii,
the previously generated frame I ′i−1 and the an-
chor frame I ′a provide cross-frame attention control
during the generation of I ′i, as detailed in Section
3.2.1. A two-stage optical-flow-guided latent fusion,
described in Section 3.2.2, is applied during the
generation process. Finally, a specialized facial ex-
pression enhancement module, outlined in Section
3.3, is used to refine the results.

3.2.1. Cross-Frame Attention Consistency

In the Stable Diffusion model, there are two kinds
of attention mechanisms used in the U-Net. The
cross-attention retrieves the information from the
text embedding. The self-attention helps define the
layout and style of the generated images. In or-
der to achieve consistent generation across frames
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Figure 2: Method Overview. The original frames {Ii}, i = 1, ..., N in the sign language video are encoded
and sampled as noisy latent features {xi}t, i = 1, ..., N . An anchor frame Ia and its Holistically-Nested
Edge are used to generate the I ′a with ControlNet, which will constrain the global style consistency. For
each frame Ii, the previous generated frame I ′i−1 and the anchor-generated frame I ′a provide cross-frame
attention control during the generation process of I ′i. A two-stage optical-flow-guided latent fusion is
applied. A specialized facial expression enhancement module is used to update I ′i for the final result.

in the sign language video sequence, the self-
attention layers are replaced with cross-frame at-
tention layers. The self-attention layer of the U-Net
used in Stable Diffusion is represented as follows:

Q = WQvi,K = WKvi, V = WV vi, (5)

where vi is the latent features input to the self-
attention layer when generating I ′i. WQ, WK , and
WV are the weights for project vi to the query, key,
and value in the attention mechanism, respectively.
The attention map SA is calculated as following:

SA(Q,K, V ) = Softmax(QKT

√
d

)V (6)

where d is the dimension of K. To obtain con-
sistent generation across frames, we replace K
and V with Ka,i−1 and Va,i−1, which are the com-
bination of keys and values when generating the
selected anchor frame Ia and previous frame Ii−1.
The cross-frame attention layer is represented as:

Ka,i−1 = WK [va; vi−1], Q = WQvi

Va,i−1 = WV [va; vi−1], (7)

where va, vi−1 are the latent features obtained
when generating frame I ′a and I ′i−1. The cross-
attention map CA is calculated as:

CA(Q,Ka,i−1, Va,i−1) = Softmax(
QKT

a,i−1√
d

)Va,i−1

(8)
The cross-frame attention mechanism is designed
to foster consistency in image generation across
frames by directing the current generation process
to reference patches in both the generated anchor
frame and the previous frame.

3.2.2. Optical-Flow-Guided Cross-Frame
Latent Fusion

Following Yang et al. (2023), we use 2-stage latent
fusion guided by optical flow: OFG stages 1 and 2.
• OFG stage 1: In the early stage of the diffusion
backward process, the optical flow wi

a and occlu-
sion mask M i

a are estimated from Ia to Ii to wrap
and fuse the estimated latent of I ′a and I ′i. This la-
tent wrap and fusion is performed when the denois-
ing step t is large, to prevent distortion of results.
At time step t, the predicted x̂0 is updated by:

x̂i
0 = M i

ax̂
i
0 + (1−M i

a)w
i
a(x̂

a
0), (9)

where x̂i
0 and x̂a

0 are the predicted clear outputs for
I ′i and I ′a at denoising time step t, from equation 4.
• OFG stage 2: At the second stage, the generated
anchor frame I ′a and previous generated frame I ′i−1

are used to further enhance consistency during the
late stages of the diffusion backward process. The
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optical flow and occlusion mask are also estimated.
We obtain a reference image Ī ′i by wrapping and
fusing with the previous generated images:
Ī ′i =M i

a(M
i
i−1Î

′
i + (1−M i

i−1)w
i
i−1(I

′
i−1))

+ (1−M i
a)w

i
aI

′
a,

(10)

After obtaining this reference-estimated image Ī ′i,
we can update the sampling process for generating
I ′i using the following equation:

xi
t−1 = Mix

i
t−1 + (1−Mi)x̄

i
t−1, (11)

where Mi = M i
a ∩M i

i−1, and x̄i
t−1 is the sampled

xt−1 from reference image Ī ′i. We use the same
strategy as the fidelity-oriented image encoding in
Yang (2023) to encode Ī ′i to avoid information loss
when repeatedly encoding and decoding latents.
To maintain coherent color throughout the whole
process, we also apply AdaIN (Huang and Belongie,
2017) to x̂i

0 with x̂a
0 at time step t during the late

stage of the diffusion backward process. This miti-
gates the color drift problem with diffusion models.

