
Proceedings of the 9th Workshop on Representation Learning for NLP (RepL4NLP-2024), pages 256–273
August 15, 2024 ©2024 Association for Computational Linguistics

Mitigating Semantic Leakage in Cross-lingual Embeddings
via Orthogonality Constraint

Dayeon Ki1∗ Cheonbok Park2 Hyunjoong Kim2

1University of Maryland 2NAVER Cloud
dayeonki@umd.edu

Abstract

Accurately aligning contextual representations
in cross-lingual sentence embeddings is key
for effective parallel data mining. A common
strategy for achieving this alignment involves
disentangling semantics and language in sen-
tence embeddings derived from multilingual
pre-trained models. However, we discover
that current disentangled representation learn-
ing methods suffer from semantic leakage—a
term we introduce to describe when a substan-
tial amount of language-specific information
is unintentionally leaked into semantic repre-
sentations. This hinders the effective disentan-
glement of semantic and language representa-
tions, making it difficult to retrieve embeddings
that distinctively represent the meaning of the
sentence. To address this challenge, we pro-
pose a novel training objective, ORthogonAlity
Constraint LEarning (ORACLE), tailored to
enforce orthogonality between semantic and
language embeddings. ORACLE builds upon
two components: intra-class clustering and
inter-class separation. Through experiments on
cross-lingual retrieval and semantic textual sim-
ilarity tasks, we demonstrate that training with
the ORACLE objective effectively reduces se-
mantic leakage and enhances semantic align-
ment within the embedding space.1

1 Introduction

Parallel datasets play a pivotal role in enhancing
neural machine translation (NMT) performance
(Michel and Neubig, 2018). However, acquiring
high-quality parallel texts is challenging, especially
for lower-resourced languages where monolingual
data is more abundant (Niu et al., 2018). In this
context, effective approaches for mining parallel
data are essential for applying NMT in practical
scenarios (Artetxe and Schwenk, 2019a).

*Work done during internship at NAVER Cloud.
1Our code and models will be released at publication.
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Figure 1: Visualization of LaBSE sentence embed-
dings for 1,000 Chinese-English sentence pairs. Figure
1(a) shows substantial overlap between semantic and
language-specific representations. This overlap is effec-
tively mitigated by the proposed ORACLE method, as
shown in Figure 1(b).

Recent approaches to this problem utilize cross-
lingual sentence embeddings (Schwenk and Douze,
2017; Schwenk, 2018) generated by multilingual
pre-trained encoders such as multilingual BERT
(Devlin et al. (2019), mBERT) or XLM-RoBERTa
(Conneau et al. (2020), XLM-R). These embed-
dings aim to align semantically similar sentences
across languages into a unified latent space, fa-
cilitating the extraction of pseudo-parallel pairs
(Wang et al., 2022). However, Tiyajamorn et al.
(2021) and Kuroda et al. (2022) demonstrate that
embeddings of parallel sentences from these en-
coders form clusters by language rather than by
semantics. Building on this, they attempt to disen-
tangle language-specific information from sentence
embeddings, thereby distilling language-agnostic
semantic embeddings.

In order to achieve this, two premises need to be
considered. Given parallel sentence,
(1) How well are the semantic representations

aligned?
(2) How well are the language-specific represen-

tations separated?
Prior works have primarily focused on the former,
leaving the latter question underexplored. Figure
1 illustrates sentence embeddings of a parallel cor-
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Figure 2: ORACLE objective for training semantic and language MLP networks. ORACLE is composed of two
components: (1) Intra-class clustering for bringing related components closer in embedding space, (2) Inter-
class separation for ensuring unrelated components to be distant. s and t represent source and target sentence
input respectively. ŝm: source semantic representation; ŝl: source language representation; t̂m: target semantic
representation; t̂l: target language representation.

pus pair, indicating that while semantics are well-
aligned with previous disentanglement methods,
there is still substantial overlap between language-
specific and semantic information (Figure 1a). We
define this issue as semantic leakage, which un-
dermines the effectiveness of cross-lingual embed-
dings in accurately mining parallel pairs. By con-
straining orthogonality between semantic and lan-
guage representations, we facilitate a clearer sepa-
ration of language-specific information in the em-
bedding space (Figure 1b).

