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Abstract

Large language models (LLMs) have recently
obtained strong performance on complex rea-
soning tasks. However, their capabilities in
specialized domains like law remain relatively
unexplored. We present CLUEDO, a system
to tackle a novel legal reasoning task that in-
volves determining if a provided answer cor-
rectly addresses a legal question derived from
U.S. civil procedure cases. CLUEDO utilizes
multiple collaborator models that are trained
using multiple-choice prompting to choose the
right label and generate explanations. These
collaborators are overseen by a final "detective"
model that identifies the most accurate answer
in a zero-shot manner. Our approach achieves
an F1 macro score of 0.74 on the development
set and 0.76 on the test set, outperforming in-
dividual models. Unlike the powerful GPT-
4, CLUEDO provides more stable predictions
thanks to the ensemble approach. Our results
showcase the promise of tailored frameworks to
enhance legal reasoning capabilities in LLMs.

1 Introduction

Recent improvements in large language models
are leading to a rethinking of legal practices, par-
ticularly in the United States (Frankenreiter and
Nyarko, 2022; Hoffman and Arbel, 2023; Glaze
et al., 2021). This can potentially transform time-
consuming tasks such as brief writing and corpo-
rate compliance (Guha et al., 2023; Benedetto et al.,
2023a). This could also contribute to alleviating
the access-to-justice crisis (Corporation, 2017; Tito,
2017). The unique properties of LLMs, including
their ability to learn from limited labeled data and
proficiency in complex reasoning tasks, make them
appealing for legal applications (Zheng et al., 2021;
Guha et al., 2023; Benedetto et al., 2023b, 2024).

However, enthusiasm is tempered by concerns
about the risks associated with LLMs, such as gen-
erating offensive, misleading, or factually incor-
rect content (Engstrom and Gelbach, 2020; Ben-

der et al., 2021). These issues could have signifi-
cant consequences, particularly affecting marginal-
ized or under-resourced populations (Surden, 2020;
Volokh, 2023; Koudounas et al., 2023, 2024).

To address safety implications, there is a press-
ing need to evolve and enhance legal reasoning
capabilities in LLMs. Despite this urgency, prac-
titioners face challenges in assessing LLMs’ legal
reasoning capabilities, as existing legal benchmarks
are limited and often fail to capture the diverse as-
pects of legal tasks (Guha et al., 2023).

In this direction, the organizers of SemEval-2024
Task 5 introduce a novel Natural Language Pro-
cessing (NLP) task and dataset derived from the
U.S. civil procedure domain (Bongard et al., 2022).
Each dataset instance comprises a case introduc-
tion, a specific question, and a potential solution
argument, along with an in-depth analysis justify-
ing the argument’s applicability to the case. When
provided with a topic introduction, a question, and
a potential answer, the objective of the proposed
task is to determine whether the given answer is
accurate or not.

To tackle this task, we initially transform the
dataset into a multiple-choice question answer-
ing problem using the multiple-choice prompt-
ing (MCP) approach (Robinson et al., 2023). We
experimented with various open-source language
models on this modified dataset, including Flan
T5 XXL (Wei et al., 2021; Chung et al., 2022),
LLama 7B and 13B (Touvron et al., 2023), Zephyr
7B (Touvron et al., 2023), and Mistral 7B (Jiang
et al., 2023). Specifically, we trained these mod-
els to solve legal problems while also providing
an explanation for the predicted outcome, leverag-
ing the analysis provided. We thus introduce the
CLUEDO approach, which stands for “Choosing
Legal oUtcome by Explaining Decisions through
Oversight”. This framework utilizes multiple col-
laborative models to synthesize the final outcome
based on each model’s predictions. Each individual
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model is trained to predict the label of the correct
candidate answer and generate an explanation ac-
cordingly. The final “detective” model operates
in a zero-shot manner, relying upon the outputs
of the collaborators. The model processes the an-
swers and the explanations of all collaborators and
deduces the ultimate answer.

The results on the challenge dataset demonstrate
that our proposed methodology surpasses the per-
formance of single models trained with standard
fine-tuning. Furthermore, our approach achieved
the second-place position in the public competition,
achieving a final test F1 macro score of 0.771.

Research Questions. We investigate the follow-
ing research questions (RQs):

• RQ1. Is the multiple-choice setting more ef-
fective than the single-choice one?

