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Abstract

This paper describes our approach and results
for the SemEval 2024 task of identifying the
token index in a mixed text where a switch
from human authorship to machine-generated
text occurs. We explore two BiLSTMs, one
over sentence feature vectors to predict the
index of the sentence containing such a change
and another over character embeddings of the
text. As sentence features, we compute token
count, mean token length, standard deviation
of token length, counts for punctuation and
space characters, various readability scores,
word frequency class and word part-of-speech
class counts for each sentence. class counts.
The evaluation is performed on mean absolute
error (MAE) between predicted and actual
boundary word index. While our competition
results were notably below the baseline, there
may still be useful aspects to our approach.

1 Introduction

With the rapid proliferation of Large
Language Models (LLMs) that are able
to produce fluent texts in response to user
queries across a wide range of domains
and topics, concerns are raised about the
potential misuses of such powerful tools. In
spite of their fluency, LLM-generated texts
may contain factual errors, inadvertently
spreading misinformation. Another common
issue occurs in the education system,
where students may attempt to pass off the
responses of such an LLM as their own work,
evading commonly used safeguards against
plagiarism. Given the overwhelming volume
of potentially machine-generated content,
it is desirable to have automated means of
detecting such texts to address the above-
mentioned issues. In this task (Wang et al.,
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2024), we examine exclusively English mixed
texts, where a switch from human authorship
to LLM output occurs at most once in a text
sample (some samples are entirely machine-
generated). To us, this models a plausible use
case, where a human user employs an LLM to
finish their work for them. For each sample,
the task is to predict the token index at which
the authorship change occurs. We observe,
that due to the structure of the samples, we
can reformulate the task more generally as
trying to detect an authorship change and
its location within the sample texts, without
explicitly trying to detect the presence of
LLM-generated text. This allows us to adapt
more traditional, computationally relatively
inexpensive approaches to stylometry and
authorship identification/attribution. While
the task is formulated as prediction of a
boundary word, we begin by identifying the
boundary sentence in which the authorship
change occurs. For each sentence, textual
feature vectors are extracted and combined
with character n-gram information, those
sentence vectors are then fed into a
Bidirectional LSTM network (Hochreiter
and Schmidhuber, 1997) which is trained to
predict the boundary sentence. We found
that our approach performed reasonably well
in-domain on the development set, in spite of
inevitably introducing some token offset error
by only making sentence level predictions
and choosing the middle tokens, but failed
out-of-domain on the test set, ranking at 26
out of 30 in the competition on subtask C.
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2 Background

In accordance with the task guidelines we
do not use external data, but use the English
subsets of larger data sets from subtask A
and B to extract a character vocabulary.
The subtask C dataset comprises a bit over
4000 texts with 505 pre-split into a dev
set by the task authors, each text labeled
with the index of the boundary word. The
following table shows token and sentence
counts for train and dev set, when tokenized
by splitting on whitespace (U+0020) as in
the task baseline model. Sentence splits are
determined subsequently on the token lists
by identifying sentence-final tokens using
our detection regex, this is done to ensure
matching the given boundary word labels.

train dev
texts 3,649 505
sentences 41,570 5,628
tokens (types) | 864,153 (29,593) | 116,221 (8,641)
chars 5,933,701 803,771
avg. sentences | 11.4 11.1
avg. boundary | 3.4 34

Table 1: Task data statistics

We observe that about half of the samples
contain 4 - 11 sentences and sentence count
per sample ranges from 1 to 76, with 24
samples containing just one sentence, like
e.g. "We have added a 2+ page discussion
on the experimental results, highlighting the
superiority of the ARC-based models and
their impact on the field of deep learning."
(boundary word ‘discussion’ in bold). While
on average the author switch occurs in
the fourth sentence, in about 15-20% of
the samples the switch occurs in the first
sentence. Examining the boundary word
position within their respective sentences we
found an average offset of -1.6 (train set) or
-1.8 (dev set) from the middle of the sentence,
i.e. the switch occurs slightly before mid
sentence on average.

