
Proceedings of the Fourth Workshop on Scholarly Document Processing (SDP 2024), pages 215–219
August 16, 2024 ©2024 Association for Computational Linguistics

Papilusion at DAGPap24: Paper or Illusion? Detecting AI-generated
Scientific Papers

Nikita Andreev�, Alexander Shirnin ï

Vladislav Mikhailov�, Ekaterina Artemovat

�CAIT and Applied AI Institute, ïHSE University
�University of Oslo, tToloka AI

Correspondence: ashirnin@hse.ru

Abstract

This paper presents Papilusion, an AI-
generated scientific text detector developed
within the DAGPap24 shared task on detect-
ing automatically generated scientific papers.
We propose an ensemble-based approach and
conduct ablation studies to analyze the effect of
the detector configurations on the performance.
Papilusion is ranked 6th on the leaderboard,
and we improve our performance after the com-
petition ended, achieving 99.46 (+9.63) of the
F1-score on the official test set.

1 Introduction

A series of the DAGPap shared tasks addresses mit-
igation of the risks associated with misusing lan-
guage technologies in the scientific domain, such as
fabricating research publications (Else and Van No-
orden, 2021; Van Noorden, 2021) and affecting
the peer review ecosystem at the leading AI con-
ferences (Liang et al., 2024). DAGPap22 (Kash-
nitsky et al., 2022) focuses on a well-established
task formulation in the artificial text detection field
(Uchendu, 2023), which requires to determine if a
given text is human-written or AI-generated. DAG-
Pap241 offers a less explored task formulation,
which is framed as a token-level classification prob-
lem. Developing robust and reliable AI-generated
scientific text detectors promotes analyzing sci-
entific text collections at scale and assisting non-
expert and expert users in identifying the fabricated
content (Cabanac et al., 2021; Else, 2023).

This paper proposes Papilusion2, an AI-
generated text detection system for tagging text
segments, which are produced by a generative lan-
guage model (LM) or modified through synonym
replacement and summarization. The token-level
AI-generated text detection accounts for a more

1github.com/ChamezopoulosSavvas/DAGPap24
2Papilusion is named after a pokémon Papilusion, which

is the French name for Butterfree.

practical scenario, where a generative LM is used
as a writing assistant. Papilusion is an ensemble of
encoder-only sequence taggers that leverages the
strengths of multiple independently finetuned LMs
to enhance the accuracy of detecting AI-generated
text. We conduct ablation studies to analyze the
impact of various hyperparameter and LM configu-
rations on the target performance.

Papilusion is ranked 6th among 30 participating
teams at DAGPap24, with 89.83 of the F1-score
on the leaderboard. After the competition ends, we
improve our solution achieving 99.46 (+9.63) of
the F1-score on the official evaluation set.

2 Background

The DAGPap24 dataset is a collection of human-
machine mixed scientific texts, where the text
segments can be (i) human-written, (ii) modified
through an NLTK-based synonym replacement
(Bird and Loper, 2004), (iii) produced by Chat-
GPT, and (iv) summarized. The organizers provide
5000, 5000, and 20000 training, development, and
test examples, respectively. The average number of
tokens3 is 5591.

Task Formulation The task is to assign one of
the four corresponding labels to each token in a
given text, as it was described above. The example
for a text with a synonym replacement is shown be-
low. Here, “1” stands for a synonym replacement,
and “0” refers to the human-written segment:

• text: “this was continued until successful in-
travascular positioning. An observer, blinded
to the lens allocation, <...>”

• tokens: [“this”, “was”,
“continued”, “until”, “successful”,
“intravascular”, “positioning.”,

3The tokens are provided by the organizers and are ob-
tained by splitting a text based on whitespace characters.

215

mailto:
https://github.com/ChamezopoulosSavvas/DAGPap24


Figure 1: The Papilusion pipeline involves fine-tuning three distinct encoder models, which are based on the same
architecture but trained independently with different hyperparameters. These models use linear heads to predict
labels that differentiate between human-written and machine-generated text. Finally, a majority vote is applied to
aggregate the predicted labels.

“An”, “observer,”, “blinded”, “to”,
“the”, “lens”, “allocation,” <...>]

• labels: [1, 1, 1, 1, 1, 1, 1, 0, 0,
0, 0, 0, 0, 0 <...>]

Performance Metric The performance is evalu-
ated using the macro-averaged F1-score.