• RQ2. Does including the analysis in the train-
ing and generation process improve perfor-
mance?

• RQ3. Is our detective model CLUEDO more
effective than individual collaborators in a
zero-shot setting? Are CLUEDO results more
stable?

2 Related Work

In the legal domain, the advent of Legal LLMs
has reshaped how legal professionals approach
case analysis, decision-making, and document gen-
eration processes (Lai et al., 2023). LLMs pos-
sess logical reasoning capabilities that enable legal
professionals to comprehend case processes, aid
judges in decision-making, swiftly identify sim-
ilar cases through language comprehension, ana-
lyze and condense essential case details, and uti-
lize automated content generation to draft repet-
itive legal documents (Guha et al., 2023). Re-
searchers have recently started exploring whether
large language models have the capability to carry
out legal reasoning. Unlike BERT-based models,
LLMs are evaluated on their ability to learn tasks
in-context, primarily through prompting (Liu et al.,
2022). Studies have explored the role of prompt-
engineering for Legal Judgment Prediction (Jiang
and Yang, 2023), statutory reasoning (Blair-Stanek
et al., 2023) legal exams (Yu et al., 2023). Sev-
eral case studies (Nay et al., 2023; Drápal et al.,

1Code available at https://github.com/
irenebenedetto/PoliToHFI-SemEval2024-Task5

2023; Savelka, 2023; Savelka et al., 2023; West-
ermann et al., 2023) highlight the potential and
the limitations of GPT models in real use cases.
However, to the best of our knowledge, limited
effort has been devoted to analyzing the effective-
ness of smaller and open-source language mod-
els (e.g., Llama 2 (Touvron et al., 2023)) in this
domain (Guha et al., 2023), and how they can ef-
fectively be employed in conjunction with closed-
source foundational models, such as GPT-4 (Ope-
nAI et al., 2023).

3 Dataset and Task Description

Bongard et al. (2022) present a new dataset from
the U.S. civil procedure domain. This dataset is
derived from a book intended for law students, sug-
gesting its complexity and suitability for bench-
marking modern legal language models. Each in-
stance of the dataset consists of:

• General introduction to the case: an overview
of the case to set the context.

• Particular question: a specific legal question
related to the case is presented.

• Possible solution argument: a potential an-
swer associated with the question is provided.

• Annotated label: it defines if the possible so-
lution is correct (1) or not (0).

• Detailed analysis: Accompanying each solu-
tion argument is a thorough analysis explain-
ing why the argument applies to the case in
question.

The task is structured as a binary classification
task where the goal is to predict the correctness
of the answer provided, i.e., the label provided
together with the textual information. The analysis
and the labels are not available during test time.

4 System Overview

This section provides a comprehensive overview
of the proposed methodology. Firstly, we out-
line the approach to the multiple-choice question-
answering problem and how we adapt it to our
scenario. Secondly, we introduce the CLUEDO
framework, along with details about the competi-
tors incorporated into our study.
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Table 1: Zero-shot models on dev set. The best performance (in terms of F1 macro) for each model family is in
bold. The multiple-choice approach leads to higher performance in five out of six cases.

Model Classification task Prec Rec F1 Acc

Flan T5 XXL Multiple choice 0.60 0.67 0.59 0.64
Flan T5 XXL Single choice 0.54 0.53 0.32 0.32

GPT-4 Multiple choice 0.66 0.73 0.66 0.57
GPT-4 Single choice 0.40 0.50 0.44 0.80

Llama 2 13B Multiple choice 0.64 0.58 0.59 0.79
Llama 2 13B Single choice 0.55 0.58 0.54 0.61

Llama 2 7B Multiple choice 0.51 0.51 0.51 0.74
Llama 2 7B Single choice 0.53 0.52 0.52 0.73

Mistral v0.1 7B Multiple choice 0.55 0.59 0.54 0.61
Mistral v0.1 7B Single choice 0.55 0.58 0.52 0.57

Zephyr beta 7B Multiple choice 0.54 0.56 0.50 0.69
Zephyr beta 7B Single choice 0.40 0.50 0.44 0.80

Table 2: Trained models performance on dev set. All
models are trained to generate both labels and analysis,
following the multiple-choice setting.

