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Abstract

Solving brainteasers is a task that requires com-
plex reasoning prowess. The increase of re-
search in natural language processing has lead
to the development of massive large language
models with billions (or trillions) of parame-
ters that are able to solve difficult questions
due to their advanced reasoning capabilities.
The SemEval BRAINTEASER shared tasks con-
sists of sentence and word puzzles along with
options containing the answer for the puzzle.
Our team uses OpenAI’s GPT-4 model along
with prompt engineering to solve these brain-
teasers.

1 Introduction

There are two different types of thinking processes,
vertical and lateral (Waks, 1997). Vertical thinking
refers to the form of linear thinking thinking we are
conditioned to. It is based on rationality and logic.
Lateral thinking, or "out-of-the-box" thinking is a
more creative way of thinking from different per-
spectives. This is contrary to first method.

The recent advancements of natural language
processing models, more specifically large lan-
guage models have achieved great progress in rea-
soning capabilities and therefore vertical thinking
tasks (Talmor et al., 2019, Bisk et al., 2020).

This lateral, creative form of thinking has mul-
tiple use cases in the real world since rapid inno-
vation and out of the box thinking are key func-
tionalities of blooming institutions. Innovations are
crucial to solve global scale problems like climate
change and are very important to big tech compa-
nies to keep their consumers happy and engaged.
Therefore an interesting part of language models
are their abilities to show lateral thinking and defy
default commonsense associations.

For the SemEval 2024 Task 9: BRAINTEASER:
A Novel Task Defying Common Sense (Jiang et al.,
2024) on CodaLab (Pavao et al., 2023), we aim to

solve the brainteasers as a multiple-choice Ques-
tion Answering (QA) tasks. Our team proposes a
system for this where we use prompt engineering
with GPT-4 to solve these brainteasers.

All of our code can be found on GitHub
at https://github.com/dipsivenkatesh/
SemEval-2024-Task-9

2 Background

2.1 Task and Data Description

The BRAINTEASER shared task! consists two
different type of brainteasers/puzzles.

* Sentence Puzzle: Sentence-type brainteaser
where the puzzle defying commonsense is cen-
tered on sentence snippets.

* Word Puzzle: Word-type brainteaser where
the answer violates the default meaning of the
word and focuses on the letter composition of
the target question

We can find the examples of each puzzle in Table
1. In this paper we go through our team’s system
to solve both the sentence puzzle and word puzzle
task.

The task requires us to to solve the brainteasers
in the BRAINTEASER dataset (Jiang et al., 2023).
The dataset was created by crawling the internet
to find relevant puzzles. This is then filtered to
remove irrelevant questions. The task is provided
as a question-answering task in which for each
puzzle we much select the correct answer from
four options.

The task also consists of adversarial subsets to
make sure that the approach is based on reason-
ing and not LLM memorization. The adversarial
reconstructions are of two types.

1https: //codalab.lisn.upsaclay.fr/
competitions/15566
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Question

Choices

Sentence Puzzle:

A man shaves everyday, yet keeps his beard long

He is a barber.

He wants to maintain his appearance.

He wants his girlfriend to buy him a razor.
None of the above.

Word Puzzle: What part of London is in France?

The letter N.
The letter O.
The letter L.
None of the above.

Table 1: Sentence and Word puzzle examples.

* Semantic Reconstruction rephrases the orig-
inal question without changing the correct an-
swer and the distractors.

* Context Reconstruction keeps the original
reasoning path but changes both the question
and the answer to describe a new situational
context.

We find instances of adversarial reconstructions in
Table 2

2.2 Previous Work

The field of natural language processing has seen
massive developments since the discovery of trans-
formers (Vaswani et al., 2023). Initially used in
machine translation, transformers found their way
into other fields of natural language processing as
well including large language models. These large
language models like BERT (Devlin et al., 2019),
LLaMA/Llama 2 (Touvron et al., 2023a, Touvron
et al., 2023b) and OpenAI’s GPT-3 (Brown et al.,
2020) and GPT-4 (OpenAl, 2023) have powerful
reasoning capabilities and can be applied on vari-
ous tasks involving natural language.

Prompt engineering refers to structuring the in-
put text for a large language model. Methods like
prompt engineering and fine-tuning have tremen-
dous efficacy on downstream tasks. If prompted on
the role of the language model along with the input
question and/or relevant data, language models do
a good job on providing the correct output even in
a zero-shot manner (Sanh et al., 2022).

