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Abstract

In this paper, we present the description of our
proposed system for Subtask A - multilingual
track at SemEval-2024 Task 8, which aims to
classify if text has been generated by an AI
or Human. Our approach treats binary text
classification as token-level prediction, with
the final classification being the average of
token-level predictions. Through the use of
rich representations of pre-trained transform-
ers, our model is trained to selectively aggre-
gate information from across different layers to
score individual tokens, given that each layer
may contain distinct information. Notably, our
model demonstrates competitive performance
on the test dataset, achieving an accuracy score
of 95.8%. Furthermore, it secures the 2nd po-
sition in the multilingual track of Subtask A,
with a mere 0.1% behind the leading system.

1 Introduction

The evolution and widespread adoption of Gener-
ative Pre-trained Transformers, notably with the
release of ChatGPT have significantly influenced
the landscape of digital communication and con-
tent creation. While these advancements herald a
new era of efficiency and creativity, enabling ap-
plications ranging from sophisticated writing aids
to advanced conversational agents, they simultane-
ously introduce significant challenges and ethical
concerns. In fact, the proliferation of AI-generated
texts has raised alarm over issues like the dissem-
ination of misinformation, the facilitation of aca-
demic fraud, and the potential erosion of trust in
digital content. This underscores the urgent require-
ment for robust solutions to identify AI-generated
content, safeguarding the integrity of information
while embracing the benefits of AI advancements.

In this paper, we aim to develop a reliable detec-
tion system by participating in the SemEval Task
8 on Machine-Generated Text Detection. This

task is notable for its complexity, as it involves
Multi-generator, Multidomain, and Multilingual
text, making it a highly challenging endeavor. Fur-
thermore, the evaluation is conducted on unseen
domains and languages, establishing it as a robust
benchmark for evaluating AI text detectors. This
requires the model to effectively generalize across
different domains and languages. We focus our
efforts on the binary detection, which aims to de-
termine whether a text has been generated by an
AI or not. To tackle this challenge, we propose a
syntactically motivated architecture. Our approach
is primarily inspired by the realization that texts
generated by AI and humans are semantically sim-
ilar, as they are derived from comparable topical
distributions. Hence, we argue that the distinction
between them lies in their syntax and writing style.

Typically, transformer-based text classification
relies on information from the last layer for clas-
sification. However, our model takes a different
approach by dynamically aggregating information
from all layers of the transformer (a.k. multi-layer
fusion Shi et al., 2022). This method is intention-
ally designed to harness the diverse linguistic infor-
mation present at various levels of the transformer,
as noted in previous studies (Peters et al., 2018;
Jawahar et al., 2019; Tenney et al., 2019). These
studies reveal the uneven distribution of linguis-
tic features across the transformer’s architecture,
with syntactic details predominantly in the initial
layers and complex semantic information in the
deeper layers. By utilizing insights from all layers,
our model aims to capture the entire range of lin-
guistic cues, enhancing its capability to accurately
differentiate between human and AI-generated con-
tent. Additionally, our model moves beyond the
standard practice of using just the [CLS] token
for classification in BERT-based classifiers. It ap-
plies sequence labeling to classify each token in
the text as either Human or AI. We believe that
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this approach enables the capture of more complex
phrasal structures, which helps in more effectively
distinguishing the style and syntax of a text.

Our proposed model obtains competitive perfor-
mance on the test leaderboard of the shared task
subtask A, securing the 2nd best position on binary
multilingual detection, using a much smaller model
than other approaches often using finetuned LLMs.

2 Related Works

Since the introduction of large-scale pre-trained
models like GPT-3, capable of generating high-
quality text, the detection of machine-generated
text has attracted considerable interest. The most
common and straightforward strategy for address-
ing this task involves training models on a labeled
dataset comprising both human and AI-generated
text. This approach is utilized by well-known
models such as the OpenAI ai text detector and
commercial models such as GPTZero (Tian and
Cui, 2023). While these models achieve strong in-
domain results, they often require labeled datasets
from a wide range of sources and domains to
achieve generalization. An alternative approach
involves zero-shot detectors, which do not necessi-
tate any model training. For example, DNA-GPT
(Yang et al., 2024) assesses N-Gram divergence be-
tween the continuation distribution of re-prompted
text and the original text for making predictions,
while Detect-GPT (Mitchell et al., 2023) employs a
curvature-based criterion to determine if a passage
is generated by a specific LLM.

