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Abstract
Code-mixing (CM), where speakers blend lan-
guages within a single expression, is prevalent
in multilingual societies but poses challenges
for natural language processing due to its com-
plexity and limited data. We propose using a
large language model to generate synthetic CM
data, which is then used to enhance the per-
formance of task-specific models for CM senti-
ment analysis. Our results show that in Spanish-
English, synthetic data improved the F1 score
by 9.32%, outperforming previous augmen-
tation techniques. However, in Malayalam-
English, synthetic data only helped when the
baseline was low; with strong natural data, ad-
ditional synthetic data offered little benefit. Hu-
man evaluation confirmed that this approach is
a simple, cost-effective way to generate natural-
sounding CM sentences, particularly beneficial
for low baselines. Our findings suggest that
few-shot prompting of large language models
is a promising method for CM data augmenta-
tion and has significant impact on improving
sentiment analysis, an important element in the
development of social influence systems.

1 Introduction

Code-mixing (CM), or code-switching, is the prac-
tice of switching between languages within a con-
versation or utterance. This practice is integral to
multilingual societies, particularly in Mexico and
urban India (Parshad et al., 2016), and is also sig-
nificant in computer-mediated communication and
social media, where multilingual users are predom-
inant (Rijhwani et al., 2017). Despite its ubiquity,
CM is mostly spoken and found in personal mes-
sages, making training data scarce and leading to
poorer Natural Language Processing (NLP) model
performance compared to monolingual text (Prat-
apa et al., 2018; Yong et al., 2023).

Social influence (SI) refers to the changes in
thoughts, feelings, attitudes, or behaviors resulting
from interactions with others. In multilingual so-
cieties, CM reflects an important aspect of these

Figure 1: Overall system workflow with examples
of Spanish-English CM tweets as natural data (left)
and synthetic data (right). Underlined words repre-
sent Spanish-English hybrid words, examples of the
complexities introduced by CM. Translations of CM
sentences into English are provided in Appendix A.

interactions, reflecting social dynamics and identity.
Sentiment analysis (SA) is crucial for understand-
ing these dynamics, as it captures the emotional nu-
ances embedded in multilingual interactions. Fur-
thermore, SA has become a primary CM task due
to its need for complex semantic understanding and
its implications for social media (Drus and Khalid,
2019), where CM is commonly present (Srinivasan
and Subalalitha, 2023). By accurately analyzing
sentiment in code-mixed text, SI systems enhance
their ability to interpret user intent and emotional
states, enabling more meaningful interactions ad-
dressing the more diverse environments in which
SI occurs. Since multilingual speakers bridge in-
formation on social media (Li and Murray, 2022),
machines must also accurately analyze CM text
to capture public opinion and disseminate news.
However, current approaches fall short in handling
code-mixed settings (Doğruöz et al., 2021; Aguilar
et al., 2020) due to data scarcity.

Beyond the CM domain, few-shot learning has
shown promise in overcoming data scarcity, as
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Large Language Models (LLMs) trained on diverse
tasks generalize to new ones with minimal training
(Brown et al., 2020; Lin et al., 2022; Winata et al.,
2021). LLMs are used for data augmentation (Ding
et al., 2024; Whitehouse et al., 2023; Yoo et al.,
2021; Dai et al., 2023), training data generation
(Yu et al., 2023), and knowledge distillation (Xu
et al., 2024; Phuong and Lampert, 2021), particu-
larly in low-resource settings (Ding et al., 2024).
However, this approach remains underexplored in
the CM domain, which presents unique challenges
(Zhang et al., 2023).

In this work, we bring LLM-powered data aug-
mentation to the task of code-mixed sentiment anal-
ysis. We use few-shot prompting to generate la-
beled CM SA data in Spanish-English and low-
resource Malayalam-English. Following Li and
Murray (2023); Whitehouse et al. (2023); Tareq
et al. (2023), we quantify the performance gains by
fine-tuning multilingual pre-trained language mod-
els (PLMs) on the LLM-generated data. We investi-
gate if these synthetic data samples can reflect natu-
ral code-mixing patterns and nuances compared to
other data augmentation techniques and verify the
synthetic data quality through human evaluation.

Figure 1 displays our overall system workflow
with examples of natural and synthetic data. We
summarize our contributions as follows:

• We introduce LLMs for CM data augmen-
tation as a simple, cost-effective way to im-
prove sentiment analysis models with natural-
sounding sentences;

• We surpass past baselines, achieving third
on the LinCE benchmark (Aguilar et al.,
2020) in Spanish-English and outperforming
the highest published benchmark by 4.85%
on the low-resource MalayalamMixSentiment
dataset (Chakravarthi et al., 2020);

• We thoroughly analyze the efficacy of our data
augmentation approach in comparison to other
techniques and with human evaluation;

• We release the synthetic data and code on
Github1 for public use and reproducibility.

2 Related Work

2.1 Data Augmentation for Code-Mixing
Existing attempts at generating synthetic CM data
focus on using linguistics theory or converting

1https://github.com/lindazeng979/LLM-CMSA

monolingual data to CM data.
For instance, Pratapa et al. (2018) use Equiva-

lence Constraint Theory to align the parse trees
of Hindi and English and replace words in one
language with their corresponding words in the
second language. Lee et al. (2019) apply Matrix
Language Frame theory to convert parallel data to
CM data, and Gregorius and Okadome (2022) use
a dependency tree which predicts code-switching
points and a machine translator to convert mono-
lingual sentences to CM. While these methods con-
sider the intention behind code-switching points
(Solorio and Liu, 2008), they require expert lin-
guistic knowledge, assume languages pairs can be
parsed by the same parse tree, and rely on the accu-
racy of the parsers employed.

Other approaches convert monolingual data into
CM using machine translation systems (Vu et al.,
2012; Li and Murray, 2022; Tarunesh et al., 2021),
word dictionaries (Tareq et al., 2023), or parallel
corpora (Winata et al., 2019; Whitehouse et al.,
2022). For instance, Winata et al. (2019) employ
a sequence-to-sequence model to learn language-
switching points while Chang et al. (2019) use
generative-adversarial networks. Li and Murray
(2022) introduce language-agnostic masks in a
monolingual SA corpus to train models on recog-
nizing the patterns of CM, and Tareq et al. (2023)
utilize word dictionaries to map monolingual data
into CM SA data. Although some of these tech-
niques account for code-switching points, they do
not consistently produce natural sentences. More-
over, their effectiveness relies on the quality of the
underlying systems and the assumption that large
datasets with distributions similar to real CM data
are available.