3 Papilusion

The Papilusion pipeline involves several key steps
(see Figure 1):

1. Model Fine-Tuning: We fine-tuned encoder
models to predict the corresponding labels.
Although based on the same architecture, the
models were fine-tuned with different hyper-
parameters to create a more diverse ensemble.
Each model was trained on a sequence label-
ing task, predicting labels for every token in
the input sequence.

2. Majority Voting: After fine-tuning multiple
models, we used a majority voting strategy
to aggregate their predictions. This approach
involved combining the predictions from each
model and selecting for each token the label
that received the most votes across the ensem-
ble of models. It is a popular ensembling
method, which helps to gain better perfor-
mance by using several models (Wani et al.,
2018; K. et al., 2020). For the ensemble we
chose three best models, based on the perfor-
mance metric on the development dataset.

By using encoder models fine-tuned for text clas-
sification and applying a majority voting mecha-
nism, we aimed to improve the accuracy and ro-
bustness of our classification system.

4 Experiments

Overview We conducted a wide series of exper-
iments with a family of DeBERTaV3 models (He
et al., 2023). We investigate experiments with bot-
tom layers freezing (Ingle et al., 2022) and the size
of the input sequence as the most important hyper-
parameters for the efficient model selection. We
used longer sequences to fit in more context for a
model. Additionally, we believe that there are some
dependencies between the size of the model and
effectiveness of a layer freezing and using various
input sequences lengths. In our experiments we
conducted a detailed research and comparison of
various setups.

Model Params Hidden size Layers

Xsmall 22M 384 12
Small 44M 768 6
Base 86M 768 12
Large 304M 1024 24

DistillBERT 66M 768 6

Table 1: Model architectures comparison. The Distill-
BERT model was used as a baseline by the competition
organizers.

216



Model size Xsmall Small Base Large

Frozen layers 0 6 12 0 6 0 6 12 0 6 12 18

256 input 97.32 97.00 79.20 95.88 82.74 96.99 96.22 89.68 - - 98.12 98.17
512 input 98.33 97.71 78.49 98.81 83.31 98.55 98.72 90.66 - 98.83 98.82 99.07
1024 input 86.38 85.82 55.65 88.13 63.14 88.12 80.97 71.24 96.29 - 98.84 99.21
2048 input 67.87 62.95 28.99 65.30 45.47 66.21 56.40 50.25 92.87 92.87 - -

Table 2: Test results obtained after the end of competition. The symbol ’-’ is used to denote experiment results
where with the given configuration it was not possible to achieve satisfactory or adequate outcomes.

Competition-included experiments During the
competition we utilized competition organizers’
baseline code and did several approaches of fine-
tuning DeBERTa models. During the competition
timeline we tried several variations of different
hyperparameters such as input sequence length,
model size, freezing several bottom layers of the
model, learning rate scheduler. Our final submis-
sion brought us to 6th place with 89.83 F1 met-
ric which was obtained with the ensemble of 3
DeBERTa-base models with different number of
frozen layers and the default input sequence length
(512 tokens).

Post-competition study After the end of com-
petition we identified a tokenization issue in the
code: the chunk function truncated sequence by
the number of words, not tokens which resulted
in information loss. We fixed our training scripts
with proper tokenization in chunk function, along
with some minor adjustments in the prediction func-
tion. These modifications significantly improved
the models’ performance, resulting in a score in-
crease of +9.63, and enabled us to conduct a de-
tailed study of various models and hyperparameter
variations. The results are shown in the Table 2

We used the following hyperparameters for our
experiments:

• Model size - {Xsmall, Small, Base, Large}

• Input sequence length - {256, 512, 1024,
2048}

• Frozen layers - {0, 6, 12, 18}

We fixed other hyperparameters (learning rate,
scheduler, seed, validation dataset size) to perform
fair comparison. In this case, we can see how
changing previously mentioned hyperparameters
affects the result. Additionally, we did a series
of ensemble mixtures based on majority voting
technique for our best models to improve our final
score.

Hardware specification We run experiments
on a single GPU TESLA V100 32GB. Model
fine-tuning is conducted using the transformers
library (Wolf et al., 2020). The fine-tuning for
DeBERTa requires approximately 4-12 hours to
complete depending on the size of the model and
the length of the sequence. The inference on the
official test set runs within 1 hour. For DeBERTa-
large model we lower the batch size down to 4, for
other model versions we set the batch size to 16.

