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Abstract

This paper presents our solution for subtask
A of shared task 8 of SemEval 2024 for clas-
sifying human- and machine-written texts in
English across multiple domains. We propose
a fusion model consisting of a RoBERTa-based
pre-classifier and two MLPs that have been
trained to correct the pre-classifier using lin-
guistic features. Our model achieved an accu-
racy of 85%.

1 Introduction

After rapid developments in large language mod-
els (LLMs) and generative AIs in the last years,
the detection of machine-generated content has be-
come one focus of study as deepfakes, machine-
generated lawyer statements and even libel suits
(Superior Court of Gwinnett County) concerning
language machines stress the importance of detect-
ing texts not written by humans. The SemEval
shared task 8 in 2024 aims at multi- and monolin-
gual machine-generated text (MGT) detection from
various domains by multiple models.

For the monolingual English data in subtask A
(Wang et al., 2024) we propose a fusion model
built using pre-trained RoBERTa word embeddings
specialized for AI-generated text detection and cor-
rection MLP classifiers, supported by the additional
computation of linguistic, stylistic and probabilis-
tic features selected based on their informational
value. With this system design, our model ranked
at position 25 out of 124 with an 0.855 accuracy
score on the task. The only data used for training
was the one provided by the organizers without
further data augmentation. Because of the differ-
ent distributions of the data in the development
and test data sets several strategies were tested and
a fusion model was chosen as the best strategy.

†Equal contribution.

The fine-tuned RoBERTa Base OpenAI Detector
alone performed well but developed a bias towards
the machine class. To stabilize the model linguis-
tic, probabilistic and stylistic features were added,
which improved the overall F1 score of the fusion
architecture.

2 Background

Over the last years, numerous approaches have
been proposed to tackle the task of MGT detec-
tion. Some models, such as DetectMGT (Mitchell
et al., 2023), focus on detecting texts from a spe-
cific source, such as GPT-family LLMs, while other
approaches are specialized in texts from a spe-
cific genre, such as Shijaku and Canhasi (2023)
for TOEFL essays. Other architectures, like en-
semble models combining different classifiers (del
Campo-Ávila et al., 2007) have been successfully
used for machine-generated text detection to im-
prove out-of-distribution performance (Lai et al.,
2024).

Guo et al. (2023) show that, overall, deep-
learning approaches, and in particular a RoBERTa-
based-detector, are one of the best individual mod-
els for MGT detection. The RoBERTa-based-
detector was shown to be particularly robust against
oov scenarios in both Chinese and English, com-
pared to a machine learning model. Moreover,
Wang et al. (2023) and He et al. (2024) con-
ducted large-scale bench-marking on existing ap-
proaches for MGT detection across multiple do-
mains, models, and languages and concluded that
the RoBERTa language model, especially the vari-
ants that have been optimized for AI detection
tasks, consistently outperforms most other methods
across evaluation metrics.
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Figure 1: Model architecture used to obtain submission
results.

3 System overview

Our system is based on a pre-classifier that is a
RoBERTa model fine-tuned for AI generated text
detection. In order to correct the predictions of the
pre-classifier, two correction classifiers have been
trained that are based on linguistic, stylistic and
probabilistic features. An overview of the system
setup is given in Figure 1.

Our RoBERTa pre-classifier is based on the
RoBERTa Base OpenAI Detector1 (Solaiman et al.,
2019), a RoBERTa model fine-tuned for AI gener-
ated text detection. This model has been further
fine-tuned on 10% of the training data. A predic-
tion was then generated for each text in the train,
dev and test set. In order to improve the predic-
tions, two correction Multi-layer Perceptron (MLP)
classifiers, one for each label, were trained on the
training and development data of their respective
label (see Figure 1) as well as on a range of fea-
tures outlined in Section 4.2.1. To generate the
final classification, all texts were classified again
by the correction MLP that corresponded to the la-
bel predicted by the RoBERTa pre-classifier. This
provided an opportunity for the more specialized
classifier to correct the initial prediction.

4 Experimental setup

The M4 dataset consists of both machine (label 1)
and human-generated texts (label 0). The dataset
features texts from six different LLM generators

1https://huggingface.co/openai-community/
roberta-base-openai-detector

(Davinci, chatGPT, Dolly, Cohere, BLOOMz and
GPT4) and five different genres (Reddit, WikiHow,
ArXive, Wikipedia, and peerRead). Participants
were provided first with a train and dev set and
later with a test set with 119,757, 5,000, and 34,272
texts in total, respectively.