Unlike conversion-based methods, our approach
generates CM sentences from scratch. By leverag-
ing LLMs’ multilingual pre-training and generaliza-
tion capabilities, we aim to produce synthetic data
that more accurately reflects the natural patterns
and nuances of human-generated CM language.

2.2 Large Language Models for Code-Mixing

To our knowledge, LLMs have not yet been used
for CM data augmentation. The closest related
works are by Yong et al. (2023), who explore LLMs
in South Asian CM dialects through prompting ex-
periments, and Zhang et al. (2023), who assess
LLMs’ zero-shot performance on various CM tasks,
including SA. Both studies find that LLMs need
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significant improvement on zero-shot CM tasks
but do not explore if LLM-generated data can
help task-specific models improve their training,
despite sub-optimal LLM zero-shot performance.
Notably, both studies found that GPT-3.5 (Brown
et al., 2020) shows superior performance among
LLMs and do not evaluate the more advanced GPT-
4 (Achiam et al., 2024). Our research builds on
their findings by using GPT-4 for data generation
and fine-tuning task-specific models in addition to
evaluating zero-shot performance.

In contrast to the findings of Yong et al. (2023)
and Zhang et al. (2023), Whitehouse et al. (2023)
report improvements using GPT-4 for data aug-
mentation in cross-lingual commonsense reason-
ing tasks. While cross-lingual tasks involve sepa-
rate languages, code-mixed tasks involve language
switching within sentences. Nonetheless, the suc-
cess reported by Whitehouse et al. (2023) supports
the feasibility of our approach.

3 Methods

In this section, we introduce our data, the synthetic
generation process, and our fine-tuning methods.

3.1 Natural Data

We conducted experiments using two human-
labeled datasets which we call our natural data.
The first is the Spanish-English SA dataset from the
LinCE Benchmark (Aguilar et al., 2020), contain-
ing 18,789 CM tweets with code-mixing between
English and Spanish. The second dataset is the
Malayalam-English SA dataset from the Malay-
alamMixSentiment dataset (Chakravarthi et al.,
2020), containing 5,452 CM YouTube movie re-
view comments with code-mixing between En-
glish and Malayalam, a low-resource Dravidian lan-
guage. The mean sentence lengths for both datasets
are shown in Table 1.

Both datasets feature colloquial CM social me-
dia comments with diverse code-mixing patterns,
presenting significant challenges to NLP models.
They include sentiment categories: Positive, Nega-
tive, or Neutral. For preprocessing, we filtered out
comments labeled "non-Malayalam" or "unknown"
from the Malayalam-English dataset and adjusted
the data splits. Both datasets were cleaned to re-
move empty strings, hashtags, URLs, and symbols,
with emojis replaced by English descriptions using
the emoji library.2

2https://pypi.org/project/emoji/

Language Natural LLM-
Generated

Random
Translation

Sp-En 13.0 ±7.4 14.7 ±4.0 23.1 ±30.4

Ma-En 8.2 ±3.1 8.4 ±1.7 N/A

Table 1: Mean sentence length and standard deviation,
measured in words, of natural and synthetic data for
each language.

3.2 Data Augmentation Methods

Our primary data augmentation method involves
prompting LLM with task demonstrations to gen-
erate synthetic CM training data. As a secondary
method to use for comparison, we implement the
more traditional technique of translating monolin-
gual sentences into CM.

3.2.1 LLM Prompting
We use GPT-4 as our LLM, as many past studies
(Whitehouse et al., 2023; Yong et al., 2023; Zhang
et al., 2023) have found high CM performance in
GPT-based models. We construct instructions for
GPT-4 based on previously successful CM genera-
tion prompts (Whitehouse et al., 2023; Yong et al.,
2023) and empirical observations of the data. Addi-
tionally, we provide task demonstrations randomly
sampled from the natural pre-processed training
dataset, which may again appear in the SA fine-
tuning phase, with an equal amount of demonstra-
tions for each class. Since LLM requires few task
demonstrations, this data augmentation approach is
not contingent on having a large dataset, and syn-
thetic data generation utilized 15 to 50 examples.
The prompt refinement process, our final prompt,
and data generation implementation details can be
viewed in Appendix B.1.

Our final synthetic data sizes were ~53,000
in Spanish-English and ~24,000 in Malayalam-
English. Shown in Table 1, LLM-generated sen-
tences effectively resembled natural CM sentences
in mean sentence length. However, LLM-generated
sentences tended to vary less in sentence length, in-
dicated by consistently lower standard deviation
values.

3.2.2 Random Translation
Our secondary technique, Random Translation,
converts a monolingual SA corpus into a CM SA
corpus using machine translation. Similar to Li
and Murray (2022); Tareq et al. (2023); Tarunesh
et al. (2021), we used Stanford’s Sentiment140
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dataset (Go et al., 2009) and SemEval’s Sentiment
Analysis in Twitter dataset (Rosenthal et al., 2017)
as monolingual corpora and randomly translated
parts of English tweets into Spanish through Mar-
ian NMT (Junczys-Dowmunt et al., 2018). We did
not use this technique for Malayalam-English due
to the lack of reliable machine translation systems
supporting Malayalam.

The resulting synthetic corpus consisted of
49,560 data samples. As shown in Table 1, the
randomly translated data exhibited a significantly
higher mean sentence length compared to LLM-
generated synthetic data, due to constraints im-
posed by the statistics of the selected monolingual
dataset. This highlights the limited flexibility of
using pre-existing datasets for CM data augmenta-
tion.

3.3 Fine-tuning Sentiment Analysis

We fine-tuned multilingual BERT (mBERT), which
was most commonly used in past benchmarks
(Chakravarthi et al., 2020; Aguilar et al., 2020),
and XLM-T, which is a XLM-R (Conneau et al.,
2020) model pre-trained on millions of social me-
dia tweets from over thirty languages including
Spanish and Malayalam. For each language, we
trained both models on three datasets: only natural
data, only synthetic data, and a combined dataset
of natural and synthetic data. We also introduced
a lower-resource experimental setup for Spanish-
English, where we reduced the natural data to a
3,000-sample subset to align with Li and Murray
(2022). Table 2 summarize the data sizes used in
the full Spanish-English, subset of Spanish-English,
and Malayalam-English experimental setups. For
the full 12.2k Spanish-English data setup, we re-
peated experiments using both LLM-generated and
randomly-translated synthetic data to compare the
two techniques. In all, we hypothesized that train-
ing on both natural and synthetic data would lead
to the highest performance, as it benefited from
both natural data, which had a similar distribution
and style as the natural test data, and synthetic data,
which increased the number of examples for mod-
els to learn CM features.

