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Abstract

This paper outlines our multimodal ensemble
learning system for identifying persuasion tech-
niques in memes. We contribute an approach
which utilises the novel inclusion of consistent
named visual entities extracted using Google
Vision’s API as an external knowledge source,
joined to our multimodal ensemble via late fu-
sion. As well as detailing our experiments in
ensemble combinations, fusion methods and
data augmentation, we explore the impact of
including external data and summarise post-
evaluation improvements to our architecture
based on analysis of the task results.

1 Introduction

In this paper, we describe our approach to identify-
ing persuasion techniques for SemEval 2024 Task
4. The task involves the identification of up to 22
persuasion techniques in memes, which are inher-
ently multimodal. We participated in Subtask2a
and Subtask2b.

Subtask2a is a multilabel classification task, re-
quiring the identification of 22 persuasion tech-
niques using both textual and visual content. The
subtask is evaluated by a hierarchical F1, as each
label is part of a subset of techniques and contains
a parent node. Subtask2b is a binary classification
task, determining the presence or absence of any
persuasion technique within a meme (propagan-
distic or non-propagandistic). For both subtasks,
training data is provided in the English language
and a development set also in English. As well
as English, 3 surprise languages in Arabic, North
Macedonian and Bulgarian were provided to offi-
cially evaluate our approach (Dimitrov et al., 2024).

Our system architecture is an amalgamation of
traditional NLP and vision models, exploring late
and early fusion techniques as well as carefully
crafted confidence thresholds. We extend beyond
the training data by incorporating resources such as

Google Vision1, which provides consistent named
visual entities extracted from the image regardless
of language; in a multilingual context this reduces
reliance on sentence spans or tokens, which can be
problematic due to linguistic variations in unseen
language data. We also make our code publicly
available.2

2 Background

Identifying persuasion techniques in memes is nec-
essary endeavour for combating misinformation
and fostering critical media consumption among
the public, and the focus of a number of ongo-
ing research areas for the prevention of harm-
ful content, propaganda or disinformation spread
through memes (Dimitrov et al., 2021a; Dupuis and
Williams, 2019; Sharma et al., 2022).

Propaganda is generally referred to as informa-
tion which is purposefully shaped or presented to
support a particular agenda, often utilising the per-
suasion techniques in this shared task. Previous
shared tasks have also considered the identification
of persuasion techniques in text only (Da San Mar-
tino et al., 2020), multimodal contexts using memes
(Dimitrov et al., 2021b), and persuasion techniques
in multilingual text (Piskorski et al., 2023b). Se-
mEval 2024 Task 4 is a shared task of a similar
nature, however the task considers both image and
text as well as multilingual test data.

As meaning is often generating through the in-
teraction of both modalities in memes, meme re-
lated tasks are typically approached using pre-
trained convolutional neural networks (Beskow
et al., 2020; Hossain et al., 2022; Sherratt et al.,
2023; Suryawanshi et al., 2020) or vision transform-
ers (Afridi et al., 2021; Cao et al., 2023) in combina-
tion with language models. Our ensemble approach
therefore explores CNNs for the binary classifica-

1https://cloud.google.com/vision/docs/detecting-web
2https://github.com/vemchance/BDA-SemEval4

123



tion task; for the more complex multilabel classifi-
cation, we explore CLIP (Radford et al., 2021) to
leverage its significant pretraining on large-scale
natural language descriptions and images, as well
as its notable performance in zero-shot classifica-
tion and related downstream multimodal tasks such
as social media sentiment analysis (Bryan-Smith
et al., 2023).

Our motivation for including external knowledge
sources is inspired by previous successful appli-
cations of external information (Zhu, 2020) and
ongoing research to improve meme-related tasks
with the addition of structured knowledge to pro-
vide context to memes (Sherratt, 2022; Tommasini
et al., 2023).