Model Prec Rec F1 Acc

Llama 2 7B 0.57 0.60 0.56 0.64
Mistral v0.1 7B 0.61 0.63 0.62 0.73
Zephyr beta 7B 0.62 0.65 0.63 0.73
Llama 2 13B 0.65 0.69 0.66 0.75

Multiple-choice. Following the intuition
of Robinson et al. (2023), we convert the dataset
into a multiple-choice question answering
problem and adopt multiple choice prompting
(MCP) (Robinson et al., 2023). In MCP, the
language model is presented not only with the
question but also with a set of candidate answers,
akin to a multiple-choice test. Each answer is
linked to a symbol such as “A,” “B,” or “C.” This
approach enables the model to compare answer
choices explicitly and diminishes computational
expenses for a generation. In cases where
there is only one candidate answer, the system
automatically generates the alternative “None of
the above is true”. These additional answers are
not accounted in the test and validation metrics.

In our experiments, we evaluate whether the
multi-choice approach is indeed more effective
than a single-choice approach. In the single-choice
setting, we prompt a single choice, and the model
should directly predict whether it is correct.

CLUEDO. To tackle the task of the challenge,
we introduce the CLUEDO framework, which
stands for “Choosing Legal Outcome by Explain-
ing Decisions through Oversight.” In a nutshell,
multiple collaborative models are trained to pre-
dict the correct label for a candidate answer that
addresses the legal question. These models gen-
erate their analysis as part of their training. The
final model, operating in a zero-shot manner, uti-
lizes the responses and explanations from the set
of collaborators to identify the most accurate final
answer, considering their collective performance.
More in detail, the CLUEDO system is structured
as follows:

• N collaborative models: given the introduc-
tion, the legal question, and the candidate an-
swers, these models are trained to predict the
label of the candidate answer that correctly
responds to the legal question and generate an
explanation. We fix the number of collabora-
tors equal to three. We select the collaborators
based on their results on the dev set.

• The final “detective” model: this model is
employed in a zero-shot manner. Based on
the responses from the collaborators and their
corresponding explanations, this model must
identify the most accurate final answer, over-
seeing the collaborators’ performance. The
final model is also provided with the introduc-
tion, legal questions, and candidate answers.
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Example of prompts for collaborative and detective
models are reported in Table 3.

Competitors. To assess the strength of the pro-
posed CLUEDO approach, we compare the re-
sults with a set of alternatives on the final test set:
the best collaborator chosen based on the results
achieved on the dev set (that we call Best collabo-
rator), and the correction of collaborator models
based on consensus (after named Collaborators
agreement). The latter approach involves taking
the predictions of the top-performing collaborator
(on the dev set) and rectifying instances where both
the second and third collaborators mutually con-
firm inaccuracies. We finally employ the zero-shot
final model without any collaborators to test its gen-
eralization capabilities, namely Zero-shot detective
model.

5 Experimental Setup

Models. We evaluated various open-source models,
employing both zero-shot and fine-tuning method-
ologies. Our analysis covered Flan T5 XXL (Wei
et al., 2021; Chung et al., 2022), LLama 7B (Tou-
vron et al., 2023) and 13B, Zephyr 7B (Touvron
et al., 2023), and Mistral 7B (Jiang et al., 2023),
selected for their unique features and performance
metrics. Furthermore, we integrated into our assess-
ment GPT-4 (OpenAI et al., 2023) in a zero-shot
context.
Training procedure. We employed a Super-
vised Fine-Tuning (SFT) approach, implement-
ing precision enhancement with 8-bit quantization.
The models were trained for three epochs utiliz-
ing Parameter-Efficient Fine-Tuning (PEFT) (Man-
grulkar et al., 2022), with a batch size set at 4 and
a learning rate of 5e-5. The sequences were pro-
cessed with a context length of 4096, optimizing
the model’s ability to capture long-range dependen-
cies in the data.
Hardware. We run the experiments on a machine
equipped with Intel® CoreTM i9-10980XE CPU, 1
× Nvidia® Tesla T4 GPU, 16 GB of RAM running
Ubuntu 22.04 LTS.

6 Results

To illustrate the efficacy of the multiple-choice set-
ting and model selection criteria, we conduct indi-
vidual tests for each configuration and present the
obtained results on the development set. The fol-
lowing paragraphs address the research questions
previously presented.