3 Preliminary study

In this section, we detail a preliminary study that
provided essential insights, guiding us towards our
final model design.

Motivation Our aim was to assess the efficacy of
semantic embeddings, particularly sentence-BERT,
in differentiating between machine-generated and
human-authored texts. Figure 1 illustrates the
embeddings of texts from both humans and var-
ious language models, visualized using sentence-
BERT embeddings (Reimers and Gurevych, 2019)
and UMAP for dimensionality reduction (McInnes
et al., 1802).

Analysis The visualization in Figure 1 reveals
that texts generated by humans and various lan-
guage models occupy similar positions in the latent
semantic space, with data points from different

Figure 1: Visualization of UMAP-projected Sentence-
BERT embedding of documents generated by human
and different large language models

sources blending together, lacking distinct separa-
tion. Given the limited utility of semantic features
for discriminating human and ai-generated text, we
argue that the key to distinguishing between these
texts may lie at the syntactic level.

Model Motivated by our analysis, we propose a
text classification model that take into account syn-
tactic information. More specifically, our approach
introduces two main innovations: 1) the integration
of information from all layers of the transformer for
classification, referred to as layer fusion (Shi et al.,
2022). This method leverages the rich linguistic
information embedded across the transformer’s lay-
ers to compute classification scores (Peters et al.,
2018; Tenney et al., 2019; Jawahar et al., 2019).
2) The usage of sequence labeling for text classi-
fication, which could enhance the model’s ability
to capture complex phrasal structures, potentially
improving its ability to differentiate texts based on
style and syntax.

4 Architecture

In this section, we provide a detailed overview of
our proposed model’s architecture illustrated in
Figure 2.

4.1 Representation

Given a text input X = {x1, . . . , xN}, the model
first computes embeddings for each word using a
multi-layer pre-trained transformer encoder such
as BERT:

H = transformer(X) ∈ RN×L×D (1)
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Figure 2: Architecture of Our Proposed Model. A pre-trained transformer receives a sequence of tokens as input
and generates token embeddings at each layer. Token scores are computed for each layer, and the final score for
each token is derived from the sum of scores across all layers. The probability of each token being AI-generated is
determined by applying a sigmoid activation function to its score.

Here, N is the number of words in the input, L
is the number of transformer layers, and D is the
model dimension.

4.2 Scoring
The model then computes a score for each word, in-
tegrating information across all transformer layers,
similar to the proposed multi-layer fusion by Shi
et al. (2022). The score si for a word at position i
is computed as follows:

si =

L∑

l=1

w⊤
l h

l
i ∈ R (2)

In this equation, hl
i ∈ RD represents the embed-

ding of the i-th word at the l-th layer. wl ∈ RD

is a learned weight vector specific to layer l. This
scoring mechanism allows the model to weigh the
contributions of different layers differently for each
token, potentially emphasizing certain linguistic
features over others.

4.3 Classification
For the classification, we employ a sequence label-
ing approach, where each word is classified based
on its computed score. For this, a sigmoid function
is applied to convert the token scores into proba-
bilities, and a threshold is used to make a binary
decision:

yi =

{
1 if σ(si) > 0.5,

0 otherwise.
(3)

This step results in a binary classification for
each word, indicating its belonging to the posi-
tive class. Finally, the classification of the entire

sentence is determined by averaging these binary
decisions:

y =
1

N

N∑

i=1

yi (4)

This average represents the probability of the
sentence belonging to the positive class, synthesiz-
ing the word-level classifications into an overall
sentence-level prediction. Finally, given an input
X , we consider it as being machine-generated if its
computed probability is superior to 0.5, i.e y > 0.5.

