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Abstract discussion and participation over several domains

The emergence of generative language models
has put in place the necessity of building mod-
els to discern between machine-generated and
human-generated text. In this paper, we present
our participation in subtasks A and B of the Se-
mEval 2024 Task 8 shared task, which revolves
around this problem. Our approach primarily
centers on feature-based systems, where a di-
verse array of features pertinent to the text’s
linguistic attributes is extracted. Alongside
those, we incorporate token-level probabilistic
features which are fed into a Bidirectional Long
Short-Term Memory (BiLSTM) model. Both
resulting feature arrays are concatenated and
fed into our final prediction model. Our method
under-performed compared to the baseline, de-
spite the fact that previous attempts by others
have successfully used linguistic features for
the purpose of discerning machine-generated
text. We conclude that our examined subset
of linguistically motivated features alongside
probabilistic features was not able to contribute
almost any performance at all to a hybrid classi-
fier of human and machine texts. Our codebase
is publicly available on GitHub.!

1 Introduction

Large language models capable of generating
human-like text have become quite ubiquitous very
quickly. There are now many such models which
are commonly used to generate text across differ-
ent domains and in different languages. With their
increasing availability and capabilities, it has sub-
sequently become necessary to find ways to distin-
guish machine-generated text from that which is
produced by humans. Humans alone are not able
to detect machine-generated text consistently, not
even experts in this task (Guo et al., 2023), and cur-
rent commercial solutions fall short (Chaka, 2023).
It is natural then that this problem has seen wide
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and languages, including the creation of datasets
and proposal of different feature sets and model
types (Shamardina et al. 2022; Wang et al. 2024b
to name a few), but it is still far from being solved.
This leads us to the SemEval-2024 Shared Task
8 that this paper is concerned with “Multidomain,
Multimodal and Multilingual Machine-Generated
Text Detection” (Wang et al., 2024a). This task
is about distinguishing human-written text from
machine-generated text in multiple different do-
mains, modalities and across different languages.
The languages included in the task are: Arabic,
Bulgarian, Chinese, English, Indonesian, Russian
and Urdu. The domains are varied and range from
Wikipedia pages to arXiv research papers to Reddit
posts.

1.1 Research Question

The task of discerning machine-generated texts can
be approached using classical feature-based meth-
ods or using recent neural methods. The inclusion
of multiple domains, languages, and underlying
models adds complexity to the problem, but also
demands a more universal solution. We therefore
find it important not only to strive for high accuracy,
but also for explainability and universality based
on linguistic concepts. Our research question thus
read as the following:

* How well does the linguistically motivated
probabilistic model perform for machine-
generated text detection and model authorship
attribution?

To answer this question, our main strategy uses
a combined linear model with document-level fea-
tures alongside token-level features which have
been processed by a BILSTM, resulting in a method
which combines probability-based features with
low-level and high-level linguistic features. Our
method is inspired by Przybyta et al. (2023), which

1926

Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024), pages 1926-1932
June 20-21, 2024 ©2024 Association for Computational Linguistics


https://github.com/rug-1-at-semeval24-task8/code
https://github.com/rug-1-at-semeval24-task8/code

used a similar model structure for the AuTexTifi-
cation shared task (Sarvazyan et al., 2023), achiev-
ing results that were close behind an LLM-based
model. In our method, however, we employ a linear
perceptron instead of a random forest classifier to
combine the document-level and processed token-
level features, in an attempt to enhance the model’s
performance and learning. A wide range of features
is employed, with our system utilizing stylometric
features, entity coherence features, information-
theoretic features as well as complementary fea-
tures such as TF-IDF features for word-level uni-
grams. An LSTM model proved to attain notably
high accuracy in our baseline system, which led
to us combining our extracted features with a BiL-
STM model. The overview of our system is pre-
sented in Figure 1. Our system performs poorly in
general and relative to other teams, where we rank
at the bottom ten for all tasks that we participated
in.

While our primary emphasis remained on
feature-based models, we developed a separate
model to explore potential performance variations
compared to the feature-based approach. In this
independent model, we employed a basic LSTM ar-
chitecture with BERT (Devlin et al., 2018) serving
as the embedding layer to acquire sentence embed-
dings. However, the inclusion of the embedding
layer introduced computational overhead, resulting
in prolonged processing times. Consequently, we
were only able to obtain results for Task B on the
test dataset using this architecture.