In this work, we introduce ORACLE (ORthog-
onality Constraint LEarning), a training objective
aimed at enforcing orthogonality between semantic
and language-specific representations. Our goal is
to render these two representations independent to
each other, thus ensuring their clear differentiation
in the embedding space (Mitchell and Steedman,
2015). ORACLE consists of two key components:
intra-class clustering and inter-class separation. As
shown in Figure 2, intra-class clustering aligns re-
lated components more closely, while inter-class
separation enforces orthogonality between unre-
lated components. Our method is designed to be
simple and effective, capable of being implemented
atop any disentanglement methods.

We explore a range of pre-trained multilingual
encoders (LASER (Artetxe and Schwenk, 2019b),
InfoXLM (Chi et al., 2021), and LaBSE (Feng

et al., 2022)) to generate initial sentence embed-
dings. Subsequently, we train each semantic and
language multi-layer perceptrons (MLPs) with OR-
ACLE to disentangle the sentence embeddings
into semantics and language-specific information.
Experimental results on both cross-lingual sen-
tence retrieval tasks (Artetxe and Schwenk, 2019b;
Zweigenbaum et al., 2017) and the Semantic Tex-
tual Similarity (STS) task (Cer et al., 2017) demon-
strate higher performance on semantic embeddings
and lower performance on language embeddings
with ORACLE. This suggests that our method not
only resolves semantic leakage but also enhances
semantic alignment (§6). Our analysis further re-
veals that ORACLE leads to robust performance
in challenging scenarios such as code-switching
(§7.1).

To summarize, our contributions are threefold:
(1) We make the first attempt to address the issue
of semantic leakage, wherein a substantial amount
of language-specific information is leaked into se-
mantic representations.
(2) We mitigate semantic leakage with ORACLE,
a simple and effective training objective that im-
proves disentanglement of semantic and language-
specific information.
(3) We show that ORACLE leads to robust mining
in code-switched scenarios.
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2 Related work

2.1 Cross-lingual Sentence Embeddings

Earlier works primarily centered on learning
sentence-level representations for mining pseudo-
parallel pairs. Initial methods utilized neural ma-
chine translation (NMT) systems with a shared
encoder (Schwenk and Douze, 2017; Schwenk,
2018). This approach inspired supervised ap-
proaches which train neural networks with large
parallel datasets. For instance, Lee and Chen
(2017) introduced the multilingual Universal Sen-
tence Encoder (mUSE), a dual-encoder model pre-
trained on parallel corpora in 16 languages. Simi-
larly, LASER (Artetxe and Schwenk, 2019b) is an
encoder-decoder model based on recurrent neural
network. More recently, there has been a shift to-
wards using multilingual sentence encoders such
as mBERT (Devlin et al., 2019), XLM-R (Conneau
et al., 2020), and CRISS (Tran et al., 2020), which
are based on single self-attention networks pre-
trained on large monolingual datasets. InfoXLM
(Chi et al., 2021) extends XLM-R by adding a
cross-lingual contrastive pre-training objective to
enhance cross-lingual understanding task perfor-
mance. Subsequently, the Dual Encoder with An-
chor Model (DuEAM) (Goswami et al., 2021) in-
corporates a dual-encoder approach and integrates
the word mover’s distance to better capture seman-
tic similarity between sentences. LaBSE (Feng
et al., 2022) is a state-of-the-art multilingual sen-
tence encoder built upon a dual-encoder framework,
pre-trained with both monolingual and bilingual
corpora. We leverage several of these multilingual
sentence encoders to derive initial cross-lingual
sentence embeddings. For our experiments, we
specifically focus on three open-source baselines:
LASER, InfoXLM, and LaBSE. We investigate the
issue of semantic leakage in these encoders and
effectively address it by integrating ORACLE.