4.4 Training
To train our model, we focus on maximizing the
likelihood of the correct label for each token by
minimizing the binary cross-entropy loss at the
token level. The binary cross-entropy loss for an
input text of length N can be formulated as follows:

L = −
N∑

i=1

(y∗ log(pi) + (1− y∗) log(1− pi))

(5)
Here, y∗ represents the true label of the input (1

for human-generated and 0 for AI-generated), pi
denotes the predicted probability of the i-th token
being human-generated (computed by applying the
sigmoid function to the score si).

5 Experimental setup

5.1 Data
For our experiments, we used the dataset provided
at SemEval-2024 Task 8, more details can be found
in the task description (Wang et al., 2024a). It is
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based on the benchmark M4 dataset (Wang et al.,
2024b), which is a large-scale multi-generator,
Multi-domain, and Multi-lingual corpus containing
human-written and machine-generated texts. The
machine-generated texts were produced by prompt-
ing several LLMs, including ChatGPT, textdavinci-
003, Cohere, Dolly-v2 and BLOOMz from differ-
ent sources such as Wikipedia, WikiHow, Reddit,
arXiv, PeerRead for English, Baike and Web ques-
tion answering for Chinese, news for Urdu, RuATD
for Bulgarian and news for Indonesian.

5.2 Hyperparameters

In our experiments, we utilized the
xlm-roberta-large model as the backbone
for our architecture. The model was trained
with a batch size of 12 across a maximum of 2
epochs, as we found that training further harms the
validation results. More specifically, we observed
that while training longer always improves
in-domain performance measured on a held-out
subset of the training set, it harms performance on
out-of-domain validation (Kumar et al., 2022). We
hypothesize this is due to overfitting on in-domain
data, making long training harms the generalization
of the model. Due to this, we evaluated our model
on the out-of-domain validation set every 500
gradient steps and kept the best-performing model
for testing. We employed different learning rates
for the backbone (pre-trained transformer model)
parameters and the added projection parameters:
the learning rate for the backbone was set to 1e-5,
and the learning rate for the projection weights
(randomly initialized) was set higher at 3e-4. This
distinction allows for delicate fine-tuning of the
pre-trained model (to not distort the pre-trained
representation too much), while more aggressively
updating the newly introduced parameters to adapt
to the task-specific features. During training, we
use a maximum sequence length of 128 subwords
to allow faster training, but we compute test
set prediction using the maximum size of 512
tokens. The experiments were conducted with a
runtime limit of 2 hours and 30 minutes for each
experiment, utilizing an NVIDIA V100 GPU.

5.3 Other approaches

In this section, we provide an overview of the
methodologies adopted by participants based on
their description1 in the shared task (Wang et al.,

1Note that we do not have access to entire articles.

Rank Team Accuracy (%)

1 USTC-BUPT 95.9
2 FI Group (Ours) 95.8
3 KInIT 95.0
4 priyansk 93.8
5 L3i++ 92.9

– Baseline 80.9

Table 1: Test leaderboard results.

2024a). The baseline approach involved fine-tuning
an XLM-Roberta-base model specifically for this
task. The team USTC-BUPT presented the top-
performing system, where English texts were pro-
cessed using the Llama-2-70b model to generate
average embeddings. These embeddings were then
classified using a two-stage CNN. For texts in lan-
guages other than English, they treated classifica-
tion as a next-token prediction task utilizing the
mT5 model. Another notable participant, the KInIT
team, employed an ensemble strategy that com-
bined fine-tuned large language models (LLMs),
including Mistart and Falcon, with zero-shot sta-
tistical methods to improve performance. Lastly,
the L3i++ team opted to fine-tune a LLaMA-2–
7b model for the task. In comparison to the top-
performing participants, only our approach uses
small-scale transformer models.

6 Results

6.1 Test leaderboard results

Table 1 shows the top 5 scores from the leaderboard
obtained using the test dataset, which includes do-
mains and languages never seen during training.

Our team achieved the second-highest score,
with an accuracy of 95.8%, narrowly trailing the
top system by only 0.1%. There were 69 partici-
pants in the multilingual track in subtask A, out of
a total of 159 participants across all SemEval-2024
Task 8.