3 Exploratory Analysis

We briefly explore the task data and use this anal-
ysis to inform our approach, particularly for the
more challenging Subtask2a. Exploring Subtask2a,
we calculated TF-IDF vectors for texts within each
label and calculated the cosine similarity between
these vectors. We noted that, for the majority of
labels, there is significant crossover in textual con-
tent. We also examine the number of labels in a
single meme, as Subtask2a was a multilabel clas-
sification problem where each meme could have
more than one persuasion technique, in Figure 1.

Given this crossover, we initially explored lever-
aging the annotation guidelines for the task, which
provides concrete examples of how to label each
persuasion technique. We noted the annotation
guidelines primarily provided examples annota-
tion based on the location of nouns or adjectives
per technique, but provided few examples of non-
European languages aside from Russian. However,
the guidelines did note the presence of ‘personal
characteristics, organisations, political orientation
or opinions’ in some techniques (Piskorski et al.,
2023a).

We therefore explore a more concise representa-
tion of these attributes using the Google Vision API
to extract ‘web entities’ and visual concepts from
an image. For multilingual data, this allows us to
rely less on sentence spans or tokens - elements that
vary across language - and instead leverage visual
entities that could consistently represent informa-
tion for each label regardless of textual content. In
Table 1, we outline a sample of extracted entities
from Google Vision’s web entities search.

Technique Entity Occurrence Count
Appeal to (Strong) Emotions Russia 48
Appeal to (Strong) Emotions United States 35
Appeal to (Strong) Emotions Amnesty International 34
Doubt Brand 52
Doubt Politics 48
Doubt Public Relations 40
Doubt Speech 39
Red Herring Entrepreneur 8
Red Herring Business 7
Red Herring Ukraine 7
Red Herring Russia 7

Table 1: Example Entities Extracted via Google Vision

4 System Overview

Our main system approach includes ensembling
NLP models with vision models for both subtasks.
We experimented with BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019) family models as
well as VGG19 (Simonyan and Zisserman, 2014),
ResNet50 (He et al., 2015) and CLIP (Radford
et al., 2021).

For Subtask2a, we initially design an architec-
ture that combines multilingual text processing
with visual analysis. Our vision stream also in-
cludes web entities from Google Vision, processed
by a single BERT model. Our Subtask2b system
similarly integrates visual and textual modalities
with experiments in late and early fusion. We also
include additional novel implementations beyond
an ensemble of pretrained models:

External Knowledge: We use Google Vision
to extract information from meme images. The
Google Vision API annotates an image using web
detection, returning a list of predicted labels for
objects, people or concepts in an image, as well as
matching URLs and the Google Knowledge Graph
ID (Singhal, 2012). We utilise only the named
visual entities, with an example in Table 1.

Data Augmentation: We experiment with aug-
menting the task data. English training data is di-
rect translated using GPT-3.5 (Brown et al., 2020)
into a number of other languages, and then again
translated when the test datasets are released.

F1 Confidence Threshold: For Subtask2a,
we leverage the provided hierarchy of techniques
(Dimitrov et al., 2024) to change the confidence
threshold for predicted labels. The F1 Confidence
Threshold reduces both the threshold required to
classify a label from 0.50 to 0.40 (a full reward
when scored) and a confidence between 0.35 and
0.40 will return the parent node of the label (partial
reward when scored). We detail the impact of the
F1 Confidence Threshold in Section 5.2.
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(a) TF-IDF Cosine Similarity in Label Groups (b) Count of Labels Per Meme in Subtask2a

Figure 1: Subtask2a Multilabel Classification Label Exploration

Late Fusion Engine: We implement a late fu-
sion system to combine our separate NLP and vi-
sion streams together into a single predictive value.
We calculate the per-label accuracy for each model,
and use this to weight the contribution of each. In
other words:

predictlabel =

(Alabel × accAlabel) + (Blabel × accBlabel)

accAlabel + accBlabel

where accAlabel ∈ {0..1} and accBlabel ∈ {0..1}
refers to the accuracy for the respective models for
a given label.