Roughly 53% of the documents in the train set
are machine generated (DaVinci: 14,343, chatGPT:
14,339, Dolly: 14,046, Cohere: 13,678), and 47%
are human-written. In the dev set, exactly half of
the texts were machine-generated by the BLOOMz
model, the other half was human-written. The test
set contains 18,000 (53%) machine-generated texts
from Davinci, chatGPT, Dolly, Cohere, BLOOMz
and GPT4 (3,000 texts each) and 16,272 (47%)
human-written texts. An overview of the data is
provided in Table 1. Since we did not include genre-
or machine-specific information for our approach,
this information is excluded from the table.

train dev test
machine 53% 50% 53%
human 47% 50% 47%
total texts 119,757 5,000 34,272

Table 1: Label distribution across train, dev and test
set.

4.1 RoBERTa pre-classifier

We used a fine-tuned RoBERTa Base OpenAI De-
tector as our pre-classifier. Because the OpenAI
Detector had already been fine-tuned for human-
machine classification, and to facilitate replication
of the experiment, we used only 10% of the train-
ing data to further fine-tune the model2.Training
was done for 3 epochs with a learning rate of 2e−5

on Google Colab using a T4 run-time and took 45
minutes.

4.2 Correction classifiers

4.2.1 Feature extraction
To capture characteristics of machine-generated
and human-written texts, the data was analyzed for
various linguistic features. Altogether 70 features,
widely used in NLP and easy to compute, were
extracted, 35 of which exhibited a high to medium
correlation with the gold label (see Table 4 in the
Appendix). All features were computed on a 24GB

2The data for fine-tuning consisted of 2,000 texts of each
author category (Davinci, Cohere, Dolly, chatGPT, and hu-
man).
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RAM machine with a Ryzen 7 7730U, which took
up to 6 hours for all texts depending on the feature.

Count-based features. The texts were split into
words and punctuation using regular expressions
to derive the following features: mean sentence
length, ratio of punctuation to words, ratio of word
types to tokens, ratio of vowels to words and mean
word length. The NLTK stopword list was used
to get the ratio of content words to other words.
Additionally the number of hapax legomena per
text and the number of negation words (manually
compiled list) per text were computed.

Syntactic features. All texts were POS-tagged
with the NLTK part of speech tagger to compute
syntactic features: ratio of nouns, verbs, adjectives,
adpositions, adverbs, conjunctions, numerals, pro-
nouns and determiners to words alltogether, ratio
of adjectives to nouns and ratio of verbs to nouns.

Using the dependency parser of Spacy (Honni-
bal and Montani, 2017) we extracted the maximum
depth of a dependency tree, mean depth of all de-
pendency trees in a text, and number of passive
constructions (determined by the number of nsubj-
pass POS tags) per sentence.

Frequency features. To capture whether the
texts differ in word use, the logarithmic frequency
of all content words in the human texts were com-
puted. Additionally, lists of frequent words (fre-
quency ≥ 12) and hapax legomena (frequency =
1) have been computed. From this the following
features were extracted for all texts: mean log fre-
quency of content words, ratio of frequent words to
content words, ratio of hapax legomena to content
words and number of hapax legomena.

Additionally, we used the Wiktionary frequency
lists for English3 and extracted a list of high
frequency words (top 10%), mid-high frequency
words (top 20%) as well as field specific word lists,
namely the most frequent words in fantasy texts
and in Wikipedia articles. For each list and each
text in the datasets we extracted the ratio of words
belonging to the lists to the content words as a
feature.

Word difficulty features. The CEFR-J4 project
provides vocabulary lists for the different profi-
ciency levels of the Common European Framework

3https://en.wiktionary.org/wiki/Wiktionary:
Frequency_lists/English

4https://www.cefr-j.org/

of Reference for Languages (CEFR)5. We used
these lists6 to compute the following features: ra-
tio of A1/A2/B1/B2/C1/C2-level words to content
words. This was done twice: once on the basis of
the stemmed and once on the lemmatized words.
We used the Porter stemmer and the WordNet lem-
matizer from NLTK.