In all Spanish-English experiments, when train-
ing on a combination of synthetic and natural data,
we adopted the gradual fine-tuning method pro-
posed by Xu et al. (2021) and applied to CM data
augmentation by Li and Murray (2022). Treating
the synthetic CM data as out-of-domain data, we

Language Train Val Test
Natural Synthetic

Sp-En 12,194 50,000 1,859 4,736

Sp-En 3,000 50,000 1,859 4,736

Ma-En 3,452 15,000 1,000 1,000

Table 2: Training, validation, and test data sizes for each
round of experiments. Each row included training on
natural data, synthetic data, and the combined (natural +
synthetic) data, repeated for mBERT and XLM-T across
different types of synthetic data.

fine-tuned the model for five stages, gradually de-
creasing the amount of synthetic data from 50,000
to {25000, 15000, 5000, 0} for subsequent train-
ing stages while keeping natural data constant. As
a result, the model gradually fit closer to natural
data, which it would be tested on. In Malayalam-
English, we retained one stage of training due to
higher performance after preliminary experimenta-
tion. Fine-tuning hyperparameters and the impact
of gradual fine-tuning are included in Appendix
B.2 and Appendix C, respectively.

4 Results

This section evaluates overall model performance
and then quantifies relative percent improvements
contributed by data augmentation.

4.1 Overall Performance

Table 3 presents the overall F1 scores achieved for
the Spanish-English and Malayalam-English CM
SA datasets in the full 12.2k and 3.5k data setup,
respectively, compared to zero-shot scores, base-
line scores, and current benchmarks. All Spanish-
English models were evaluated using the same test
dataset as the LinCE benchmark. However, the
Malayalam-English models used adjusted train-test
splits in comparison to benchmarks, due to the re-
moval of extraneous labels (see Section 3.1).

4.1.1 Baselines
To provide reference points, GPT-4, mBERT, and
XLM-T were evaluated using a zero-shot approach,
where no additional training or fine-tuning was ap-
plied. For GPT-4, we generated predictions by
providing a prompt with no examples and parsing
the generated outputs directly as the model’s pre-
dictions. For mBERT and XLM-T, we loaded in
the pre-trained models with an extra classification
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Method Model Natural
Data

Synthetic
Data

Spanish-
English F1

Malayalam-
English F1

Zero-shot GPT-4 0.546 0.524
No Training mBERT 0.045 0.131
No Training XLM-T 0.543 0.354
Dataset Baseline mBERT ✓ 0.564 0.750
Our Baseline XLM-T ✓ 0.588 0.843
Random Translation XLM-T ✓ 0.491
LLM-Generated XLM-T ✓ 0.544 0.595
Random Translation XLM-T ✓ ✓ 0.563
LLM-Generated XLM-T ✓ ✓ 0.603 0.763
Top Score 0.622 0.804

Table 3: Summary of weighted F1 scores on the full 12k Spanish-English and 3.5k Malayalam-English datasets
with comparisons to other baselines. Scores in bold indicate our highest performance on each dataset. The top score
for Spanish-English is anonymous on the LinCE benchmark, and the top score for Malayalam-English is Bai et al.
(2021).

layer and proceeded directly to evaluation with-
out further training. Results are shown in the first
section of Table 3.

Our zero-shot analysis reveals three main find-
ings. First, consistent with Zhang et al. (2023),
large language models like GPT-4 are still not
sufficiently adept for zero-shot tasks like Spanish-
English and Malayalam-English sentiment analysis,
as they perform below dataset benchmarks (Aguilar
et al., 2020; Chakravarthi et al., 2020). However,
GPT-4’s zero-shot performance on Malayalam-
English is still surprisingly high considering the lan-
guage is low-resource. Second, the size of an LLM
does not necessarily equate to better performance.
XLM-T, with its task-specific pre-training on code-
mixed data from Common Crawl and Twitter (Li
and Murray, 2022), demonstrates that a smaller,
specialized model can be nearly as effective as
a much larger general-purpose model in Spanish-
English, aligning with Zhang et al. (2023). Lastly,
XLM-T shows a significant zero-shot performance
boost over mBERT for both Spanish-English and
Malayalam-English, demonstrating the importance
of task-specific pre-training.

The second section of Table 3 shows results after
fine-tuning XLM-T on the full natural data. XLM-
T consistently outperforms mBERT in both lan-
guages, similar to its zero-shot performance. Our
Spanish-English baseline with XLM-T surpasses
the LinCE Organizers’ baseline using mBERT, and
our Malayalam-English baseline achieves the high-
est score on this dataset, exceeding the previous
top score by Bai et al. (2021).

4.1.2 Performance with Synthetic Data
The third and fourth sections of Table 3 display re-
sults when fine-tuning XLM-T on solely synthetic
data and on a combination of natural and synthetic
data, respectively.

When fine-tuning XLM-T on solely synthetic
Spanish-English data, LLM-generated data slightly
improves performance compared to no training,
whereas randomly-translated data decrease perfor-
mance below zero-shot levels.

Combining random-translated data with the full
natural Spanish-English data similarly degrades
performance relative to our baseline, highlight-
ing its less effective representation of code-mixing.
On the other hand, combining natural and LLM-
generated synthetic data yields our highest Spanish-
English score of 0.603 F1, ranking third on the
LinCE benchmark. This demonstrates that LLM-
generated data can mitigate overfitting and enhance
task-specific model performance beyond LLM’s
own zero-shot capabilities in Spanish-English.

For Malayalam-English, training on either syn-
thetic or natural data significantly improves per-
formance compared to zero-shot results. LLM-
generated synthetic data nearly double XLM-T’s
performance, and natural data more than double
it, achieving higher scores than Spanish-English.
Training with both natural and synthetic data aver-
ages their individual performances, suggesting that
there exists a performance threshold past which
synthetic data can no longer help. Nonetheless,
the combination surpasses the dataset benchmark
(Chakravarthi et al., 2020).
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4.2 Contribution of Data Augmentation

Table 4 displays the relative improvements from
data augmentation techniques on the three data se-
tups: the full Spanish-English dataset, the subset
of the Spanish-English dataset, and the Malayalam-
English dataset. Unlike absolute scores, which
can vary with training conditions, percent improve-
ments provide a consistent measure for comparing
models trained with and without synthetic data.