5 Experimental Setup

We combine the training and validation sets for
Subtask2a and Subtask2b to train each architecture,
a total of 7,500 for Subtask2a and 1,350 for Sub-
task2b originally in English. We test our approach
on the Development Set in English (1,000 samples
for Subtask2a and 300 for Subtask2b). Detailed
in Section 5.1, the total samples are increased by
direct translating data for both subtasks. For all ex-
periments, we set the validation split in the model
to 30% of the total training data. When multiple
languages are included in the data, we stratify the
training and test splits based on language.

The number of epochs is determined by no im-
provement to validation loss after 5 epochs. We
find that the majority of the language models

mBERT XLM-RBase BERT CLIP
Optimizer AdamW AdamW AdamW Adam
Dropout 0.4 0.4 0.3 0.5
Weight Decay 1e-5 1e-5 - -
Learning Rate 1e-5 1e-5 1e-5 5e-5
Batch Size 8 8 8 16

Table 2: Model Parameters

in combination complete around 8 - 10 epochs,
whereas CLIP often stops improving around 6
epochs. Table 2 details the specific parameters
of our main models. We use pretrained models
for both image and text modalities, and therefore
the drop-out rate is applied before the respective
classification layer detailed in Figure 2.

5.1 Additional Data

We explore the use of the Persuasion Techniques
Corpus (PTC) (Da San Martino et al., 2020) as
additional training data. We use the Google Vision
API to extract descriptive entities for all task data
images, which is returned in English from the API
under the ‘web entities’ search response. We also
augment our dataset using GPT-3.5 (Brown et al.,
2020) to direct translate a sample of 500 texts from
Subtask2a for each unseen language in the task
(1,500 additional samples, or 20% of the available
training data). We perform the same process for
Subtask2b. Notably we do not augment or change
the image for this additional data.
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Figure 2: Subtask2a and Subtask2b Architecture

In our results detailed in Section 6, we refer
to the Persuasion Techniques Corpus as PTC, the
original task data as TD, the task data with added
samples as ATD (augmented task data) and data
extracted via Google Vision as ED (External Data).
When external data is used as input, this is followed
by (ex) (e.g., BERT(ex)) in Section 6.

5.2 Subtask2a Details

For Subtask2a, we experiment with a number of
individual and ensemble models as detailed in Sec-
tion 6, as well as different fusion strategies and
the inclusion of the F1 Confidence Threshold. In
early fusion, models are jointly trained and their
learned feature vectors concatenated before passed
through final classification layer. In late fusion, we
use the late fusion engine detailed in Section 4 on
the predicted probabilities of each model.

The original architecture is detailed in Figure
2. The three-model NLP stream is referred to the
‘Triad’ model in experiments, which includes an ad-
ditional mBERT model with high drop-out to com-
bat over-fitting. However, as we experimented with
a number of model combinations, input data and
fusion techniques, we opted to choose the model
which performed the best on the English develop-
ment data for the official submission.

As detailed in Table 3 in Section 6, our origi-
nal architecture was less effective than other ex-
periments. In our final submitted architecture we
remove CLIP, so only the BERT model with exter-
nal data as input remains in the vision stream, and
use late fusion to merge this with the Triad NLP
architecture. This model is referred to as Traid +
BERT(ex) in Table 3.

Figure 3: F1 Score Against Parent Node Threshold

We also examine the impact of changing the re-
quired confidence threshold for a label, testing a
single mBERT model from our ensemble. Figure
3 provides an example each metric score mapped
against the threshold to return a parent node label.
The F1 Confidence Threshold reduces the threshold
required predict a technique, and then introduces
another lower threshold to predict the technique
label’s parent node from the task hierarchy (Dim-
itrov et al., 2024). We opted to use a configuration
which balances the Hierarchical F1, Precision and
Recall. In the F1 Hierarchy Threshold, the parent
node prediction is always 0.05 less than the label
confidence threshold. The configuration used is
0.40 for the label threshold, and 0.35 to return the
parent node of the label.