3.3. Facial Expression Enhancement
Facial expressions convey important linguistic in-
formation in signed languages. However, current
methods cannot transfer meaningful facial expres-
sions; see the ablation study discussed in Section
4.6. ControlNet and Stable Diffusion usually fail to
produce faces with the same expressions as the
original signer. To address this issue, we propose
an additional module to enhance the face gener-
ation based on an image-animation model. See
Figure 3 for an overview of this module.

Motion Estimator

Source Face	𝐹# Enhanced Face	𝐹$%

Driving Face	𝐹&%Source Face	𝐹#

Face Enhancement Module

Figure 3: Face Enhancement Module. The mo-
tion estimator obtains dense motion and multi-
resolution occlusion maps between the source face
Fs and the driving face. The output along with a
U-Net is applied to generate the enhanced face F i

E

When generating the first frame I ′1 , we crop the
result face and use it as the source face Fs for

the image animation module from Zhao and Zhang
(2022). The facial images in the original videos
are also cropped and aligned to formalize the driv-
ing face set [F i

d], i = 1...N . A motion estimation
module will estimate the dense motion Wi and multi-
resolution occlusion maps Mi between the source
face Fs and the driving face set [F i

d], i = 1...N .
The obtained optical flow and occlusion maps are
input to a U-Net to generate new face images that
match the identity of the source face Fs but have the
same facial expression as F i

d. The input image Fs

is processed through the encoder, and optical flow
Wi is applied to wrap the feature map at each level.
This adjusted feature map is then combined with
the occlusion mask Mf

i that matches its resolution.
Subsequently, it is merged into the decoder through
a skip connection. The feature map is then input to
the next upsampling layer. Finally, the enhanced
face image F i

E is produced at the last layer.
A face parser model (Yu et al., 2018) is applied on
F i
E to segment the face area and obtain a mask

Mf
i . Then, the mask and enhanced face image

are aligned with the face location in I ′i. Finally, I ′i
is updated by the following equation:

I ′i = Mf
i F

i
E + (1−Mf

i )I
′
i. (12)

4. Experiments and Results

Figure 4: Example Images from the mixed dataset.
We sampled more images from ASL videos for a
balanced dataset.

4.1. Dataset
We implemented our method on video datasets
distributed through the American Sign Lan-
guage Linguistic Research Project (ASLLRP):
https://dai.cs.rutgers.edu/dai/s/dai (Neidle et al.,
2018, 2022b). Each test sample was limited to
a maximum of 180 video frames. Example results
are presented in Figure 5. We also produce a mixed
dataset for fine-tuning the facial expression module,
as illustrated in Section 4.3.

4.2. Models

Our experiments utilized Stable Diffusion models
version 1.5 and other customized models. The
ControlNet version 1.0 was employed, producing
optimal results with HED as a conditional input.
Optical flow estimation was performed using the
model from Xu et al. (2022).

https://dai.cs.rutgers.edu/dai/s/dai
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(B)

(A)

(C)

F=1 F=2 F=3 F=4 F=5

Figure 5: Anonymization Result Examples. Row (A) contains some frames from the original ASL video
(taken from ASLLRP file Cory_2013-6-27_sc115, Utterance 22, meaning ‘If friends play Frisbee, I will join
them.’). Rows (B) and (C) show anonymization from different prompts: (B) a Superman in blue uniform is
making gestures (C) a man in CG style, blond hair, is making gestures.

(B)

(A)

(C)

F=1 F=2 F=3

Figure 6: Ablation Study of Facial Expression Enhancement. The frames in Row (A) are taken from
ASLLRP file Cory_2013-6-27_sc114, Utterance 102. Row (B) is the result without the facial enhancement
module. Row (C) is the final result of our method.

4.3. Fine-tuning Facial Expression Model
State-of-the-art facial reenactment models are usu-
ally trained on large-scale speaking head datasets
such as Voxceleb (Nagrani et al., 2017). The
rich identity information contained in such datasets
makes it possible to generalize on face images in
the wild. However, the speaking head videos lack
linguistically important facial expressions. In con-
trast, the face images cropped from ASL videos
contain linguistic information, but lack diversity of
identities, which impacts the model’s ability to gen-
eralize. To address this, we propose to mix these
two datasets and apply a balance sampling strat-
egy in training in order to maintain the model’s gen-
eralization ability and enable generation of facial
expressions carrying linguistic meanings. Figure 4
shows example face images for this mixed dataset.
We fine-tune the pre-trained model from Zhao and
Zhang (2022) on this mixed dataset for 40 epochs.