4.2.1 Full Spanish-English Dataset

The contrast in relative improvements between the
LLM-Generated technique and the Random Trans-
lation technique, which are shown in the first sec-
tion of Table 4, can be attributed to two factors:
First, the monolingual corpora used for Random
Translation did not closely match the distribution
of natural CM data, and second, the code-switching
points in the synthetic data were randomly gener-
ated. Since LLM-generated data did not experience
the same performance losses, it mitigated these is-
sues by producing sentences that more accurately
reflected natural data distributions and incorporated
intentional code-switching rather than random oc-
currences.

4.2.2 Subset of Spanish-English Dataset

In the subset of the Spanish-English dataset, where
the training set was reduced to 3,000 samples,
LLM-generated data showed a more substantial im-
provement for both models than on the full Spanish-
English dataset, displayed in the second section of
Table 4. These improvements outperformed the re-
sults obtained by Li and Murray (2022), indicating
that LLM-generated data samples are particularly
effective in a Spanish-English low-resource setting.

4.2.3 Malayalam-English Dataset

Displayed in the third section of Table 4, the
high baseline accuracy of XLM-T in Malayalam-
English led to a performance drop with syn-
thetic data, while mBERT’s performance improved
slightly. In comparison, Li and Murray (2022) cite
large improvements using their language-agnostic
method, which reduces the focus on Malayalam’s
particular language features and emphasizes learn-
ing CM patterns. Nonetheless, this method also
improves on a lower baseline score. These dispar-
ities suggest that the utility of synthetic data may
diminish when the model’s baseline performance
is already high.

4.2.4 Cross-Dataset Analysis
Across all datasets, synthetic data generally en-
hances performance up to a certain threshold. Mod-
els with lower initial baselines, such as those
trained on the limited Spanish-English subset, show
greater percent improvements with synthetic data,
reaching almost the same performance as models
with quadruple the amount of natural data. This per-
formance stability suggests that LLM-powered data
can effectively boost performance for relatively
small datasets. Conversely, models with high ini-
tial baselines, like XLM-T in Malayalam-English,
may experience a decrease in accuracy when syn-
thetic data samples are added, as synthetic data
maintain performance at a similar threshold.

Overall, LLM-powered data augmentation
proves effective in improving five of six models for
CM SA, with our Spanish-English system achiev-
ing a notable 9.32% relative percent improvement,
surpassing other methods such as Li and Murray
(2022) under similar conditions.

5 Analysis

This section details results from human evaluation,
subsequent empirical data analysis, and discussion
about the trade-offs of generating synthetic data.

5.1 Human Evaluation

To gain insight on the quality of LLM-generated
data, we asked native speakers to evaluate Spanish-
English and Malayalam-English sentences from
both the original dataset and the LLM-generated
dataset on the grounds of Code-Mixing Naturalness,
Label Accuracy, and if the sentences are Human
or Machine-Generated. 400 Malayalam-English
sentences were labeled by one annotator, and 200
Spanish-English sentences were labeled by two an-
notators, all of whom were balanced bilinguals with
C1-C2 proficiency in the languages they annotated,
according to the Common European Framework of
Reference for Languages (CEFR). Detailed instruc-
tions for evaluators and descriptions of each label
are elaborated in Appendix D. In this study, our hu-
man evaluation was constrained due to limited re-
sources. While this is a limitation, it is worth noting
that other studies, such as Whitehouse et al. (2023),
have worked with even smaller sample sizes.

As shown in the first graph of Figure 2, anno-
tators rated LLM-generated sentences similarly
to human-generated sentences in terms of nat-
uralness for both datasets. This suggests that
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Dataset Method Model Baseline +Synthetic % Change

Full Spanish-English12.2k
LLM-Generated XLM-T 0.588 0.603 2.55%
LLM-Generated mBERT 0.503 0.533 5.96%
Random Translation XLM-T 0.588 0.491 -16.5%
Random Translation mBERT 0.503 0.512 1.79%

Subset of Spanish-English3k
LLM-Generated XLM-T 0.547 0.598 9.32%
LLM-Generated mBERT 0.487 0.526 8.01%
Li and Murray (2022) XLM-T 0.649 0.660 1.68%
Li and Murray (2022) mBERT 0.495 0.506 2.12%

Malayalam-English3.5k
LLM-Generated XLM-T 0.843 0.763 -9.84%
LLM-Generated mBERT 0.737 0.745 1.09%
Li and Murray (2022) mBERT 0.670 0.722 7.73%

Table 4: A comparison of relative percent improvements achieved by different data augmentation methods on
our three datasets for XLM-T and mBERT, with the largest improvements highlighted in bold. F1 scores are also
provided from fine-tuning on natural data and on a combination of natural and synthetic data.

Figure 2: Human evaluation on Spanish-English and
Malayalam-English sentences from the original datasets
and the LLM-Generated datasets.

LLM-generated sentences did not appear unnatural
when compared to human sentences. Notably, our
Malayalam-English annotator labeled 5.5% more
synthetic sentences as natural compared to human
sentences. Since we define CM naturalness as the
fluency of a sentence such that it can be recognized
and accepted as authentic CM in real-life contexts,
this finding indicates that, despite the differences
in appearance between LLM-generated and nat-
ural data, both forms may be perceived as valid
representations of CM in the real world. Further-
more, while there is a slight increase in the rating
of synthetic sentences in Malayalam-English, the
difference is relatively small and may not represent
a significant divergence between LLM-generated
and human sentences in terms of perceived natural-

ness.
Consistent across both datasets, LLM-generated

data exhibited significantly higher sentiment la-
bel accuracy compared to human-generated data,
shown in the second graph of Figure 2. This finding
suggests that LLM-generated samples are less am-
biguous, likely because we explicitly prompt GPT-
4 to generate sentences for the sentiment analysis
task. In contrast, real-world social media tweets,
created without this directive, may exhibit greater
semantic variability. These results highlight poten-
tial label ambiguity issues in the original datasets,
particularly for Spanish-English, and demonstrate
the utility of synthetic sentences to mitigate these
issues by providing clearer examples during train-
ing. However, less ambiguous synthetic data may
also lead to models that are less robust to natural
complexities in human expression.