2 Related Work

Due to the similarities in the architecture and train-
ing of different text-generation machines, gener-
ated text may possess universal characteristics that
distinguish it from text written by humans. Guo
et al. (2023) set up a series of human evaluation and
linguistics analyses to understand the characteristic
features and patterns, where a study by Mitrovic¢
et al. (2023) looked at the differences in human
vs Al-generated text. The studies found that hu-
mans tend to have much more diverse and expres-
sive vocabulary, and often tend to diverge from the
topic more than ChatGPT does (Guo et al., 2023;
Mitrovi¢ et al., 2023). This idea is supported by
Gehrmann et al. (2019), who performed a proba-
bilistic analysis of the vocabulary in human- and
machine-generated texts and found that generation
models tend to have a relatively limited and pre-

dictable vocabulary. Some work focuses on stylo-
metric features, as these may be productive in dis-
cerning the original author of a text (Li et al., 2014;
Pearl and Steyvers, 2012). Wang et al. (2024b)
show that models based on such feature sets per-
form strongly within the domain, but the choice
of training dataset may have a notable effect on
performance.

Feature-based detectors work fairly well for sim-
ple binary classifications in a single domain, but
tend to fall short when attempting more complex
problems which consist of additional styles and
sources of texts (Wang et al., 2024b), where shorter
texts can have a negative impact on performance
Shamardina et al. (2022). Conversely, language
models may prove to be the optimal tool for de-
tecting machine-generated text. Recent attempts
mostly use (Ro)BERT(a)-based models (Devlin
et al., 2018; Liu et al., 2019) that are pre-trained
for language understanding, and fine-tune them us-
ing datasets of human- and machine-generated text
(Zellers et al., 2019; Shamardina et al., 2022; Guo
et al., 2023). These models are then able to detect
authorship with varying levels of success. Much of
the focus in this area has been on developing useful
datasets for fine-tuning and finding optimal models
and methods of fine-tuning.

An LSTM, as introduced in Hochreiter and
Schmidhuber (1997), is a version of a RNN (recur-
rent neural network) that utilizes long term short
memory to deal with issues present in regular RNNs
caused by larger gap lengths, which can be espe-
cially relevant in NLP tasks such as ours. LSTMs
have been used with success to perform author-
ship attribution (Deibel and Lofflad, 2021; Gupta
et al., 2019) which suggests they may be useful in
distinguishing human and machine authors as well.

3 Shared Task Set Up

The SemEval-2024 shared task 8 revolved around
distinguishing human-written texts and machine-
generated texts. It was divided into multiple sub-
tasks. The goal of subtask A was to perform binary
classification on a given text to determine whether
it is human-written or machine-generated. The
monolingual track of this subtask only included
text in English, whereas the multilingual track in-
cluded text in English, Russian, Chinese, Arabic,
Urdu, Indonesian and Bulgarian. Subtask B fo-
cused on multi-way machine-generated text, where
the goal of the task was to determine whether a
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given text is written by a human or generated by a
machine, and if generated by a machine — which
specific language model was it that generated the
text?

For all subtasks, we used the datasets provided
by the task organizers. These datasets are an exten-
sion of the M4 dataset from Wang et al. (2024b).
The datasets include texts from multiple domains,
such as Reddit discussions, Wikipedia pages and
arXiv papers to name a few, as well as multiple lan-
guages as stated above. In addition, the dataset for
subtask B contains machine-generated texts from
multiple models. For more information about the
shared task, see Wang et al. (2024a).

4 System Overview

The basic components of our design consist
of both document-level and token-level features.
Document-level features (detailed in Section 4.1)
are extracted directly from the text, and the out-
put features of document-level features are con-
catenated for further use in an MLP for classifi-
cation. Token-level features, i.e., the measure of
predictability, are the probability of the input text
according to a large language model, are fed into a
BiLSTM network which converts sequences into a
fixed-length representation by concatenating both
directions; the details of token-level features are
outlined in 4.2. Document-level and token-level
features are concatenated and then passed to an
MLP for classification. This design remains con-
sistent for both subtask A and subtask B, differ-
ing only in the dimensionality of the MLP output
representation, which requires adjustments to the
number of output classes.