Stylistic and sentiment features. A number of
features concerning text style and text sentiment
were extracted. Using the same method as for the
difficulty features above, we extracted the ratio of
words in the list of negative opinion words com-
piled by Liu et al. (2005) as well as the readability
score of the texts according to the Flesch reading-
ease test7 . The other features in this subset have
been extracted by using available fine-tuned classi-
fiers. Emotion English DistilRoBERTa-base8 is a
classifier that predicts Ekman’s six basic emotions,
plus a neutral class (cf. Hartmann, 2022). The logit
for each class provides one feature (anger, disgust,
fear, joy, neutral, sadness, surprise). As a standard
sentiment analyzer we used the sentiment-analysis-
pipeline from Hugging Face9 and, using the logits,
extracted two features (positive, negative). Analo-
gously, the features ‘formal’ and ‘informal’ were
extracted using the formality ranker by Babakov
et al. (2023), which is a RoBERTa model trained
to predict to which register a sentence belongs. Fi-
nally, we used a toxicity classification model10 that
is a RoBERTa model fine-tuned to predict whether
a text is toxic or not.

Features extracted from the pre-classifier. In
order to inform the correction classifiers on the
basis of the decision of the pre-classifier, we ex-
tracted the logits and the last hidden state of our
RoBERTa pre-classifier for each text. The last
hidden states were reduced from 768 to 2 di-
mensions using PCA (principal component analy-
sis) and UMAP (uniform manifold approximation
and projection). For UMAP the hyperparameters
min_dist, n-neighbors and metric were tuned
by a combination of random search and grid search

5https://www.coe.int/en/web/
common-european-framework-reference-languages

6https://github.com/openlanguageprofiles/
olp-en-cefrj/tree/master

7https://github.com/textstat/textstat
8https://huggingface.co/j-hartmann/

emotion-english-distilroberta-base
9https://huggingface.co/

10https://huggingface.co/s-nlp/roberta_
toxicity_classifier
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and evaluated on the accuracy of a logistic regres-
sion classifier that predicts the label from the 2
dimensions. The extracted features included in our
feature set are the logits, the 2-dimensional PCA
representation of the last hidden state and the 2
UMAP dimensions gained by setting min_dist to
0.01 and n-neighbors to 100. We kept two met-
rics, namely cosine and jaccard.

4.2.2 Feature selection
To account for the variability in features, we ini-
tially scaled all 70 features using the Standard
Scaler from scikit-learn (Pedregosa et al., 2011).
During the collection of the 70 features, no at-
tention was paid to whether they contained quasi-
duplications. Features which were highly corre-
lated with other features (>0.9) were removed sub-
sequently using a correlation matrix. After this
removal, 51 features remained.

In the next step, only features with high or
medium correlation with the gold label (Pearson
correlation ≥ 0.1 or ≤ −0.1) were retained in or-
der to choose the features most relevant for the
classification task. Table 4 in the Appendix shows
all features (including those which are highly cor-
related to each other) that have at least a medium
positive or negative correlation with the gold label.
After both selection steps, 26 features remained
(see Table 5).

4.2.3 Model selection and training
In a comparison of various classifiers from scikit-
learn (i.e. Random Forest, Logistic regression),
MLPs performed best in most settings: whether
trained on all features, trained only on at least
medium correlated features, or trained only on fea-
tures that are not extracted from the pre-classifier.
We therefore chose MLP as our correction classi-
fiers.

Before conducting training on the combined
train and dev dataset, we separated the texts for
which the RoBERTa pre-classifier had predicted
the human label from those for which it had pre-
dicted the machine label, thus creating two splits.
Then, we trained two separate MLPs on the two
splits of the training data using the 26 features iden-
tified as relevant in the feature selection process
(4.2.2). The idea behind this approach was that
the models might learn in which cases the fine-
tuned transformer classified the data incorrectly,
and would thus have to be corrected. The test data
was then prepared by calculating the 26 features,

model label prec. rec. f1
fusion model human 0.85 0.85 0.85

machine 0.86 0.86 0.86
accuracy: 0.85
pre-classifier human 0.99 0.48 0.64

machine 0.68 0.99 0.81
accuracy: 0.75
MLP human 0.53 0.89 0.67

machine 0.75 0.30 0.43
accuracy: 0.58

Table 2: Precision, recall, f1-score, and overall accuracy
for the submitted fusion model and two models for com-
parison: the RoBERTa pre-classifier and an MLP model
trained with the selected linguistic features. The support
for the ‘human’ class is 16,272 and for the ‘machine
class 18,000.

on which the pair of MLP correction classifiers
made the final predictions.