4.4. Qualitative Evaluation
To our knowledge, this is the first instance of
text-guided sign language anonymization capa-
ble of generating an unlimited array of diverse

anonymized videos. Methods like Cartoonized
Anonymization (CA) (Tze et al., 2022b) cannot gen-
erate photorealistic results and rely on skeleton es-
timation for accurate anonymization. Methods that
can generate photorealistic results, e.g., AnonySign
(Saunders et al., 2021), SLA (Xia et al., 2022), and
Neural Sign Reenactor (NSR) (Tze et al., 2022a),
require accurate skeleton estimation or have very
limited choices of anonymization identites.
Our initial results are encouraging. Our method
can generate clear handshapes with high fidelity
to the original signer’s handshapes and hand/arm
movements. Most generated facial expressions
are good; further refinements to fully preserve sub-
tle linguistic expressions are underway. Effective-
ness for complete disguise of identity, transmis-
sion of linguistic content, and production of natural-
looking signing remains to be confirmed through
user studies, to be carried out soon. In the very
near future, we will also validate our results by
processing our anonymized videos through our in-
dependent system for sign recognition from video
(Zhou et al., 2024, under review), to confirm that
the anonymized versions are correctly recognized
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(B)

(A)

(C)

F=1 F=2 F=3

Figure 7: Ablation Study of Facial Expression Enhancement. The frames in (A) are taken from ASLLRP
file Cory_2013-6-27_sc107, Utterance 14. Row (B) shows the result without the facial enhancement
module. (C) shows the final result of our method.

as the originally produced sign. Figure 5 shows
that our method can produce computer-generated
signers with varying identities: Text prompts allow
for varying anonymized versions of ASL videos.
The results underscore the practical potential of
our approach. Video examples can be seen at
https://github.com/Jeffery9707/DiffSLVA2.
4.5. Quantitative Evaluation
We use an identity classifier (Schroff et al., 2015;
Cao et al., 2018) to check whether our method suc-
cessfully changes the identity of the original signer.
In particular, we calculate the cosine similarity be-
tween face embeddings of multiple images of the
same signer and of anonymized signers. See Ta-
ble 1. Cosine similarity close to 1 or 0 means the
faces are from the same person or an unrelated
person, respectively.

Original Anonymized
Signer A 0.7740 0.1273
Signer B 0.8917 0.0566
Signer C 0.8566 -0.0165

Table 1: Anonymization Analysis for the Face.
Each column contains the cosine similarity between
faces of the same signer and anonymized signers.

From the table, we can see that our anonymized
face has a cosine similarity close to 0 with the orig-
inal face. Therefore, our method has successfully
anonymized the signers to a unrelated identity.
4.6. Ablation Study
Our ablation study focused on the facial expression
enhancement module. Results are shown in Fig-
ures 6 & 7. Using this module significantly improves
preservation of linguistic meaning. (The examples
shown include topic and wh-question marking.)
The Stable Diffusion model does not do well with
accurate generation of varied facial expressions for
ASL anonymization. Instead of producing diverse

expressions, the model tends to replicate a uniform
expression across frames, resulting in loss of lin-
guistic information. This limitation highlights the
importance of applying facial expression enhance-
ment module for ASL video anonymization.

5. Conclusion and Discussion
We introduce DiffSLVA, a novel approach using
large-scale pre-trained diffusion models for text-
guided ASL video anonymization. Our approach
could be applied to various use cases. It could
enable signers to share sensitive information while
preserving privacy. It could enable anonymous
peer review for ASL-based academic submissions,
thereby ensuring unbiased academic review. It
could bring neutrality to multimodal ASL tools, e.g.,
for anonymized definitions for ASL dictionaries. Fur-
thermore, our approach could enhance neutrality
in interpreting scenarios in digital communications,
such as messaging, enabling maintenance of con-
fidentiality in ASL communications. The implemen-
tation of DiffSLVA could also increase participation
in video-based AI databases, enriching AI research
with diverse ASL data.
This approach does not address the possibility that
even anonymized signers could be recognized by
those who know them very well, based on signing
style. Furthermore, our current method has some
limitations. It may encounter challenges in cases
where the face is occluded by one or both hands
or where there is blurring due to rapid movements
in ASL videos. In addition, as is a known issue for
Stable Diffusion Models, artifacts of various types
sometimes appear in our anonymized videos. We
aim to address these issues in our future work. We
are also working on further refinements to improve
the facial transformation module. However, overall,
DiffSLVA shows substantial promise for anonymiza-
tion applications, which could offer invaluable tools
for the Deaf and Hard-of-Hearing communities.

https://github.com/Jeffery9707/DiffSLVA2
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