5 Results

Competition phase During the competition we
fine-tuned base DeBERTa models with different
number of frozen bottom layers and then applied
majority voting for 3 models. This brought us to
the 6th place (see Table 3) and the best score among
the teams below 90.0 F1 score.

Place Test score

1st place 99.54
...

4th place 99.24
5th place 95.54
6th place (Our system) 89.83
7th place 89.82
8th place 89.67

Baseline 86.36

Table 3: Competition results.

Post-competition phase Table 4 provides results
of our best setups, ensembles based on those setups
and comparison to the test scores on the leader-
board. More detailed results in various setups pro-
vided in the table 2, and our main outcomes are:

• 1024-token sequence inputs are typically bet-
ter for DeBERTa-large model; however, we
found that using a 512-token sequence results
in comparable quality across almost all model
types.

217



Setup Model Frozen layers input length Test score

a) Xsmall 0 512 98.33
b) Small 0 512 98.81
c) Base 6 512 98.72
d) Large 18 256 98.17
e) Large 18 512 99.07
f) Large 12 1024 98.84
g) Large 18 1024 99.21

b) & c) & g) 99.28
d) & e) & g) 99.45
e) & f) & g) 99.46

1st place solution 99.54
2nd place solution 99.44

Baseline∗ DistilBERT 0 512 93.64

Table 4: Comparison of best results across various experimental configurations, denoted by letters (a, b, c, etc.).
Our ensemble achieves the 2nd place compared to competition scores. ’&’ sign stands for ensembling via majority
voting. With ’*’ we mark improved baseline results obtained by ourselves after the competition.

• Freezing more of the bottom layers generally
leads to better results for the DeBERTa-large
model, while for other models it is better to
not freeze the layers.

• Despite freezing all 12 encoder layers, we
achieve a 90.66 F1 score with the Base De-
BERTa. This result indicates that the task is
relatively simple for these models.

• Ensembling the best single models leads to
the score improvement.

The usage of DeBERTa models with corrected in-
put sequence chunking allowed us to achieve sig-
nificant improvements over the baseline. We got
98.33 F1 score with only Xsmall model version.
It is 3 times smaller than DistillBERT, that was
used as the baseline model by competition organiz-
ers. Also we figured out that freezing of some lay-
ers could be helpful, especially for bigger models
when model is already trained and have sufficient
knowledge, thus we achieve our best single-model
score of 99.21 with DeBERTa-large and 18/24 lay-
ers frozen. With the majority voting ensemble of
our best Large models we achieve 99.46 F1 score
which is compared to the second place based on
the competition results.

As it was mentioned, the smallest DeBERTa
model already gets F1 score above 98, while larger
ones improve just moderately depending on their
settings. This suggests that the problem we are
addressing might be not particularly complex, re-
ducing the need for large models. Upon a close
examination of the dataset’s origin, we hypothe-
size that the construction process may have relied

heavily on basic generation rules and may not have
included sufficient filtering of simple samples. This
could have resulted in notable differences among
various classes within the dataset. Additionally,
we believe that synonym replacement is a simple
and difficult-to-control process, likely causing a
significant shift in the data distribution and making
the task easier. Furthermore, the task of designing
and creating text that combines inputs from both
humans and LMs presents a separate significant
and unique challenge.

6 Conclusion

In this paper, we proposed Papilusion, an AI-
generated text detection system designed for the
DAGPap24 shared task. Our system ranked 6th in
the competition, achieving an F1 score of 89.83.
Post-competition enhancements, including fixing
tokenization errors and optimizing model parame-
ters, increased F1 score to 99.46.

Through comprehensive ablation studies, we
identified the most impactful hyperparameters and
model configurations, leading to substantial perfor-
mance improvements.

While our experiments demonstrate that larger
models achieve the best results when resources
are not limited, we also found that even the small
models (DeBERTa-Xsmall) exhibit promising per-
formance metrics with minimal computational re-
sources.

Acknowledgements

AS’s work results from a research project imple-
mented in the Basic Research Program at the Na-

218



tional Research University Higher School of Eco-
nomics (HSE University). We acknowledge the
computational resources of HSE University’s HPC
facilities.