When predicting whether a sentence was human-
or machine-generated, annotators faced signifi-
cant challenges in distinguishing between LLM-
generated and human sentences, shown in Fig-
ure 2. For Spanish-English, annotators mistak-
enly identified more LLM-generated sentences as
human-produced than actual human sentences. In
Malayalam-English, while annotators more accu-
rately identified human sentences, a substantial
margin of error persisted. Consequently, even
though annotators tended to rate certain groups
with higher naturalness or label accuracy, they
lacked a clear understanding and identifiable cues
indicating the sentences’ original sources.

Ultimately, inter-annotator agreement was low
for Spanish-English (κ < 0.3). While our findings
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Sentences Label Prediction

Happy Friday #elvacilondelaGatita neutral positive
#elvacilondelagatita #quotes #friday positive neutral

Sentences Label Correction

Get your outfit now! Escoge tus prendas
favoritas y haz tu pedido Blusa morada
$20.00 #ilovesalhuaclothing

neutral positive

Como me encabrona enterarme de quien
se va en The Bachelor sin haber visto el
episodio Angry Face

positive negative

Table 5: Examples of sentences from the natural
Spanish-English dataset, including their true labels,
XLM-T’s predicted labels, and the proposed corrections
by human evaluators. Translations of the CM sentences
into English are provided in Table 7 in Appendix A.

offer a qualitative perspective to the quantitative
fine-tuning results, we encourage more comprehen-
sive studies dedicated to human evaluation in the
future.

5.2 Empirical Data Analysis

When observing natural and synthetic data, we fo-
cus on explaining two questions: (1) Why did the
Malayalam-English baseline perform better than
Spanish-English despite less training data? (2)
Why did synthetic data improve Spanish-English
performance while decreasing Malayalam-English
performance in XLM-T? We find that the chal-
lenges in the dataset, task, and the training back-
ground of LLM best answer these questions.

5.2.1 Dataset Challenge
Aligning with the results of human evaluation, we
found significant label ambiguity in the human-
labeled Spanish-English dataset due to both the
inherent ambivalence of human speech and the var-
ious interpretations that can be made by human
annotators.

In Table 5, the first two examples highlight anno-
tation ambiguity. Despite conveying similar ideas
of anticipating Friday and listening to the Hispanic
radio morning show "El Vacilón de la Gatita," they
are labeled differently. Notably, the use of "Happy"
in the first sentence seems to imply a positive senti-
ment but is labeled as neutral.

The subsequent examples illustrate disagree-
ments between human evaluators and true labels.
One example, a clothing ad with a seemingly posi-
tive connotation, could be interpreted as neutral
due to its advertising context. Conversely, the
second example, discussing hearing a spoiler for

"The Bachelor," seems to clearly warrant a negative
rather than positive label.

In contrast, the Malayalam-English dataset con-
tains cleaner, more consistently phrased examples.
A significant portion of negatively labeled sen-
tences include the word "Dislike," simplifying the
sentiment analysis task. This consistency likely
contributes to Malayalam-English’s high perfor-
mance compared to Spanish-English. We provide
further analysis of the challenges of CM sentiment
analysis in Appendix E.

5.2.2 Data Parallels
We discovered many parallels between natural and
synthetic Spanish-English data both semantically
and syntactically. Shown in Table 6, both natu-
ral and synthetic sentences discuss common ideas,
such as replaying a song, and use Spanish-English
hybrid words like "textear." LLM’s ability to adapt
to the topics discussed in the Spanish-English data
and to capture these CM nuances supports the high
performance gains synthetic data provide.

Natural Synthetic

Something came up algo surgió un
problema sorry something came
up and I cann’t make it to the party

Can’t believe I got stood up... Mi
date dijo "sorry, something came
up" like for real?!

Ojos verdes on replayyy This song me tiene in my feels, re-
play x100

Estaba pensando en textearle a mi
hermana y al minuto me llega un
mensaje de ella #sisterlyconnection

Cuando te voy a textear y apareces
typing, call it telepathy or just buena
onda

Se me olvidaron todos los pass-
words del Hospital y no podia en-
trar a ningun lado #PerksDeLosFi-
nales

UGH, olvidé mi password again
y no puedo entrar a mi cuenta...
FML

Deslike adicha ella punnara
makkalkum nanni

Plot had potential, but execution po-
lilla , disappointed.

Table 6: Comparisons of natural and synthetic sentences
in Spanish-English (red) and Malayalam-English (yel-
low). Overlapping words or phrases are highlighted in
bold. Translations of the CM sentences into English are
provided in in Table 8 in Appendix A.

While the Spanish-English natural data fre-
quently featured alternational CM patterns,
where sentences alternated between languages,
Malayalam-English natural data primarily exhib-
ited insertional CM, where English words were oc-
casionally inserted into predominantly Malayalam
sentences. LLMs often generated alternational
CM in Spanish-English and insertional CM with
English as the dominant language in Malayalam-
English. As a result, they improved performance
in Spanish-English but did not align well with the
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Malayalam-English natural dataset, where Malay-
alam was the dominant language. Even though
LLM-generated Malayalam-English data sounded
natural according to human evaluators, it reflected
a real-world insertional CM pattern not present in
our particular human-labeled dataset. As a result,
this discrepancy highlights the inherent complex-
ity of CM tasks for ML models due to the diverse
nature of CM cultural practices.

A key challenge remains in controlling the type
of CM—whether alternational or insertional—that
LLMs produce. While LLMs handle alternation
between English and Spanish with relative ease
due to extensive training data, balancing languages
like Malayalam and English remains a significant
challenge. Consequently, the effectiveness of data
augmentation is contingent not only the model’s
initial task performance but also the similarity be-
tween the CM patterns in natural and synthetic
datasets.

5.3 Trade-offs with Using Synthetic Data

While our research demonstrates that LLMs can
effectively generate CM training data, the key ques-
tion is why we should prefer LLM-generated data
over human-labeled data.

Collecting high-quality natural CM data is
resource-intensive, involving web scraping, human
annotation, and rigorous quality control. For in-
stance, to create the Spanish-English SA dataset,
Patwa et al. (2020) scraped CM data from Twitter,
employed three Amazon Mechanical Turk3 work-
ers to label 18,789 tweets, and conducted manual
reviews to correct errors. The estimated cost for an-
notating these tweets was approximately $3,054
USD, based on the minimum rate for Spanish-
speaking workers.4 A detailed cost breakdown is
available in Appendix G.