5.3 Subtask2b Details

For Subtask2b, if a model is reused from Subtask2a
(e.g., BERT(ex) models to process external data)
we reuse the parameters described above. For the
vision models, we use a different learning rate for
ResNet50 and VGG19 with the AdamW optimizer
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Model Fusion Finetune Data H. F1 Precision Recall
XLM-RBase - PTC 0.213 0.362 0.151
XLM-RBase - PTC, ATD 0.387 0.516 0.310
XLM-RBase - ATD 0.404 0.521 0.330
mBERT - PTC 0.213 0.362 0.151
mBERT - PTC, ATD 0.163 0.512 0.097
mBERT - ATD 0.463 0.523 0.416
BERT(ex) - ED 0.395 0.528 0.316
BERT(ex)F 1 - ED 0.424 0.477 0.382
CLIP - TD 0.315 0.375 0.272
CLIPF 1 - TD 0.405 0.413 0.398
mBERT + XLM-RBase Early ATD 0.451 0.514 0.402
mBERT + XLM-RBase F 1 Early ATD 0.480 0.471 0.490
mBERT + XLM-RBase + BERT(ex)F 1 Early ATD, ED 0.475 0.466 0.484
CLIP + BERT(ex) Early ATD, ED 0.342 0.374 0.316
CLIP + BERT(ex) Late ATD, ED 0.345 0.523 0.257
CLIP + BERT(ex)F 1 Early ATD, ED 0.457 0.420 0.501
CLIP + BERT(ex)F 1 Late ATD, ED 0.435 0.488 0.392
Triad Early ATD 0.470 0.515 0.433
Triad + BERT(ex) Early ATD, ED 0.473 0.467 0.480
Triad + BERT(ex) Late ATD, ED 0.476 0.470 0.484
Triad + BERT(ex)F 1 Late ATD, ED 0.483 0.526 0.446
Triad + BERT(ex) + CLIP Late TD, ATD, ED 0.463 0.541 0.405
Triad + BERT(ex) + CLIPF 1 Late TD, ATD, ED 0.455 0.461 0.450

Table 3: Subtask2a Experiment Results on Development Set (English)

of 1e-8, a batch size of 8 and the same early stop-
ping parameters as Subtask2a.

Both image models utilise ImageNet weights
(Deng et al., 2009). We apply the same dropout
rate specified in Table 2 to the text model before
this is passed through a classification layer in the
case of early fusion. As Subtask2b is a binary clas-
sification task, we do not require the F1 Confidence
Threshold for this architecture. In our final architec-
ture, VGG19 and XLM-RoBERTa-Base are trained
jointly on the augmented task data, and the late
fusion engine combines predictions from from the
Google Vision web entities.

6 Development Set Results

We detail the results of our experiments for Sub-
task2a in Table 3 and Subtask2b in Table 4. In the
Table 3, the F1 Confidence Threshold modification
is indicated by [Model] F1.

For Subtask2a, we found the Triad combination
performed best with BERT (trained on the extracted
Google Vision entities, model BERT(ex) in Table
3) predictions combined with late fusion. The F1

Hierarchy threshold increased the score of the same
model in the majority of cases.

Whilst we explored the use of PTC to finetune
our models, we found that, due to the different nam-
ing conventions of some techniques, performance
did not improve with incorporation of the PTC data.
We also noted the PTC data was drawn from a dif-
ferent domain (e.g., news articles) were the context
of techniques would be longer than short sentences
in memes, and potentially this corpus was less ef-
fective as a finetuning dataset for the task.

We originally aimed to leverage CLIP’s text and
image embeddings to inform a novel early fusion
neural network model for multilabel multiclass per-
suasion techniques classification. However, this
architecture including CLIP was slightly less ef-
fective than others. The reasons behind this sub-
optimal performance could be multifaceted, includ-
ing the complexity and subtlety of propagandistic
content within memes, the inherent challenges of
cross-modal understanding in this particular do-
main. One reason is suggested that, whilst the vi-
sual modality is important for identifying whether
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Model Fusion Data F1 Macro F1 Micro
BERT(ex) - ED 0.577 0.580
CLIP - TD 0.618 0.680
CLIP + BERT(ex) Late TD, ED 0.634 0.707
Triad Early ATD 0.383 0.613
VGG19 + BERT Early ATD 0.753 0.806
VGG19 + mBERT Early ATD 0.621 0.740
ResNet50 + mBERT Early ATD 0.638 0.700
VGG19 + XLM-RBase Early ATD 0.641 0.706
ResNet50 + XLM-RBase Early ATD 0.618 0.706
VGG19 + XLM-RBase + BERT(ex) Early ATD, ED 0.337 0.360
VGG19 + XLM-RBase + BERT(ex) Late ATD, ED 0.677 0.717
VGG19 + XLM-RBase + CLIP + BERT(ex) Late TD, ATD, ED 0.602 0.707