RQ1: Impact of the multiple-choice setting. Ta-
ble 1 shows the zero-shot models’ performance on
the development set. For each model family, the
multiple-choice question-answering approach con-
sistently outperforms the single-choice approach
in terms of F1 Macro. There is variability in the
performance of different models within the same
family. In general, larger models tend to exhibit
stronger generalization capabilities than smaller
ones.

RQ2: Impact of analysis inclusion in model
training. In Table 4, we highlight the impact of
including the analysis in the models’ training pro-
cess. To examine outcomes across various model
sizes and classification tasks, we fixed the model
family (Llama 2 from Meta). In both the 7B and
13B models, including the analysis (✓) consistently
leads to higher performance for multiple-choice
tasks. In particular, including the analysis during
training leads to more balanced precision and recall
metrics, resulting in an overall improvement in the
F1 Macro score. For both Llama 2 7B and Llama 2
13B, the F1 Macro scores in single-choice tasks do
not show significant improvement with the inclu-
sion of the analysis. This may indicate that these
models are less sensitive to additional analysis in
single-choice tasks.

Additionally, the training of Llama 2 13B with
the analysis allows for an additional +0.07 F1
score compared to its zero-shot counterpart, while
for the 7B models, the training deteriorates the per-
formance.

RQ3: CLUEDO results. The selection of collab-
orative models is guided by the results obtained on
the development set as shown in Table 2. All mod-
els are configured to generate both labels and anal-
ysis, following the multiple-choice setting. Among
the models, Llama 2 13B stands out with the high-
est F1 Macro score, indicating robust performance
across multiple evaluation metrics, followed by
Mistral and Zephyr models. For the supervisor
model, we choose GPT-4, the best performer in the
zero-shot setting (see Table 1).

Results on the test set are summarized in Table 5.
Applying corrections based on the consensus of the
second and third collaborators (Mistral and Zephyr)
slightly reduces the F1 Macro to 0.65 on both devel-
opment and test sets. This suggests that the initial
collaborator’s predictions were already quite accu-
rate. The zero-shot model without collaborators
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Table 3: Example of prompts for collaborative models and our CLUEDO approach.

Approach Example Prompt
C

ol
la

bo
ra

tiv
e

M
od

el
s

<s>[INST] <<SYS>>Given the following explanation and the question, which of the candidate
answers is correct? The correct answer is the one that is true according to the explanation. <</SYS>>

<explanation>Although discovery usually extends to all evidence relevant to claims and defenses
in the action, Rule 26(b)(1) expressly carves out one [...] </explanation>

<question>4. Confidential chat. Shag, a budding rock star with no business experience, enters into
a five-year exclusive contract with Fringe Records, after [...] </question>

<candidate_answers>
1 - Shag will not have to answer any of the interrogatories, because all three were discussed in å
confidence with Rivera in the course of his representation.
2 - Shag will have to answer the first interrogatory, but not the other two.
3 - Shag will have to answer all three interrogatories, because [...]
5 - None of the above is true.
</candidate_answers>

[/INST]

<correct_answer>5 </correct_answer>

<analysis>Let’s start by eliminating A. It proceeds on the premise that all three items are subject
to discovery, because all [...]
</analysis>

C
LU

ED
O

You are a legal supervisor tasked with resolving legal queries.
You are working alongside three artificial intelligence models, named m1, m2, and m3.
Given an introductory context, a question, and a set of candidate answers, these three models
must choose the correct answer and provide justification for their choice. Your responsibility
is to assess the models’ responses and determine whether they are correct or not.
To do so, you must read the context (enclosed within the tags <context></context>), the question
(within <question></question>tags), and the candidate answers (within <candidate_answers>
</candidate_answers>tags), and identify the correct answer among them (using the
<supervisor_answer>tag). Additionally, you must provide reasoning for your choice (using the
<supervisor_explanation>tag). While collaborating with the models and considering their advice,
the ultimate decision rests
with you. For each response, use the following format:
<supervisor_answer>SUPERVISOR ANSWER</supervisor_answer>
<supervisor_explanation>SUPERVISOR ANSWER</supervisor_explanation>

<context>Although discovery usually extends to all evidence relevant to claims and defenses
in the action, Rule 26(b)(1) expressly carves out one [...] </context>