Comparing the baseline scores on the full
Spanish-English dataset to the subset in Section
4.2, adding ~9,000 human-labeled sentences to a
baseline of 3,000 resulted in a 7.49% improvement.
According to the procedure above, the cost of these
sentences was approximately $1,495 USD, and the
annotation process likely took several weeks.

In contrast, generating synthetic data using GPT-
4 for both Spanish-English and Malayalam-English,
including preliminary experiments, cost $376.54

3https://www.mturk.com/
4Minimum rates for workers with premium qualifica-

tions are detailed here: https://requester.mturk.com/
pricing

USD in total. Adding 50,000 synthetic sentences
to the same baseline of 3,000 resulted in a 9.32%
improvement. These sentences were generated in
hours and cost only $37.92 USD, making synthetic
data generation 40 times cheaper than manual an-
notation of a corpus one-fifth the synthetic size.

While a larger volume of synthetic sentences is
needed to achieve the same performance gains as a
smaller set of human-labeled sentences, synthetic
data generation is significantly more cost-effective
and faster. Moreover, adding a large amount of
synthetic data to natural data yields greater per-
formance improvements (9.32%) than adding a
smaller set of human-labeled data (7.49%).

6 Conclusion and Future Work

To address CM data scarcity, we propose using few-
shot prompting with LLMs to generate synthetic,
labeled CM data for SA. We tested this approach
by training mBERT and XLM-T on natural, syn-
thetic, and combined datasets for Spanish-English
and Malayalam-English. In Spanish-English, our
method improved sentiment classification by 9.32%
for the 3k training setup and achieved third place
on the LinCE benchmark for the 12k training
setup. Human evaluations confirmed that our syn-
thetic data closely mimic natural data and are in-
distinguishable from human-labeled examples. For
Malayalam-English, our baseline system exceeded
the highest published benchmark with an F1 score
of 0.847, though further improvements with addi-
tional data were limited. Our findings indicate that
LLM-generated synthetic data are most effective
for enhancing models with low baseline perfor-
mance, particularly when the languages are evenly
represented as well as for resource-constrained sce-
narios. Overall, LLM-powered data augmentation
offers a cost-effective alternative to human anno-
tation, producing high-quality, natural-sounding
sentences with minimal label ambiguity.

To improve performance in Malayalam-English,
we intend to apply our observations of synthetic
data to refine our LLM prompt and regenerate data.
In addition, we aim to extend our research to en-
compass a broader range of LLMs and dialects,
including those without English as a base and those
primarily written in non-Latin scripts. Ultimately,
our findings offer a promising avenue for CM data
augmentation, and we encourage further explo-
ration with LLMs in CM, an area which presents
technical challenge and valuable social impact.
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7 Limitations

The findings may not generalize across all types of
data or tasks. While we find that results are gener-
alizable across different PLMs such as mBERT and
XLM-T and that LLMs typically generate natural-
sounding sentences, the effectiveness of the data
augmentation method may vary depending on the
specific characteristics of the dataset, the resource
level of the language, or the nature of the natu-
ral language processing task. Our experiments fo-
cused on Spanish-English and Malayalam-English
for sentiment analysis, and we encourage future
research to explore this method in other languages
and tasks.

Furthermore, the effectiveness of this data aug-
mentation method is limited by the baseline perfor-
mance on natural data. If performance on natural
data is already higher than the threshold synthetic
data can raise results to, then further improvements
are difficult to achieve. To mitigate this issue, an
option is to regenerate synthetic data with an im-
proved prompt, resulting in more natural synthetic
data that can raise performance to an even higher
threshold.

However, quickly quantifying the effectiveness
of a prompt or strategy is challenging because it
necessitates repeatedly generating large datasets
and retraining models to measure performance im-
provements, which may become resource intensive
if repeated numerous times. Furthermore, human
evaluation was constrained to 200 and 400 data
samples due to limited resources. In the future,
developing a metric to quantify synthetic data qual-
ity without fine-tuning a separate model or using
human evaluation would help streamline the devel-
opment process and provide more direct insights.

Notably, there are data augmentation methods
for CM SA other than Li and Murray (2022) and
similar to our implementation of Random Transla-
tion, including Tareq et al. (2023), who convert a
monolingual English corpus into Bangla-English
using a word embedding algorithm, and Ma et al.
(2020), who also randomly translate parts of a
monolingual English corpus into Spanish-English.
However, they either use different datasets, do not
provide all baseline scores to be able to compare,
do not detail their exact experiments, or do not re-
lease their code, so we were not able to directly
compare our techniques with theirs.

8 Ethics Statement

Like most data augmentation methods, LLM-
powered synthetic data generation raises ethical
concerns because of its potential to magnify biases
within datasets. Since multilingual NLP and CM
are interlaced with people’s identities, cultures, and
heritages, it is important that LLMs do not misrep-
resent peoples’ cultures and languages in offensive
or inaccurate ways. As a result, we acknowledge
the importance of working alongside qualified CM
experts and including speakers familiar with the
languages in CM patterns in the research process.
Before deploying models to the public, it is vital
that generated data is verified and CM language
models are thoroughly tested.
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A Translations of Tables and Figures

This section provides translations of the CM sen-
tences used in Figure 1 and in the tables in Section
5.2. Figure 3 is a translated version of Figure 1,
Table 7 is a translated version of Table 5, and Table
8 is a translated version of Table 6.

Figure 3: Overall system workflow with translated ex-
amples of Spanish-English CM tweets as natural data
(left) and synthetic data (right). Underlined words rep-
resent Spanish-English hybrid words, examples of the
complexities introduced by CM.

B Implementation Details

B.1 Data Generation Details
Table 4 displays our prompt-tuning process, where
we iteratively improved on our data generation
prompt to the LLM. For all experiments, we
prompted gpt-4-1106-preview with the OpenAI
library, with temperature 0.6. For Spanish-English,
we varied the number of shots m between {15, 50,
150, 500} given in our prompt with the objective to
find optimal shot size. To overcome the maximum
sequence length, we instructed GPT-4 to gener-
ate 50 data points and automatically repeated this
process until we reached our desired dataset size.
For each iteration, the prompt contained newly
randomly-sampled task demonstrations from the
training data. We did not post-filter the data due
to its size and subjectivity. Our total synthetic data
sizes were ~53000 in Spanish-English and ~24000
in Malayalam-English.