Table 4: Subtask2b Experiment Results on Development Set (English)

a technique is present, distinguishing between the
specific types of techniques may primarily be a
linguistic task.

For Subtask2b, our architecture achieved overall
better scores than Subtask2a. We tested architec-
tures retrained for a binary classification task from
Subtask2a on Subtask2b as a comparison, noting
these models did not perform as well. In Subtask2b,
therefore, the vision modality was significant in the
binary classification task. We note from the results
monolingual language models outperform multi-
lingual models, and suggest this may be due to
the limited sample size for the augmented data in
Subtask2b. In line with our system strategy, we
include BERT(ex) only in conjunction with multi-
lingual models, as the aim of this additional data
is to improve zero-shot classification irrespective
of language. We observed significant performance
increase using the BERT(ex) model in late fusion
for Subtask2b.

7 Test Set Performance and Analysis

For the test set, we submitted the best performing
model from each subtask experiment. For Sub-
task2a, this was the Triad + BERT(ex) with late
fusion. For Subtask2b, we submitted the VGG19 +
BERT model for English test sets and the VGG19
+ XLM-RoBERTa-Base + BERT(ex) for all other
languages.

Evaluating our results on the test set in Table
5, we found that our model for Subtask2a gener-
alised better on different languages, outperforming
the results on the English Development dataset in
some cases. Our system performed the best on
North Macedonian and the worst in Arabic for this

Rank F1 Baseline (Diff.)
Subtask2a
English 12 0.504 0.447 (+0.057)
Bulgarian 6 0.483 0.500 (-0.017)
North Macedonian 5 0.514 0.555 (-0.041)
Arabic 7 0.416 0.486 (-0.070)
Subtask2b
English 6 0.793 0.250 (+0.543)
Bulgarian 9 0.506 0.167 (+0.339)
North Macedonian 11 0.435 0.091 (+0.344)
Arabic 9 0.510 0.227 (+0.283)

Table 5: Results on Official Test Set Leaderboard

task. The original and augmented task data for
Subtask2a was larger than Subtask2b, and we ef-
fectively traded English language performance for
better generalisability on other languages.

For Subtask2b, our architecture under-performed
from tests on the English Development dataset
aside from the VGG19+BERT model used in the
English test set. This approach was less able to
generalise on non-English data than our approach
from Subtask2a, with a significant score reduction
in North Macedonian, our highest scoring language
for Subtask2a.