There have been quite a few benchmarks for test-
ing the creativity of automatic natural language
systems. Identifying puns (Zou and Lu, 2019) and
humour (Meaney et al., 2021) is an example of
this. The shared task proposed in (Lin et al., 2021)
tests the natural language understanding and cre-
ativity of it’s systems by testing the systems on

riddle style questions. This is pretty close to the
BRAINTEASERS shared task that requires the system
to automatically solve brainteasers. The common-
sense reasoning ability of these language models
are also tested with various benchmarks (Rajani
etal., 2019, Maet al., 2019, Lourie et al., 2021, Ma-
harana and Bansal, 2022). These metrics provide a
good analysis of the vertical thinking capabilities
of the systems. However for the brainteaser task it
is important to think in ways that go against com-
mon sense. It is also imperative for the model to
understand the questions instead of just memoriza-
tion as adversarial ways of forming the questions
also exist in the task.

2.3 Evaluation Metrics

The systems will be evaluated on their accuracy
in the question-accuracy tasks. The following two
accuracy metrics are used.

* Instance-based Accuracy: where each ques-
tion individual/adversarial are considered as a
separate instance. The accuracy for the origi-
nal question as well as both of the adversarial
ways will be reported.

* Group-based Accuracy: This evaluates the
accuracy of the original question along with
its adversarial reconstructions combined. The
value is only counted as correct if it gets all of
these questions correct.

3 System Overview

3.1 GPT4

We use the GPT-4 turbo as gpt-4-1106-preview
model from the GPT-4 (OpenAl, 2023) family of
models. We access the GPT-4 model using the
OpenAl API. GPT-4 turbo has a 128,000 token con-
text window and can solve difficult problems with
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Adversarial Strategy Question

Choice

Original
keeps his beard long.

A man shaves everyday, yet

He is a barber.

He wants to maintain his appearance.
He wants his girlfriend to buy him a
razor.

None of the above.

Semantic Reconstruction

A man preserves a lengthy beard
despite shaving every day.

He is a barber.

He wants to maintain his appearance.
He wants his girlfriend to buy him a
razor.

None of the above.

Context Reconstruction

Tom attends class every day but
doesn’t do any homework.

He is a teacher.

He is a lazy person.
His teacher will not let him fail.
None of the above.

Table 2: Adversarial reconstructions of the brainteasers

greater accuracy than previous generation large lan-
guage models. This is due to its broader general
knowledge and advanced reasoning capabilities, its
training data is up to the date of April 2023. We
use the chat completions API in JSON mode to
ensure that we get the correct option answer from
the question passed to the model.

3.2 Prompts

We use prompt engineering with the roles of system
prompts and user prompts to tell the model what to
do and what instructions to follow.

* Role Prompt: You are an assistant that only
responds in json. You solve riddles and brain-
teasers that require complex reasoning. Solve
the riddle/brainteaser by selecting the correct
option from the given option list. The re-
sponse json should be in the format "optionin-
dex": array index of the option selected from
option list. this should be a zero-based index ,
"optionanswer": The answer selected from the
given option list I only want the json output
of this.

» User Prompt: Solve this brainteaser: (brain-
teaser question here) optionlist: (answer op-
tionlist here)

With this we can see that we use one role prompt
for the entire system, both sentences and word puz-

zles, and for the user prompt we specify the differ-
ent questions and the options for the answer.

4 Experimental Setup

We load the BRAINTEASER test datasets (Jiang et al.,
2023) provided to us by the BRAINTEASER shared
task organizers using the HuggingFace datasets li-
brary (Lhoest et al., 2021). For the sentence puzzle
we have 120 puzzles with 4 options corresponding
to each puzzle and for the word puzzle we have
96 question s and for each question we have 4 op-
tions. The test set is unlabeled, it doesn’t specify
the correct option, and our systems must evaluate
the correct option for each brainteaser.

We generate the prompts for each question with
the methods specified above and pass them to the
GPT-4 turbo chat completions API for solving the
brainteasers.

5 Results

For evaluation, the organizers rank the system
based on accuracy of the answers on the question-
answering task. The GPT-4 with prompt engineer-
ing system that we have provided achieves 9 place
on the leaderboard in the evaluation phase 2. The
performance of the system on all the different eval-
uation components can be found in Table 3 for the
sentence puzzle and in Table 4 for the word puzzle.

2https: //codalab.lisn.upsaclay.fr/
competitions/15566#results
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Team Original Semantic Context O&S O &S & C Overall
GPT-4 + prompt engineering 97.5 92.5 80.0 92.5 77.5 90.0
Human 90.74 90.74 94.44 90.74 88.89 91.98
ChatGPT (zero-shot) 60.77 59.33 67.94 50.72 39.71 62.68
RoBERTa-L 43.54 40.19 46.41 33.01 20.10 43.38
Table 3: Sentence puzzle result.
Team Original Semantic Context O&S O &S & C Overall
GPT-4 + prompt engineering ~ 0.938 0.938 0.875 0.938 0.812 0.917
Human 91.67 91.67 91.67 91.67 89.58 91.67
ChatGPT (zero-shot) 56.10 52.44 51.83 43.90 29.27 53.46
RoBERTa-L 19.51 19.51 23.17 14.63 6.10 20.73
Table 4: Word puzzle result.
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