Sentences Label Prediction

Happy Friday #thejoke-
oftheKitten

neutral positive

#thejokeoftheKitten
#quotes #friday

positive neutral

Sentences Label Correction

Get your outfit now!
Choose your favorite gar-
ments and place your or-
der Purple blouse $20.00
#ilovesalhuaclothing

neutral positive

How I find out who’s
leaving on The Bachelor
without having seen the
episode Angry Face

positive negative

Table 7: Translated examples of sentences from the
natural Spanish-English dataset, including their true
labels, XLM-T’s predicted labels, and the proposed
corrections by human evaluators.

Natural Synthetic

Something came up something
came up a problem sorry
something came up and I
cann’t make it to the party

Can’t believe I got stood up...
Mi date dijo "sorry, some-
thing came up" like for real?!

Green eyes on replayyy This song has me in my feels,
replay x100

I was thinking about tex-
tingmy sister and a minute
later I get a message from her
#sisterlyconnection

When I’m going to text and
you show up typing, call it
telepathy or just good vibes

I forgot all the passwords of
the Hospital and I couldn’t
enter anywhere #Perksofthe-
Finals

UGH, I forgot my password
again and I cannot enter my
account... FML

Deslike adicha ella punnara
makkalkum nanni

Plot had potential, but execu-
tion polilla , disappointed.

Table 8: Comparisons of translated natural and synthetic
sentences in Spanish-English (red) and Malayalam-
English (yellow). Overlapping words or phrases are
highlighted in bold. The Malayalam-English data are
not translated due to its low-resource nature and the lack
of available translators.
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Figure 4: Prompt-tuning process, showing system input in gray, LLM sample output in teal, and iterative improve-
ments made to our prompt highlighted in yellow. Our final prompt is shown to the right.

B.2 Fine-tuning Details

Chosen based on Li and Murray (2022)’s exper-
iments, in our gradual fine-tuning approach, the
synthetic data sizes were {50000, 25000, 15000,
5000, 0}, and each stage included 3 epochs. For
all experiments, we used the Transformers library
(Wolf et al., 2020) to fine-tune XLM-T with a
task-specific classification layer using AdamW
(Loshchilov and Hutter, 2019) optimizer. Accord-
ing to the hyperparameters of the dataset bench-
mark (Patwa et al., 2020; Aguilar et al., 2020)
and our empirical experiments involving hyperpa-
rameter grid search, we set the highest sequence
length at 40 tokens, batch size 32, weight de-
cay 0.01, learning rate 5e−5, and epsilon 1e−8.
For gradual fine-tuning, the learning rates used
were {1e−6, 2e−6, 2e−6, 4e−6, 2e−6}, determined
through preliminary experimentation and standard
grid search. We also tuned additional hyperparam-
eters including synthetic data size, shot size, and
temperature based on a standard grid search. Ex-
periments ran on a 16GB T4 GPU.

Language Training F1 Score

Spanish-English
1-Stage 0.595
5-Stage 0.603

Malayalam-English
1-Stage 0.843
5-Stage 0.718

Table 9: Comparison of F1 scores when XLM-T is
fine-tuned with one stage and with five stages for each
language.

C Impact of Gradual Fine-tuning

Table 9 compares F1 score for one stage of training
to five stages of training using gradual fine-tuning
for Spanish-English and Malayalam-English. Re-
sults marginally increase for Spanish-English while
decreasing for Malayalam-English. This may be
due to less suitable hyperparameters used in five
stage training in comparison to one stage.

D Instructions for Human Evaluation

Two native Spanish-English bilingual students,
who did not have knowledge of the rest of the
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experimentation, were each given the same 100
code-mixing texts and corresponding labels, 50
of which were randomly sampled from the natu-
ral training data and 50 of which were randomly
sampled from the synthetic data. They did not
know which were natural or synthetic, as the sen-
tences were scrambled in random order. One native
Malayalam-English bilingual speaker was given
400 code-mixing texts and corresponding labels,
200 of which were randomly sampled from natu-
ral training data and 200 of which were randomly
sampled from synthetic data.

Our first Spanish-English annotator was a bal-
anced bilingual with C2 proficiency in both English
(native language) and Spanish (second language).
Our second Spanish-English annotator was a bal-
anced bilingual with C2 proficiency in Spanish
(native language) and C1 proficiency in English
(second language). The Malayalam-English anno-
tator was a balanced bilingual with C2 proficiency
in both Malayalam (native language) and English
(second language). All annotators reported to use
both languages frequently in their daily lives. The
initial instructions given were:

You have been provided with a spread-
sheet containing social media comments
that are intended to be code-mixed in
Spanish and English, though some may
not be. Each comment is labeled with
a sentiment—’Positive,’ ’Negative,’ or
’Neutral.’ Your task is to evaluate each
comment based on the following crite-
ria: Read the Sentence: Carefully re-
view each comment. Fill Out Ratings:
Code-mixing Naturalness: Evaluate how
naturally the comment switches between
Malayalam and English. Label Accu-
racy: Assess whether the sentiment la-
bel (’Positive,’ ’Negative,’ or ’Neutral’)
accurately reflects the comment’s con-
notation. If you disagree with the label,
you must provide an alternative in the ’If
you answered "Disagree", what would
you label it?’ column. Human or Ma-
chine: Determine whether the comment
was written by a human or generated ar-
tificially by a machine. Additional Com-
ments (Optional): If you have further
observations or concerns, please record
them in the ’Additional comments’ field.
Keep in mind: Code-mixing refers to

the blending of two or more languages
in speech. These comments are sourced
from social media, so they may be infor-
mal, include emojis, or contain spelling
errors. If you are uncertain about your
evaluation, choose the most likely op-
tion and note your concerns in the com-
ments. Please ensure that your evalua-
tions are accurate and consistent across
the dataset.

For "Code-mixing Naturalness," they were given
the description:

Evaluate naturalness on the changing be-
tween Spanish and English. Choose be-
tween the options: "This sounds nat-
ural, like something people would ac-
tually type/say," "This sounds a bit
strange/could be improved," and "This
sounds unnatural/needs to be rewritten."
Do not consider naturalness/strangeness
of the topics discussed. Do not consider
grammar/spelling mistakes unless they
are extreme. Do not consider the label.