4.1 Document-level features

4.1.1 Perplexity feature

Perplexity serves as a crucial measure of a language
model’s predictive capability regarding word se-
quences. Essentially, it gauges the level of surprise
a language model experiences when encountering
a new sequence of words. A lower perplexity score
indicates that the language model excels in pre-
dicting the next word in a sequence. It’s shown in
previous studies that generally the text perplexity
generated by large language models (e.g. Chat-
GPT) is lower than that human written text (Liao
et al., 2023). Numerous prior studies have either
directly evaluated the efficacy of perplexity in dis-
cerning machine-generated data or incorporated it
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Figure 1: System architecture.

into their models (Liao et al., 2023; Mindner et al.,
2023).

In this study, we employ the XLM-RoBERTa
(Conneau et al., 2019) language model to compute
the perplexity score for each document. Conse-
quently, each document is represented by 1 per-
plexity feature.

4.1.2 TF-IDF

We use a text vectorizer to extract term fre-
quency—inverse document frequency (TF-IDF) fea-
tures based on word-level unigrams. The vocabu-
lary and feature-set for each dataset (A monolin-
gual, A multilingual, B) are calculated separately.

4.1.3 Simple stylometric features

We calculate a small subset of stylometric features.
These include: average sentence length by word
count; punctuation count, normalized by total num-
ber of tokens; number of capitalized words, normal-
ized by total number of words; and the distribution
of Part-of-Speech tags in the texts. We make use of
the Stanza package (Qi et al., 2020) to perform tok-
enization, sentence segmentation, and PoS tagging.

4.1.4 Information redundancy

Information redundancy in text may be expressed
as lexical or topical repetition. Recent comparisons
suggest that machine-generated text is prone to this
kind of repetition to some degree (Holtzman et al.,
2019), possibly over-repeating words in the output
compared to human text (Dou et al., 2021). To
calculate information redundancy, we follow the
method outlined by Frohling and Zubiaga (2021).
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4.1.5 Entity-based coherence

The inclusion of this feature is based on a hypothe-
sis that human-written text and machine-generated
text differ in their use of references to entities
throughout the text (Frohling and Zubiaga, 2021).
We extract coherence features using a conventional
method which relies on transitions of mention types
between sentences (Lapata et al., 2005). An illus-
tration of this process can be found in Figure 2.
Due to the limitations of the current co-reference
resolution availability, this feature was only used in
the monolingual track of subtask A and in subtask
B, as these only contained samples in English.
Alice is bored.

Suddenly, she spots a white rabbit.
He is in a rush.
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Figure 2: Entity-based coherence illustration.

4.2 Token-level features

4.2.1 Predictability feature

The predictability measurement method, the ap-
proach presented by (Przybyta et al., 2023), as-
sesses the likelihood of token sequences using gen-
erative language models, distinguishing between
machine-generated and human-authored text. Key
components of the predictability measurement in-
clude:

* Log-probability of the observed token t;:

log p(i,t})
This feature measures the likelihood of the

observed token given the model’s predictions
at a specific position in the sequence.

* Log-probability of the most likely token w;
from dictionary D:

max;ep log p(i, w;)
This feature calculates the maximum log prob-
ability among all tokens in the model’s dictio-

nary, indicating the confidence of the model’s
top prediction at a particular position.

* The entropy of the token probability distribu-
tion:

- ZjeD p(i, wj) logp(i, wj)

This feature quantifies the uncertainty of
choosing the next token according to the
model at a given position.

The XLM-RoBERTa (Conneau et al., 2019) lan-
guage model is utilized for both Subtasks A and B.
Since we only employ the language model, each
token is represented by 4 predictability features for
all languages, and the maximum sequence length is
limited to 128 tokens. The method employs a bidi-
rectional LSTM to distinguish patterns from the
sequence of features, without relying on averaging
or aggregation functions.

4.3 BERT-LSTM model

Though we mainly focused on feature based sys-
tem, we have worked on building a simple LSTM
model independently as well. For this model, we
have used BERT to get sentence embedding, as
BERT provide different embedding for the same
words based on their context in the sentence. Af-
ter getting the sentence embedding, we fed it into
an LSTM layer, which contains 128 hidden nodes.
Subsequently, we have added a linear layer on top
of the LSTM layer as the final output layer. The
number of output nodes was related to the task it
was assigned. For Task B, we have used 6 nodes in
the output layer, as there are 6 possible classes. The
overview of this system architecture is displayed in
Figure 3.
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Figure 3: BERT-LSTM system overview.