2.2 Disentangled Representation Learning

A high-quality cross-lingual sentence embedding
should effectively align semantically similar sen-
tences from different languages in a shared embed-
ding space (Wang et al., 2022). However, embed-
dings obtained from multilingual sentence encoders
are often highly biased by language-specific infor-
mation (Tiyajamorn et al., 2021). In this context,
previous research has largely focused on learning
disentangled representations to separate language-
specific elements from semantics (Pires et al., 2019;

Decomposer LR LCR LS LL LA

DREAM (Tiyajamorn et al., 2021) ✓ ✓ ✓

MEAT (Kuroda et al., 2022) ✓ ✓ ✓ ✓

Table 1: Comparison of loss components in DREAM
and MEAT. LR: Reconstruction loss, LCR: Cross-
Reconstruction loss, LS : Semantic embedding loss, LL:
Language embedding loss, LA: Adversarial loss.

Libovický et al., 2020; Gong et al., 2021; Zhao
et al., 2021). One prevalent method involves train-
ing semantic and language networks separately,
where the former is responsible for extracting mean-
ing while the latter extracts language-specific in-
formation (Tiyajamorn et al., 2021; Kuroda et al.,
2022; Wu et al., 2022). Specifically, DREAM
(Tiyajamorn et al., 2021) utilize a multi-task train-
ing approach with a combination of reconstruc-
tion, semantic embedding, and language embed-
ding losses, while MEAT (Kuroda et al., 2022)
introduces novel loss combinations for more direct
disentanglement. The distinct loss components of
both methods are outlined in Table 1.

Although disentangled representation learning
has been explored previously, existing methods
have primarily focused on aligning semantics. We
discover that these approaches suffer from semantic
leakage, as evidenced by the high performance of
language-specific representations. Our work is the
first to address this challenge through ORACLE,
which enforces orthogonality between semantic
and language representations.

3 Background

3.1 DREAM

DREAM (Tiyajamorn et al., 2021) employs two
separate multi-layer perceptron (MLP) networks in
an autoencoder setup to learn disentangled seman-
tic and language-specific representations. Given a
parallel corpus C = {(s1, t1), ..., (sn, tn)}, com-
prising pairs of sentences from a source and target
language, each sentence pair (si, ti) is input into a
multilingual pre-trained model (PLM). This gener-
ates original embeddings for the source eis ∈ Rd

and the target sentences eit ∈ Rd, where d rep-
resents the dimension of the input sentence em-
beddings. Semantic and language representations
are then extracted from these embeddings using a
separate semantic MLP network MLPm (denoted
by m to signify “meaning”) and a language MLP
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network MLPl.

ŝim = MLPm(eis) (1)

ŝil = MLPl(e
i
s) (2)

Here, ŝim, ŝil ∈ Rd represent the semantic and lan-
guage representations of the source sentence, re-
spectively, and similarly t̂im, t̂il ∈ Rd for the target
sentence. We repeat this process across the entire
parallel corpus C.

For each language, the extracted semantic and
language representations are element-wise summed
to reconstruct the original sentence embedding as
the final output. DREAM trains the two MLPs in a
multi-task fashion, integrating three loss functions:

LDREAM = LR + LS + LL (3)

where LR is the reconstruction loss for reconstruct-
ing the original sentence embedding using seman-
tic and language representations. LS and LL are
responsible for extracting semantic and language
information, respectively. Furthermore, LL com-
prises both the language embedding loss (Lm

L )
and the language classification loss (Li

L), where
Lm
L minimizes the distance within language em-

beddings and Li
L computes the multi-class cross-

entropy loss for the language classification task.

3.2 MEAT

MEAT (Kuroda et al., 2022) builds upon DREAM
but incorporates more direct supervision to better
disentangle semantic and language representations.
MEAT trains the two MLPs with a new combina-
tion of four losses:

LMEAT = LR + LCR + LL + LA (4)

LCR is the cross-reconstruction loss for recon-
structing the original source embedding using se-
mantic from the target and language embedding
from the source, and vice versa. LA is the adversar-
ial loss designed to reduce language identifiability
in semantic representations.