5 Results

Table 2 shows the performance of the sub-
mitted fusion model, obtained using the
classification_report from scikit-learn.
Overall, the fusion model achieves an accuracy
of 85%. The table additionally shows the per-
formances of two other models on the test data
in comparison: (i) the RoBERTa pre-classifier;
(ii) an MLP model that was trained with the
same hyperparameters as used for the correction
classifiers and the same features selected in the
feature selection process (see Section 4.2.2),
except for the ones extracted from the pre-classifier
(see Section 4.2.1).

Although the pre-classifier performed fairly well
on the dev data (accuracy: 0.89, for more details
see Table 6 in the Appendix), we opted for a fusion
model with a correction layer in order to improve
robustness for data from new generators and do-
mains. The implementation of the two correction
MLPs corroborated the hypothethis. On the test
data, the accuracy of the pre-classifier drops to 0.75,
while the addition of the correction layer improved
the accuracy to 0.85.

A closer look at the recall and precision for the
two classes ‘human’ and ‘machine’ reveals that
the fusion model balances out the problems of the
pre-classifier and the MLP. The high precision and
low recall of the pre-classifier for ‘human’ and
vice versa for ‘machine’ indicate that it is biased
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towards the ‘machine’ class. Accordingly the rel-
atively high precision and low recall of the MLP
classifier for ‘machine’ and vice versa for ‘human’
indicate that it is biased towards the ‘human’ class.
In contrast, the fusion model shows equally high
precision and recall for both classes.

As described in Section 4.1, the pre-classifier is
obtained from the RoBERTa base OpenAI detector
by further training. Comparing its performance to
the original model (see Table 7, Appendix), fine-
tuning has led from a bias towards the ‘human’
class to a bias towards the ‘machine class’. This is
likely due to the fact that the fine-tuning data had
an imbalance towards machine-generated texts.

5.1 Error Analysis

An error analysis was completed in three parts: We
examined the influence of the different labels, the
features, and the correctional classifiers on accu-
racy. The influence of the domain was not exam-
ined since there was only one domain present in
the test data.

When inspecting the label distribution for the
misclassified texts, we can see an almost perfect
50% split between human and machine-labeled
texts. Between the models, the errors are not dis-
tributed as evenly, as shown in Figure 3 in the Ap-
pendix. GPT4 and dolly texts were misclassified
most often, followed by Cohere, DaVinci, and chat-
GPT, while BLOOMz texts were rarely classified
incorrectly. Since GPT4 texts were not seen in the
train or dev data, it is not unsurprising that those
texts were classified least accurately. A further rea-
son could be that GPT4-generated texts are known
to be very ‘human-like’, hence harder to differenti-
ate from human texts.

Figure 2 shows the classification by the pre-
classifier and whether it was modified by the correc-
tion classifier (the same data in numbers is given
in Table 3). A text identified as human by the
pre-classifier was typically classified accurately
and only rarely adjusted by the correcting classi-
fier. For the texts where the pre-classifier predicted
a machine label, the prediction was corrected of-
ten. However, as shown in table 3, 2,308 cases
should have been corrected and were not. The ma-
chine label predictions by the pre-classifier have
caused most errors, as that label was predicted so
often. This is also reflected in the recall of the
pre-classifier-only model in Table 2.

Finally, we correlated all features used in the

Figure 2: Left two bars: predictions by correction clas-
sifier correcting texts pre-classified as “human”, right
two bars: predictions by correction classifier correcting
texts pre-classified as “machine”.

pre-classifier h m
correction classifer h m m h
correct 7622 86 15402 6189
wrong 12 153 2308 2500

Table 3: Classification errors split by prediction by the
pre-classifier and correction classifier (h = human, m =
machine).

fusion model with the labels that were predicted
incorrectly. The strongest correlation was shown
by the features 1st UMAP-dimension (Jaccard) (-
0.82), ratio of CEFR-B1 words (stem) (- 0.71), ratio
of CEFR-B2 words (stem) (- 0.57), neutral senti-
ment score (- 0.51), and ratio of pronouns to con-
tent words (0.55). Since the correlations are on the
wrong predictions, a strong negative correlation in-
dicates a correlation with an incorrectly predicted
human label (label 0), while a strong positive cor-
relation implies the opposite. It is possible that
the low correlation threshold chosen for feature ac-
ceptance led to the inclusion of features initially
weakly correlated with the labels in the training
and development data, which may have adversely
affected the correctional classifiers’ decisions. Al-
ternatively, the test set data might exhibit a differ-
ent distribution for those features compared to the
training and development data.