7.1 Subtask2a Test Set Results Analysis

We examine the importance of each modality using
the English Development set using the late fusion
engine, which calculates the per accuracy label
from each model. Table 6 shows the weights of our
original architecture (Triad plus CLIP) alongside
visual entities extracted from Google, including
only the top entity categories with the highest oc-
currence count.
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Technique NLP Weight Vision Weight Top Entities (English)
Appeal to (Strong) Emotions 0.793 0.949 Amnesty International; United States; Product; Russia
Appeal to authority 0.831 0.932 Quotation; US President; United States; Public Relations
Appeal to fear/prejudice 0.916 0.920 Russia; US President; United States; Product
Bandwagon 0.902 0.982 US Vice President; Product; United States; US President
Black-and-white Fallacy/Dictatorship 0.881 0.896 Russia; US President; United States; Product
Causal Oversimplification 0.921 0.943 Public; United States; Public Relations; Product
Doubt 0.912 0.944 Public speaking; Speech; Public Relations; Product
Exaggeration/Minimisation 0.868 0.927 Product; United States; US President
Flag-waving 0.847 0.897 Flag; Product; US President; United States; Speech
Glittering generalities (Virtue) 0.690 0.907 Product; Public Relations; United States; US President
Loaded Language 0.694 0.747 US President; Public Relations; United States; Product
Misrepresentation of Someone’s Position (Straw Man) 0.817 0.989 Humor; Russia; US President; United States
Name calling/Labeling 0.648 0.743 Public Relations; US President; United States; Product
Obfuscation, Intentional vagueness, Confusion 0.988 0.988 2023; Album cover; Getty Images; Product
Presenting Irrelevant Data (Red Herring) 0.990 0.990 Business; Ukraine; Russia; Entrepreneur
Reductio ad hitlerum 0.984 0.984 Al-Qaeda; Russia; Product; United States
Repetition 0.961 0.951 Public Relations; Politics; US President; Product; United States
Slogans 0.905 0.883 Public Relations; US President; United States; Product
Smears 0.645 0.468 United States; US President; Product; Public Relations
Thought-terminating cliché 0.906 0.486 Russia; Politics; United States; Product
Transfer 0.733 0.718 Ukraine; United States; Russia; Product
Whataboutism 0.942 0.818 Public Relations; US President; Presentation; Product

Table 6: NLP and vision stream weighting with corresponding visual entities (Subtask2a English Development set)

In Table 6 both streams have a high and some-
times equal weight. Examining the entities, we
see that higher weights in the vision stream some-
times corresponds to an identifiable and obvious
visual entity - for example, ‘Straw Man’ or ‘Name
Calling’ techniques with a slightly higher weight
for the visual stream are labels which are likely to
require a target that may not be present in the text;
the top entities for these types of meme usually
include a US President or Russia in the English
Development set.

Techniques where the weighting leans towards
the NLP stream include abstract entities; public
relations is often the most common entity before a
named entity such as a ‘US President’ or ‘Prod-
uct’. Additionally, techniques that use linguis-
tic techniques (such as ‘Repetition’ or ‘Slogans’,
‘Whataboutism’, ‘Thought-terminating cliché) had
a higher contribution from the NLP stream.

7.2 Subtask2b Test Set Results Analysis

For Subtask2b, we noted that the visual modal-
ity performed better than models re-trained from
Subtask2a. We also noted that, whilst CLIP per-
formed well, as with Subtask2a this was not the
best performing visual model. We suggest that
VGG19’s ability to capture complex visual features
were more relevant to the dataset in comparison to
CLIP’s generalised image-text representations.

Our approach for Subtask2b did not generalise
well in comparison to Subtask2a. Whilst the perfor-
mance drop could equally be attributed to a smaller
augmented data sample in Subtask2b, we also ex-

Language Entity Occurrence Count
English Politics 68
English United States 62
English US President 38
Bulgarian Product 24
Bulgarian Bulgaria 17
Bulgarian Public Relations 14
North Macedonian Cartoon 78
North Macedonian Public Relations 38
North Macedonian Poster 28
Arabic Product 29
Arabic Humor 12
Arabic Laughter 11

Table 7: Sample Web Entities for Test Dataset in Sub-
task2b

amine North Macedonian memes to understand the
reduction of performance on this set.

Visually, North Macedonian memes were differ-
ent from memes in other languages, particularly
in English; they included a significant number of
‘cartoon’ type memes and comic strips compared to
others, which is also reflected in a sample of visual
entities outlined in Table 7. As our Subtask2b ar-
chitecture relied more on the visual modality than
Subtask2a, the reduction of performance is there-
fore expected given this analysis.

7.3 Post-Evaluation Analysis
Post official evaluation, we used our analysis of
the competition results to explore an improved ar-
chitecture for each task. Whilst these are not part
of the official SemEval Task 4 leaderboard, we
include these as additional experiments.

For Subtask2a, we incorporated the VGG19
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model instead of CLIP and removed the second
mBERT model with the 80% drop-out rate with the
aim to provide more information from the visual
modality. For Subtask2b, we attempted to improve
the linguistic part of the model by incorporating
XLM-Roberta-Large.