4 ORACLE

The two key ingredients of ORACLE are intra-
class clustering (§4.1) and inter-class separation
(§4.2). We reformulate the losses originally derived
in DREAM and MEAT and impose additional con-
straints to ensure orthogonality between semantic
and language embeddings. Following the setup

introduced in Section 3.1, ORACLE also uses se-
mantic (MLPm) and language MLP (MLPl) to
extract semantics (̂sim, t̂im) and language-specific
information (̂sil , t̂

i
l) for each language.

4.1 Intra-class clustering (LIC)
LIC aims to bring relevant representations closer
in the multilingual embedding space. As shown
in Figure 1a, we notice that previous methods lack
a constraint to enforce language embeddings to
be clustered within themselves. This causes the
language-specific information to leak into the se-
mantics, making it difficult to capture the underly-
ing semantics of the sentence. We constrain this
by imposing pairwise cosine distances of each lan-
guage embeddings:

LIC =
1

N

N∑

i=1

(
2− ϕ(̂sil, ŝ

j
l )− ϕ(̂til, t̂

j
l )
)
, (5)

where ϕ(·) denotes pairwise cosine similarity.
ϕ(̂sil, ŝ

j
l ) and ϕ(̂til, t̂

j
l ) (i ̸= j) measures the pair-

wise cosine similarity of language embeddings in
source and target language respectively. We sub-
tract from 2 to transition each of the similarity met-
ric into distance metric. By minimizing LIC, we
aim to cluster language-specific representation for
each language.

4.2 Inter-class separation (LIS)
Simultaneously, LIS enforces irrelevant representa-
tions to be clearly separated:

LIS =
1

N

N∑

i=1

max(0, ϕ(̂sim, ŝil) + max(0, ϕ(̂tim, t̂il)) (6)

where ϕ(·) denotes cosine similarity. We impose a
minimum value constraint of 0 to ensure the proper
enforcement of orthogonality, indicative of unre-
latedness, between the source and target language
embeddings. Minimizing LIS effectively disentan-
gles semantics from language-specific representa-
tions by constraining them to be orthogonal in the
embedding space.

Combining with the intra-class clustering objec-
tive we get the final loss as:

LORACLE = LIC + LIS. (7)

We train both MLP networks, MLPm and MLPl,
with the combined loss LORACLE in a multi-task
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learning approach. We integrate LORACLE with the
existing loss functions of DREAM or MEAT. This
is based on our experiments in Section 7.3 where in-
tegrating ORACLE with DREAM or MEAT yields
better performance than using it as a stand-alone
objective.

5 Experimental setup

5.1 Data
We compile a dataset comprising 12 language pairs
sourced from publicly available bilingual corpora2.
English is chosen as the source language for all
pairs. We randomly sample 0.5M sentences for
each language pair, which is later split into 0.45M
for training and 0.05M for testing. In total, we
utilize 6M parallel sentences. We select the lan-
guage pairs based on diversity in language families,
semantic similarity to English, and resource avail-
ability. Additional details for each language pair
are provided in Table 2.

5.2 Baselines
Our study encompasses three open-source multilin-
gual sentence encoders to generate initial sentence
embeddings:

• LASER: Multilingual enc-decoder model trained
on 93 languages (Artetxe and Schwenk, 2019b).

• InfoXLM: XLM-R (Conneau et al., 2020)
trained with masked language modeling (MLM),
translation language modeling (TLM), and cross-
lingual contrastive learning task with monolin-
gual and parallel corpora (Chi et al., 2021).

• LaBSE: A dual-encoder framework trained with
MLM and TLM on both monolingual and bilin-
gual corpora (Feng et al., 2022).

Each multilingual sentence encoder is pre-
trained with different combinations of languages.
Consequently, the list of seen and unseen languages
from our training data varies for each encoder, as
summarized in Appendix Table 6.