5 Experimental Setup

We initially divided the training data into two sub-
sets: training and development. We utilized the
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development set for testing purposes during the
model development phase. However, following the
availability of the test data, we incorporated the
entire training set for training and the development
set for validation. We then evaluated the model’s
performance on the raw documents in the publicly
available test set. For preprocessing, we employed
the XLM-RoBERTa tokenizer for features related
to perplexity and predictability. Additionally, we
utilized the Stanza (Qi et al., 2020) tokenization
pipeline for features such as stylometric analysis,
entity coherence, information redundancy, and part-
of-speech (POS) tagging. Our model was imple-
mented using PyTorch. We employed accuracy as
the official evaluation measure.

6 Results
6.1 Feature-based Model

Our numerical results on the test dataset are dis-
played fully in Table 1. Overall, our system did
not perform very well in general or according to
official metrics. Our monolingual subtask A model
did not learn to differentiate between human and
machine texts, and predicted all test examples to
be machine-generated. Our subtask B model suf-
fered a similar fate, predicting all test examples to
be written by ChatGPT. Our multilingual subtask
A was our only model which was able to distin-
guish between examples to some extent. However,
this model also had an extreme bias towards the
"machine" label.

Table 1: Overview of our results on each of the subtasks.
Values represent accuracy of predictions made on the
test set of each subtask.

Task Our Our
Subtask  Baseline Result Ranking
A Mono. .884 525 128/137
A Multi. .808 S12 61/68
B 746 .166 74177

In an attempt to further understand the lack of
learning by our models, we examined the raw fea-
tures produced by our feature extractors on the test
set examples. Interestingly, we find that some fea-
tures did actually differ notably in value for human
and machine texts. We calculate means and stan-
dard deviations for the raw features on human and
machine texts separately, and compare the results
using the Cohen’s d effect-size metric. Some no-

Table 2: Confusion matrix for predictions made by our
subtask A multilingual model, comparing predicted la-
bels with gold labels.

Subtask A Multi. Predicted
Human Machine
Gold Human 406 16259
Machine 460 17147

Note: Confusion matrices for other subtasks are redundant, as
our models only predicted a single label for each of them
(‘Machine’ for subtask A monolingual, and ‘ChatGPT’ for
subtask B).

Table 3: Notable features with effect sizes > 0.3 as
calculated on examples from the monolingual A test set.
Positive values denote that these features were higher in
human texts than in machine texts.

Effect size (d)
Feature (Human — Machine)
Frequency of pronouns 1.59
Frequency of auxiliary verbs 1.49

Frequency of particles 0.8

Frequency of adverbs 0.58
Frequency of verbs 0.54
I|A — Agrunc|| (Information loss) 0.31
min(Agync) (Info. redundancy) -0.51
Frequency of adpositions -0.75
Punctuation count -1.03
Frequency of adjectives -1.31
Frequency of nouns -1.62

table results are shown in Table 3. As expected,
the information loss, represented as the norm of
the difference between the original document ma-
trix and the truncated matrix, was higher in human
texts than in machine texts in the test set, suggest-
ing that the machine texts had more information
redundancy, i.e., repetition of information. We
observe some interesting findings regarding PoS
distribution in the texts, such as higher presence of
pronouns, auxiliary verbs, and particles in human
texts versus higher presence of nouns, adjectives,
and adpositions in machine texts.

6.2 BERT-LSTM model

We employed BERT (Devlin et al., 2018) to ob-
tain sentence embeddings, a process that signifi-
cantly increased the computational complexity of
our BERT-LSTM system. The model ended up pre-
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dicting all the labels on the test set as the same. As
a result this system get an 16.67% accuracy on the
task B which is not better than a random selection.
Due to the time constraint, we could not manage to
experiment with Task A.

7 Conclusion

Our overall conclusion is that our examined sub-
set of linguistically motivated features alongside
probabilistic features was not able to contribute al-
most any performance at all to a classifier of human
and machine texts. While some features did differ
in value between human and machine texts, these
differences did not translate into a learning advan-
tage for a hybrid model. Our findings underscore
the nuanced challenges inherent in developing ro-
bust detection mechanisms for machine-generated
text, emphasizing the need for further exploration
and refinement of feature engineering strategies to
effectively address this evolving domain.
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