It is important to note that only the first option
for CM naturalness is counted as "natural" while
the "strange" and "unnatural" classifications are
grouped into an omnibus "unnatural" category. For
"Label Accuracy," they were given the description:

Would you agree with the label associ-
ated with each sentence? Is a sentence
labeled "positive" actually giving posi-
tive connotations? Answer with "Agree"
or "Disagree."

For "Human or Machine-Generated," they were
given the description:

Do you think a human wrote this or a ma-
chine wrote this? Now you can consider
any and all aspects e.g. fluidity, topics,
mechanics, anything.

Additionally, evaluators are given the option to
correct labels for which they disagreed with and to
leave additional comments.

E Case Study on Laughter

We investigated the use of "jajaja," shown in Table
10, the Spanish version of typing laughter, which
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Index Sentences True Label Predicted Label

1 jajajaj okay okay ill wait and give them to you on
valentines day so it can be your cheat day

positive positive

2 I can imagine jajaja positive positive
3 most likely jajajaj positive positive
4 Girrrl I wish I had your self-esteem jaja neutral positive
5 Jajajajajajajajajajajajaja ok ok ok neutral positive
6 jovanigram’s video JAJAJAJAJAJ neutral positive
7 tb to your birthday :’) jajajaja neutral positive
8 Whattt Frowning Face with Open Mouth #forever-

riendome jajajjajjajaj
neutral negative

Table 10: Examples of natural sentences including laughter in the test data, with true labels and predicted labels.

occurred frequently in both natural and synthetic
data and can have positive, neutral, or negative
connotations.

This case study demonstrates the challenges of
CM sentiment analysis in that 1) human labels are
sometimes ambiguous, 2) sentences are short, 3)
the model predictions may be biased toward the
positive label, and 4) emojis and symbols play an
important role. Examples of ambiguity are in sen-
tences 1 and 2, which could also be considered neu-
tral, since sentences 5 and 6 are neutral. Sentences
2, 3, and 5 also contain very little information as
compared to sentence 1, which the model had cor-
rect and shows understanding despite sentence 1’s
complexity. We also observe almost all positive
predictions to the class imbalance as described in
Section 5, where it is the model’s mistake and there
is fairly little ambiguity like sentence 4. For sen-
tence 6, the model may not realize ":’)" refers to a
crying happy face and errs. On the other hand,for
sentence 8, "Frowning Face with Open Mouth" is
the English description of the emoji from the orig-
inal tweet, which likely led the model to respond
with negative. The change from emoji to descrip-
tion may also be a factor in performance worth
future exploration.

F Generated Sentences about
Code-Mixing

Table 11 presents an intriguing observation: when
asked to generate code-mixed sentences, many of
the sentences ended up being about code-mixing
or code-switching. In the CM sentences it was
asked to generate, no theme was specified, yet out
of 12865 sentences, 9 mention "code-switching,"
40 mention "bilingual," 162 mention "Spanish-

English," and 5 mention "French," and all discuss
being skilled or having fun at code-switching. Per-
haps LLM has developed somewhat of a personal-
ity, or perhaps this is due to the input instructions.

G Cost Analysis of Data Collection

G.1 Natural Data
To estimate the cost incurred by Patwa et al. (2020)
of annotating 18,789 tweets using Amazon Me-
chanical Turk (MTurk), we first determine the num-
ber of HITs (Human Intelligence Tasks) required.
Each HIT includes 10 tweets, but only 8 are for
annotation purposes, with 2 serving as quality con-
trol. Thus, to annotate 18,789 tweets, we need
approximately 2,349 HITs. To hire workers flu-
ent in Spanish, HITs are required to be priced at
at least $1.00 per HIT.5 The total cost would then
be computed as follows: 2,349 HITs multiplied
by $1.00 per HIT results in a total cost of $2,349
USD. This estimate assumes that each HIT is com-
pleted by a single annotator and does not account
for additional costs related to rejected assignments
or quality control beyond the base HIT price.

Estimating the additional costs related to rejected
assignments, if 30% of all assignments were re-
jected and reassigned, the total cost would increase
to $3,054 USD.

These calculations use the case of Patwa et al.
(2020), but it is important to consider that other
works generally require more than one annotator
to label each data point. Then, the previously cal-
culated costs would double or triple depending on
the number of annotators. Furthermore, Patwa et al.
(2020) do not release their exact price per HIT or
the number of reassigned assignments, so there is

5https://requester.mturk.com/pricing
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Sentences English Translation Labels

Creo que I finally got
the hang of esto de code-
switching, it’s kinda fun!

I think I finally got the
hang of code-switching,
it’s kinda fun!

positive

¿Does this count como
un code-switched tweet?
Asking for a friend

Does this count as a code-
switched tweet? Asking
for a friend

neutral

Ya no sé if I should
hablar español o inglés,
my brain is too code-
switchy today

I still don’t know if I
should speak Spanish or
English, my brain is too
code-switchty today

neutral

Random pero I started
learning French y ahora
mezclo three languages,
send help

Random but I started
learning French and al-
ready mix three lan-
guages, send help

neutral

Table 11: Examples of synthetic sentences mentioning CM explicitly, their translations, and their labels. Red text is
in Spanish.

high variability. Increased prices per HIT could
increase costs significantly.

G.2 Synthetic Data
For generating synthetic data, we made requests to
GPT-4 to generate 50 data points at a time. The
purpose was to overcome the model’s maximum
sequence length. In the future, cost can be fur-
ther reduced due to increasing maximum sequence
length in LLMs.

To estimate the cost of generating 50,000 syn-
thetic samples using GPT-4, we first determine the
total number of tokens per request. Each request
includes a prompt of 330 tokens and 15 data ex-
amples, each averaging 20.8 tokens, totaling 642
tokens for the prompt and examples. GPT-4 then
generates 50 samples, each averaging 21 tokens,
resulting in 1,050 tokens for the generated samples.
Therefore, each request utilizes a total of 1,692 to-
kens. To generate 50,000 samples, we need to make
1,000 requests, resulting in a total of 1,692,000 to-
kens. Given GPT-4 pricing, which is $10.00 per 1
million input tokens and $30.00 per 1 million out-
put tokens,6 we can calculate the costs as follows:
For the 642,000 input tokens, the cost is $6.42,
while for the 1,050,000 output tokens, the cost is
$31.50. Thus, the total cost for generating 50,000
samples is approximately $37.92.

6https://openai.com/api/pricing/
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