5.3 Implementation Details
We train the two MLP layers—a semantic embed-
ding layer and a language embedding layer—to dis-
till semantic and language-specific features while
keeping the backbone sentence encoder frozen.

2Our training corpus is obtained from OPUS (https:
//opus.nlpl.eu/). Details regarding the training corpus
for each language pair are outlined in Appendix A.1.

Language Family ISO Code Similarity Resource level

English Germanic en - high
German Germanic de 0.81 high
Portuguese Romance pt 0.84 high
Italian Romance it 0.85 high
Spanish Romance es 0.86 high
French Romance fr 0.86 high
Chinese Sino-Tibetan zh 0.81 high
Arabic Semitic ar 0.91 high
Japanese Japonic ja 0.69 high
Dutch Germanic nl 0.80 medium
Romanian Romance ro 0.88 medium
Guaraní Tupi-Guaraní gn 0.25 low
Aymara Andean ay 0.18 low

Table 2: Summary of 12 languages used for training.
Similarity refers to the cosine similarity between 1,000
sample of English and target language sentences mea-
sured using LaBSE embeddings.

The output embedding of the [CLS] token is used
for sentence embedding. Further details on training
process is detailed in Appendix A.3.

5.4 Evaluation task

Cross-lingual Sentence Retrieval. We evaluate
our model on two distinct cross-lingual sentence re-
trieval tasks: held-out test set and Tatoeba3 (Artetxe
and Schwenk, 2019b). Given a list of bilingual
sentences, the cross-lingual sentence retrieval task
aims to accurately pair sentences that are in a paral-
lel relationship across languages. The dataset con-
sists of up to 1,000 sentences per language along
with their English translations. We follow the eval-
uation setup proposed by Wang et al. (2022), evalu-
ating accuracy in both Tatoeba-14 and Tatoeba-36
settings, each covering 14 languages from LASER
and 36 languages from the XTREME benchmark
(Hu et al., 2020). We measure retrieval accuracy
using both semantic and language-specific repre-
sentations. Lower language embedding retrieval
results suggest reduced semantic leakage in these
representations, while higher semantic retrieval ac-
curacy indicates improved semantic alignment in
bilingual sentence pairs.

Semantic Textual Similarity. We also report per-
formance on the SemEval-2017 Semantic Textual
Similarity (STS) task (Cer et al., 2017). This task
involves 7 cross-lingual and 3 monolingual sen-
tence pairs. We aim to achieve high Spearman’s
rank correlation coefficients (ρ) with semantic rep-
resentations, indicating better semantic alignment,
while expecting lower coefficients with language
representations, indicating effective separation.

3https://tatoeba.org/
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Figure 3: Cross-lingual sentence retrieval performance using our test set, consisting of 0.5M pairs for each language.
The optimal representations exhibit high semantic retrieval accuracy and low language embedding retrieval accuracy,
aiming for the upper left corner of each plot (indicated by the arrow). ●: vanilla DREAM or MEAT; ▲: with
ORACLE objective. Grey: Average accuracy across 12 language pairs. Top row: DREAM with each multilingual
encoder baselines; Bottom row: MEAT with multilingual encoders. Numerical results are in Appendix B.1.

6 Results

6.1 Cross-lingual Sentence Retrieval
Held-out Test Set. Figure 3 illustrates the per-
formance of cross-lingual sentence retrieval on our
held-out test set, consisting of 0.5M parallel sen-
tences per language pair. We assess retrieval accu-
racy using semantic and language-specific repre-
sentations of these parallel sentences. The optimal
representation entails high semantic accuracy and
low language embedding accuracy. Notably, ap-
plying ORACLE shifts performance towards the
upper left quadrant, indicative of higher semantic
accuracy and reduced language embedding accu-
racy across all encoder baselines. We report de-
tailed numerical results in Appendix Table 8.

Tateoba. We draw similar conclusions from an-
other cross-lingual retrieval task, Tatoeba, as shown
in Table 3. Utilizing disentangled representations
with ORACLE generally yields superior perfor-
mance compared to representations learned by ex-
isting methods such as DREAM and MEAT. One
exception is DREAM with LaBSE sentence embed-
dings, for which the accuracy drops by 0.06 points
after integrating ORACLE.