An example text, split in sentences and
tokens can be observed below, with the
boundary word 'baseline'" at index 20
highlighted:
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e Format: label: (start token index)
[tokens]
*0: (0) [‘The’, ‘paper’, ‘proposes’,

[

a’, ‘method’, ‘to’, ‘recognize’, ‘time’,
‘expressions’, ‘from’, ‘text.’]

e 1. (1) [‘It’, ‘is’, ‘a\r\nsimple’, ‘rule-

based’, ‘method,”, ‘which’, °‘is’, ‘a’,
‘strong’, ‘baseline’, ‘for’, ‘time’,
‘expression’, ‘recognition.’]

*0: (25) [‘The’, ‘authors’, ‘analyze’,

‘different’, ‘datasets’, ‘and’, ‘discover’,
‘that’, ‘only’, ‘a’, ‘small’, ‘set’, ‘of’,
‘words’, ‘are’, ‘consistently’, ‘used’,
‘to’, ‘convey’, ‘time’, ‘information.’]

* remaining sentences omitted for brevity

Interestingly, by wusing the given
tokenization method on whitespace only,
we preserve linebreak characters such as
in the third token of the second sentence,
and obtain empty string tokens in between
multiple whitespaces. We choose to include
both this ‘raw’ text data as well as a
normalized version in our system, since on
the one hand, such typographic choices are
indicative of authorship changes but on the
other hand, we may not be able to rely on
their presence in unseen data.

3 System overview

In our system, we at first sought to
compare and combine more traditional textual
features with task-specific learned character
embeddings, as the former offer the benefit of
cheap computation and greater transparency,
whereas the latter should allow the system to
capture more subtle patterns at the expense
of transparency and at a higher computational
cost. We choose a relatively straightforward
basic architecture for our models, using a
BiLSTM over sentence vectors to predict the
boundary sentence at which the authorship
change occurs. With regards to textual
features, we compute for each sentence: token
count, mean token length, standard deviation
of token length, counts for punctuation and



space characters, various readability scores,
word frequency class and word part-of-speech
class counts. For our character model,
we used another BiLSTM with embedding
layer over the text characters, adjusting the
token labels to the character level. As the
character level model did not perform to our
expectations on both normalized and raw text,
we did not combine it with the textual feature
model and decided to use the latter as a stand-
alone model.

4 Experimental setup

We used the provided train/dev split to tune
our models. We compared performances
of a purely textual feature based model
and a character-based model. We extracted
the textual features offline, using the spacy
(Honnibal and Montani, 2017) library for
Python and its textdescriptives (Hansen et al.,
2023) extension library. We used the
en_core_web_sm (v3.7.1) pipeline for spacy.
Hyperparameters were tuned manually, we
settled on single-layer networks of hidden size
16, using Adam optimizer (Diederik, 2014)
with learning rate le-5, training on batches
of size 8 over 100 epochs. For the character-
based network we choose an embedding size
of 8. The task is evaluated on mean absolute
error (MAE) between predicted and actual
boundary word index. To translate our
boundary sentence prediction into a token
index, we selected the middle token index as
default, rounding it down for sentences with
an even token count. For the character model,
we chose the token containing the predicted
character index.