Additionally, for Subtask2b, we direct trans-
lated 200 memes per test language from the Mem-
otion (Sharma et al., 2020) dataset which were
considered ‘not offensive’ and labelled these non-
propagandistic, to significantly increase and re-
balance the data provided for Subtask2b. In this
new augmented data, each test language comprised
10% of the non-propagandistic label whereas En-
glish comprised 70%, also drawing memes from
Memotion in English to balance the label sample
size.

Despite incorporating the visual modality and
additional data, our second attempt at Subtask2a
under-performed. Considering the drop, we did
not feel the inclusion of external knowledge via
an additional BERT model as in prior experiments
would improve performance. Since our augmenta-
tion technique cannot replicate the visual modal-
ity, the visual information contains cultural entities
and concepts from English-memes which likely im-
pacts performance, particularly for techniques that
require more contribution from the visual modality.

In Subtask2b, all languages improved without
BERT(ex). Performance on Arabic decreased
slightly with the inclusion of external knowledge,
with no change in Bulgarian and an increase in
North Macedonian. The inclusion of external
knowledge via late fusion, comparative to the re-
sults in Table 4, provided marginal improvement;
likely the dataset re-balance and inclusion of a
larger language model were also significant. The
augmented data for this experiment were also more
diverse in this case as they were drawn from a dif-
ferent dataset, whereas augmenting the multilabel
classes in Subtask2a from another dataset was not
possible without native language speakers trained
in the specific annotation task.

8 Conclusion and Future Work

We presented our ensemble learning approach to
SemEval-2024 Task 4, including a number of exper-
iments with early and late fusion, the inclusion of
external knowledge and modifying the label thresh-
old. We found that the inclusion of external sources
of knowledge, even basic descriptive entities as in

Subtask2a Test Language F1 F1 Change
mBERT+XLM-RBase + VGG19 Bulgarian 0.424 -0.059
mBERT+XLM-RBase + VGG19 North Macedonian 0.358 -0.156
mBERT+XLM-RBase + VGG19 Arabic 0.376 -0.040
Subtask2b
XLM-RL + VGG19 Bulgarian 0.571 0.065
XLM-RL + VGG19 North Macedonian 0.570 0.135
XLM-RL + VGG19 Arabic 0.621 0.111
XLM-RL + VGG19 + BERT(ex) Bulgarian 0.571 0.065
XLM-RL + VGG19 + BERT(ex) North Macedonian 0.578 0.143
XLM-RL + VGG19 + BERT(ex) Arabic 0.603 0.093

Table 8: Post-Evaluation Model Results

our experiments, improved performance on both
subtasks especially using late fusion.

By their nature, memes are multimodal; our ap-
proach to Subtask2a still utilised visual elements
via entities extracted from the image, and thus pro-
vided essential context to interpret ambiguous tex-
tual content, however we found the balance be-
tween visual and textual importance varied across
meme types and tasks. Whilst Subtask2a benefited
from the integration of visual entities as a more
concise representation of the visual modality, we
found that much of the context required for iden-
tifying specific techniques required either better
cross-modal understanding or finer text analysis.
In contrast, Subtask2b benefited from a strong vi-
sual model.

The identification of named entities in visual
modality of memes is a potential future area of
research, as this would enable drawing on com-
plex stores of knowledge (e.g., knowledge graphs)
for deeper cross-modal understanding when disen-
tangling persuasion techniques. We further sug-
gest that there is promise in generating more high
quality, multilingual data for persuasion techniques
across languages based on our experiments with
augmented data, particularly for low-resource lan-
guages. Although we augmented the task data to
cover more languages using direct translation, a
limitation in this method is the inability to change
the visual modality.

We also note there is a cultural element to memes
not considered in current research. We identified
that North Macedonian memes were visually dif-
ferent from other memes; the different cultural per-
spectives and practices in developing memes is
under-researched, with only limited studies inves-
tigating global meme practices (Nissenbaum and
Shifman, 2018). As well varied training data, a
better understanding of cultural meme production
could contribute to defining the most appropriate
approach for zero-shot multilingual meme tasks.
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