References
Steven Bird and Edward Loper. 2004. NLTK: The natu-

ral language toolkit. In Proceedings of the ACL In-
teractive Poster and Demonstration Sessions, pages
214–217, Barcelona, Spain. Association for Compu-
tational Linguistics.

Guillaume Cabanac, Cyril Labbé, and Alexander Mag-
azinov. 2021. Tortured phrases: A dubious writ-
ing style emerging in science. evidence of critical
issues affecting established journals. arXiv preprint
arXiv:2107.06751.

Holly Else. 2023. Abstracts written by chatgpt fool
scientists. Nature, 613(7944):423.

Holly Else and Richard Van Noorden. 2021. The fight
against fake-paper factories that churn out sham sci-
ence. Nature, 591(7851):516–520.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2023.
DeBERTav3: Improving deBERTa using ELECTRA-
style pre-training with gradient-disentangled embed-
ding sharing. In The Eleventh International Confer-
ence on Learning Representations.

Digvijay Ingle, Rishabh Tripathi, Ayush Kumar, Kevin
Patel, and Jithendra Vepa. 2022. Investigating the
characteristics of a transformer in a few-shot setup:
Does freezing layers in RoBERTa help? In Pro-
ceedings of the Fifth BlackboxNLP Workshop on An-
alyzing and Interpreting Neural Networks for NLP,
pages 238–248, Abu Dhabi, United Arab Emirates
(Hybrid). Association for Computational Linguistics.

Rishivardhan K., Kayalvizhi S, Thenmozhi D., Raghav
R., and Kshitij Sharma. 2020. SSN-NLP at SemEval-
2020 task 4: Text classification and generation on
common sense context using neural networks. In
Proceedings of the Fourteenth Workshop on Semantic
Evaluation, pages 580–584, Barcelona (online). Inter-
national Committee for Computational Linguistics.

Yury Kashnitsky, Drahomira Herrmannova, Anita
de Waard, George Tsatsaronis, Catriona Catriona
Fennell, and Cyril Labbe. 2022. Overview of the
DAGPap22 shared task on detecting automatically
generated scientific papers. In Proceedings of the
Third Workshop on Scholarly Document Processing,
pages 210–213, Gyeongju, Republic of Korea. Asso-
ciation for Computational Linguistics.

Weixin Liang, Zachary Izzo, Yaohui Zhang, Haley Lepp,
Hancheng Cao, Xuandong Zhao, Lingjiao Chen, Hao-
tian Ye, Sheng Liu, Zhi Huang, et al. 2024. Moni-
toring ai-modified content at scale: A case study on
the impact of chatgpt on ai conference peer reviews.
arXiv preprint arXiv:2403.07183.

Adaku Uchendu. 2023. Reverse Turing Test in the Age
of Deepfake Texts. Ph.D. thesis, The Pennsylvania
State University.

Richard Van Noorden. 2021. Hundreds of gibberish
papers still lurk in the scientific literature. Nature,
594(7862):160–161.

Nikhil Wani, Sandeep Mathias, Jayashree Aanand Gaj-
jam, and Pushpak Bhattacharyya. 2018. The whole
is greater than the sum of its parts: Towards the effec-
tiveness of voting ensemble classifiers for complex
word identification. In Proceedings of the Thirteenth
Workshop on Innovative Use of NLP for Building Ed-
ucational Applications, pages 200–205, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

219

https://aclanthology.org/P04-3031
https://aclanthology.org/P04-3031
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA
https://doi.org/10.18653/v1/2022.blackboxnlp-1.19
https://doi.org/10.18653/v1/2022.blackboxnlp-1.19
https://doi.org/10.18653/v1/2022.blackboxnlp-1.19
https://doi.org/10.18653/v1/2020.semeval-1.73
https://doi.org/10.18653/v1/2020.semeval-1.73
https://doi.org/10.18653/v1/2020.semeval-1.73
https://aclanthology.org/2022.sdp-1.26
https://aclanthology.org/2022.sdp-1.26
https://aclanthology.org/2022.sdp-1.26
https://doi.org/10.18653/v1/W18-0522
https://doi.org/10.18653/v1/W18-0522
https://doi.org/10.18653/v1/W18-0522
https://doi.org/10.18653/v1/W18-0522
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