5 Results

On the development set our textual feature
model showed somewhat promising results
with regards to predicting the sentence
containing the boundary word. It predicted
the correct sentence in 69.9% of cases, the
adjacent sentence in a further 21.4% with a
sentence index MAE of 0.47. Translating
these predictions into token level predictions
using the sentence mid-point yielded a token
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MAE of 13.5, notably worse than the
baseline model’s. Our character embedding
model did perform notably worse on the
development set, with a token MAE of
48.9. We therefore did not pursue it
further and abandoned our initial idea of
combining it with the textual feature model.
On the test set, for the competition, we
submitted the predictions of our textual
feature model, unfortunately not matching the
performance on the development set. We
only managed to predict 30% of boundary
sentences correctly, with another 22.6%
predictions of the adjacent sentence, resulting
in a sentence MAE of 3.2 and a disappointing
token MAE of 59, ranking 26 out of 30
among the participant models in subtask C.
We suspect this drop in performance mainly
be caused by introduction of a new text
domain in the test set, while development and
training samples are exclusively drawn from
PeerRead (Kang et al., 2018) i.e. academic
peer reviews, the test set introduces student
essays from OUTFOX (Koike et al., 2023).
This degradation of performance for stylistic
textual features is in line with other findings,
e.g. the comparisons performed on the M4
dataset (Wang et al., 2023) of which this
competition’s dataset is an extension.

6 Conclusion

While our model’s performance leaves plenty
of room for improvement, we can envision
the use of simple textual features in a
lightweight model, similar to ours as a
basic tool in contexts where more powerful
models are either unavailable or too expensive
to run and the text domain is known in
advance. Focusing on sentence level instead
of token level predictions allows us to
reduce computational effort and we consider
it sufficient for many practical applications,
where automated detection of LLLM generated
text is only a first step, such as e.g.
examining student essays, where we would
expect a teacher to follow up with affected
students regarding suspicious spans of text
individually.



References

P. K. Diederik. 2014. Adam: a method for stochastic
optimization.

Lasse Hansen, Ludvig Renbo Olsen, and Kenneth
Enevoldsen. 2023. Textdescriptives: A Python
package for calculating a large variety of metrics
from text. Journal of Open Source Software,
8(84):5153.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation,
9(8):1735-1780.

Matthew Honnibal and Ines Montani. 2017. spaCy
2: Natural language understanding with Bloom
embeddings, convolutional neural networks and
incremental parsing. To appear.

Dongyeop Kang, Waleed Ammar, Bhavana Dalvi,
Madeleine van Zuylen, Sebastian Kohlmeier,
Eduard Hovy, and Roy Schwartz. 2018. A dataset
of peer reviews (PeerRead): Collection, insights
and NLP applications. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 1647-1661, New Orleans, Louisiana.
Association for Computational Linguistics.

Ryuto Koike, Masahiro Kaneko, and Naoaki Okazaki.
2023. Outfox: LLM-generated essay detection
through in-context learning with adversarially
generated examples.

Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Jinyan
Su, Artem Shelmanov, Akim Tsvigun, Chenxi
Whitehouse, Osama Mohammed Afzal, Tarek
Mahmoud, Alham Fikri Aji, and Preslav Nakov.
2023. M4: Multi-generator, multi-domain, and
multi-lingual black-box machine-generated text
detection. arXiv:2305.14902.

Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Jinyan
Su, Artem Shelmanov, Akim Tsvigun, Chenxi
Whitehouse, Osama Mohammed Afzal, Tarek
Mahmoud, Giovanni Puccetti, Thomas Arnold,
Alham Fikri Aji, Nizar Habash, Iryna Gurevych,
and Preslav Nakov. 2024. SemEval-2024 task
8: Multigenerator, multidomain, and multilingual
black-box machine-generated text detection. In
Proceedings of the 18th International Workshop on
Semantic Evaluation, SemEval 2024, Mexico City,
Mexico.

832


https://cir.nii.ac.jp/crid/1370580230635113728
https://cir.nii.ac.jp/crid/1370580230635113728
https://doi.org/10.21105/joss.05153
https://doi.org/10.21105/joss.05153
https://doi.org/10.21105/joss.05153
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.18653/v1/N18-1149
https://doi.org/10.18653/v1/N18-1149
https://doi.org/10.18653/v1/N18-1149
http://arxiv.org/abs/2307.11729
http://arxiv.org/abs/2307.11729
http://arxiv.org/abs/2307.11729