<question>4. Confidential chat. Shag, a budding rock star with no business experience,
enters into a five-year exclusive contract with Fringe Records, after [...] </question>

<candidate_answers>
1 - Shag will not have to answer any of the interrogatories, because all three were discussed in
å confidence with Rivera in the course of his representation.
2 - Shag will have to answer the first interrogatory, but not the other two.
3 - Shag will have to answer all three interrogatories, because [...]
5 - None of the above is true.
</candidate_answers>

<m1_answer>1</m1_answer>
<m1_explanation>[...] </m1_explanation>

<m2_answer>1</m2_answer>
<m2_explanation>[...] </m2_explanation>

<m3_answer>2</m3_answer>
<m3_explanation>[...] </m3_explanation>

<supervisor_answer>
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Table 4: Trained models on dev set. The best results (in terms of F1 Macro) are in bold. The generation of the
analysis leads to higher performance for both 7B and 13B models.

Model Classification task Analysis included Prec Rec F1 Acc

Llama 2 7B Multiple choice x 0.49 0.48 0.47 0.56
Llama 2 7B Multiple choice ✓ 0.57 0.60 0.56 0.64
Llama 2 7B Single choice x 0.40 0.50 0.44 0.80
Llama 2 7B Single choice ✓ 0.40 0.50 0.44 0.80

Llama 2 13B Single choice x 0.55 0.58 0.52 0.57
Llama 2 13B Multiple choice ✓ 0.65 0.69 0.66 0.75

Table 5: Final Results on dev and test sets: the best collaborator, collaborative agreements, and collaborators within
CLUEDO are trained to generate the analysis along with the labels and adopt the MCP approach.

Dev Test
Method F1 Acc F1 Acc

Best collaborator 0.66 (± 0.001) 0.75 (± 0.001) 0.69 (± 0.001) 0.75 (± 0.001)
Collaborators agreement 0.65 (± 0.001) 0.75 (± 0.001) 0.65 (± 0.001) 0.75 (± 0.001)

Zero-shot detective model 0.63 (± 0.038) 0.71 (± 0.024) 0.77 (± 0.022) 0.83 (± 0.016)
CLUEDO 0.74 (± 0.017) 0.78 (± 0.017) 0.77 (± 0.017) 0.82 (± 0.013)

(GPT-4) performs well on the development set with
an F1 score of 0.63. However, it surpasses all other
methods on the test set with a notable F1 Macro
of 0.77, showcasing its robust generalization capa-
bilities. The CLUEDO model outperforms other
methods with the highest F1 Macro on the develop-
ment set (0.74) while achieving the second-highest
score on test data. To assess the stability of predic-
tions, we experimented five times on the validation
set and test set and measured the performance of
the models. Even with a greedy decoding strat-
egy, small discrepancies regarding floating point
operations lead to divergent generations, especially
for larger models (Gawlikowski et al., 2021). It
is known that this issue primarily concerns GPT-
42. Therefore, even though the temperature is set
to 0 for all experiments, users have often reported
significant variations in the output.

Although the predictions of trained models re-
mained consistent, notable differences were ob-
served in GPT-4 predictions, particularly when
used without collaborators (the temperature is set

2Here some discussion of the OpenAI community on
models variability: https://community.openai.com/t/
why-the-api-output-is-inconsistent-even-after-
the-temperature-is-set-to-0/329541,
https://community.openai.com/t/
run-same-query-many-times-different-results/
140588

to zero with no sampling). The results are pre-
sented in Table 5. With the proposed CLUEDO
approach, the standard deviation is reduced by half.
Additionally, the error estimate on the development
set aligns with the one obtained on the test set. In
conclusion, even though CLUEDO may not outper-
form others on test data, it ensures higher stability
in predictions.

7 Conclusion

This paper presents a novel solution to the SemEval
2024 - Legal Reasoning Task, which introduced a
challenge for evaluating contemporary legal lan-
guage models. We transform the original dataset
into a multiple-choice question-answering problem
using the multiple-choice prompting approach and
propose an original system, namely CLUEDO, that
utilizes multiple collaborative LLMs and employs
a final “detective” model to predict the outcome.
Results show that our framework outperforms in-
dividual models in the public competition while
returning more stable predictions, securing second
place in the public competition.
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