6 Conclusion and Limitations

Overall, this study has highlighted the benefit of
using a fusion architecture consisting of a pre-
classifier and linguistically informed correctional
classifiers. By adding syntactic, stylistic, sentiment,
frequency- and word difficulty-based features, we
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were able to improve the performance of a fine-
tuned pre-trained RoBERTa model for AI gener-
ated text detection and adjust the bias towards the
machine label. Because our fusion model uses a
pre-trained RoBERTa model, all computations for
this paper can be run locally or, in the case of the
RoBERTa fine-tuning, using a free Google Colab
account. This means that our model can be eas-
ily expanded and leaves a smaller environmental
footprint.

Future studies could expand our fusion model
by incorporating more semantic-level or complex
features such as contextual predictability, as well as
fine-tuning the pre-classifier using more, balanced
data. Our code is available on GitHub11.
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A Features with medium or high
correlation

feature corr.
1st UMAP-dimension (jaccard) 0.94
logits for label 1 from pre-classifier 0.92
roBERTa prediction 0.92
positive sentiment score 0.28
ratio of determiners to content words 0.28
ratio of pronouns to content words 0.25
score for formal 0.22
ratio of CEFR-B1 words (stem) 0.20
ratio CEFR (all levels) words (stem) 0.17
ratio of CEFR-B2 words (stem) 0.17
ratio of CEFR-A2 words (stem) 0.13
ratio of CEFR-B1 words (lemma) 0.13
ratio of conjunctions to words 0.13
ratio of CEFR-A2 words (lemma) 0.12
score for joy 0.11
ratio of fantasy words 0.10
score for neutral 0.10
ratio of Wikipedia words 0.10
word ratio of top 10% freq. Wiktionary words 0.10
word ratio of top 20% freq. Wiktionary words 0.10
· · ·
score for fear −0.10
1st UMAP-dimension (cosine) −0.10
score for anger −0.11
ratio of pronouns to words −0.15
number of hapaxes −0.17
score for informal −0.22
ratio of adverbs to words −0.22
prop. of unfreq. words to content words −0.25
TTR −0.27
number of unique words −0.27
negative sentiment score −0.28
mean depth of dep. tree for sentences −0.40
max depth of dependency tree −0.45
2nd UMAP-dimension (jaccard) −0.59
logits for label 0 from pre-classifier −0.92

Table 4: Features with medium or strong positive or
negative correlation (−0.1 ≤ corr ≤ 0.1) with label 1
(machine) in train data

B Fusion model features

feature name
type-to-token ratio (TTR)
ratio of adverbs to content words
ratio of pronouns to content words
ratio of determiners to content words
ratio of conjunctions to content words
ratio CEFR (all levels) words
ratio of CEFR-A2 words
ratio of CEFR-B1 words
ratio of CEFR-B2 words
number of hapaxes
ratio of frequent words to content words
ratio of hapaxes to content words
1st UMAP-dimension (cosine)
negative sentiment score
positive sentiment score
score for anger
score for fear
score for neutral
score for joy
score for formal
score for informal
max depth of dependency tree
mean depth of dependency tree for sentences
word ratio of top 10% freq. Wiktionary words
1st UMAP-dimension (jaccard)
logits for label 0 from RoBERTa pre-classifier

Table 5: Features used to train the fusion model.

C RoBERTa pre-classifier performance
on dev

label precision recall f1-score
human 0.91 0.86 0.88
machine 0.87 0.91 0.89

Table 6: Precision, recall, f1-score, and support for the
RoBERTa pre-classifier on the dev data. Accuracy is
0.89
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D RoBERTa base OpenAI detector
performance on test

label precision recall f1-score
human 0.57 0.98 0.72
machine 0.95 0.34 0.50

Table 7: Precision, recall, f1-score, and support for
the RoBERTa base OpenAI detector on the test data.
Accuracy is 0.64

E Distribution of errors

Figure 3: Distribution of models in false predictions.
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