6.2 Ablation study

In this section, we conduct an ablation study to
examine the impact of various components of our
model, including the backbone, layer fusion, and
sequence labeling. The outcomes of this analysis
are reported in Table 2.

Results Regarding the backbone, our findings
indicate that XLM-R-large achieves better per-
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Model Accuracy (%) F1 (%)

Ours (XLM-R-base) 87.3 87.1
Ours (XLM-R-large) 87.6 87.5
- w/o sequence labeling 81.2 81.1
- w/o layer fusion 78.1 77.4

Baseline (XLM-R-base) 75.0 –

Table 2: Ablation performance on the validation set.
We perform ablation of our proposed model to see the
influence of sequence labeling and layer fusion.

formance than XLM-R-base, suggesting that our
method scales effectively. Moreover, our analysis
reveals that both sequence labeling and layer fusion
significantly contribute to the model’s performance.
Specifically, omitting sequence labeling—which
involves aggregating the scores of the CLS token
across layers—results in a 6-point decrease in ac-
curacy. Similarly, excluding layer fusion leads to
a more pronounced decline, with over a 10-point
drop in F1 score and a 9-point decrease in accu-
racy. These findings underscore the critical roles
that token-level prediction and layer fusion play in
enhancing the overall effectiveness of our model.

6.3 Learned Weight Analysis

Motivation Figure 3 visualizes the norm of the
learned weight vector for each layer of our model,
denoted as wl in equation 2. We hypothesize that
the magnitude of these projection weights reflects
the significance of each layer in contributing to the
final prediction, with higher weights suggesting a
more substantial influence on the token scores.

Analysis The Figure 3 indicates that layer 0, the
embedding layer, has the lowest norm value. Given
that this layer does not incorporate contextual in-
formation, its minimal contribution suggests that
mere word appearance is insufficient for determin-
ing whether a text is produced by a human or an
AI, aligning with the findings of Gallé et al. (2021).
Interestingly, layer 24, which is the final layer, also
shows a relatively low norm value. This obser-
vation resonates with analyses indicating that the
last layer tends to be rich in semantic content yet
sparse in syntactic details. We believe this explains
the lower norm value for the last layer, as seman-
tic aspects alone are inadequate for distinguishing
between human and AI writing. Conversely, the
highest norm values are predominantly found in
layers 3 to 6 and 20 to 22, suggesting these layers

Layer 0
(15.20)

Layer 1
(24.63)

Layer 2
(26.71)

Layer 3
(28.96)

Layer 4
(28.57)

Layer 5
(29.51)

Layer 6
(28.59)

Layer 7
(27.52)

Layer 8
(25.95)

Layer 9
(24.10)

Layer 10
(23.31)

Layer 11
(22.56)

Layer 12
(22.37)

Layer 13
(24.72)

Layer 14
(25.51)

Layer 15
(24.90)

Layer 16
(25.60)

Layer 17
(25.64)

Layer 18
(26.75)

Layer 19
(27.21)

Layer 20
(28.49)

Layer 21
(28.22)

Layer 22
(29.93)

Layer 23
(24.76)

Layer 24
(21.39)

Figure 3: Norm (L1) of the weight vector wl for each
layer in our model.

play a pivotal role in the model’s decision-making
process.

7 Conclusion

In this paper, we presented our system submitted to
SemEval-2024 Task 8 for detecting human-written
and machine-generated text, achieving 2nd place
for subtask A on multilingual texts. Our system
relies on a hierarchical fusion strategy that adap-
tively fuses representations from transformer’s lay-
ers, with a focus on syntactic rather than semantic
information. By leveraging syntactic features, par-
ticularly through sequence labeling, we captured
more phrasal structures of text, thereby enhancing
our ability to distinguish text styles and syntax. Our
system achieved robust performance across diverse
unseen domains and languages, demonstrating its
adaptability and generalization capability, notably
considering that we used a smaller model com-
pared to other proposed systems often reliant on
fine-tuned LLMs.
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