Furthermore, we observe that models exhibit
stronger performance from English (EN-XX) than
into English (XX-EN) directions. Specifically,
for Tatoeba-14, the semantic accuracy difference
between the two settings of the vanilla model is
smallest for LaBSE at 0.14 points, 0.69 points for

LASER, and 15.6 points for InfoXLM on average.
We notice a similar trend with the application of
ORACLE, with the smallest difference for LaBSE
at 0.08 points, 0.22 points for LASER, and 15.78
points for InfoXLM on average. We attribute this
to EN-XX setting being similar to our training cor-
pus. We present comprehensive results on Tatoeba
in Appendix B.2.
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Figure 4: Spearman’s rank correlation (%) from the STS
task for each multilingual encoder baseline. Length of
the bars reflects the performance gap between semantic
(●) and language-specific (★) representations. Each set
of three bars displays results for LASER, InfoXLM, and
LaBSE. Within each color set, the first bar represents
the vanilla approach, and the second bar denotes the
integration of ORACLE objective.

Seen vs. Unseen. Each multilingual encoder
unsurprisingly show lower performance for their
unseen target languages, as indicated in Table 6.
One exception is the performance of LASER em-
beddings on Aymara (ay), which shows low per-
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Encoder Objective Tatoeba-14 Tatoeba-36

(EN-XX) (XX-EN) (EN-XX) (XX-EN)

Semantic Embedding (↑)

LASER

DREAM 68.68 69.53 59.94 62.01
+ORACLE 68.82 69.66 60.14 62.11
MEAT 88.48 89.00 80.56 79.26
+ORACLE 88.30 87.70 81.06 79.27

InfoXLM

DREAM 42.20 51.40 39.51 47.10
+ORACLE 42.35 51.87 39.73 47.71
MEAT 31.50 53.49 28.21 44.53
+ORACLE 32.79 54.83 29.53 45.63

LaBSE

DREAM 95.57 95.76 95.27 95.09
+ORACLE 95.69 95.75 95.26 95.03
MEAT 95.67 95.76 95.33 95.06
+ORACLE 96.06 96.16 95.58 95.48

Language Embedding (↓)

LASER

DREAM 1.58 1.35 1.44 1.21
+ORACLE 0.17 0.27 0.20 0.26
MEAT 12.52 10.93 10.12 7.86
+ORACLE 0.34 0.36 0.37 0.41

InfoXLM

DREAM 0.31 0.27 0.35 0.37
+ORACLE 0.12 0.12 0.14 0.14
MEAT 0.33 1.92 0.36 2.32
+ORACLE 0.14 0.18 0.17 0.20

LaBSE

DREAM 18.39 18.09 19.33 19.58
+ORACLE 1.26 1.36 1.50 1.70
MEAT 87.35 36.66 86.51 40.61
+ORACLE 8.48 7.00 9.92 8.41

Table 3: Cross-lingual retrieval accuracy with Tatoeba
dataset. We report the accuracy in both directions (from
English and into English). Bold denotes better perfor-
mance than the vanilla approach. All improvements are
statistically significant with p-value ≤ 0.001.

formance despite being a seen language. Addi-
tionally, we note that ORACLE has a greater
impact on the semantic embedding accuracy of
unseen languages compared to seen languages.
When training with ORACLE, the average seman-
tic accuracy of the seen languages increases from
83.32→83.33 for LASER, 84.29→84.63 for In-
foXLM, and 95.43→95.61 for LaBSE. The gap is
more significant for unseen languages, increasing
from 8.73→8.91 for LASER, 1.93→2.43 for In-
foXLM, and 12.51→13.96 for LaBSE. This trend
suggests that ORACLE helps bridge the perfor-
mance gap between seen and unseen languages.

6.2 Semantic Textual Similarity

In Figure 4, we present the average Spearman’s
rank correlation coefficient across 10 STS tasks.
The lengths of the bars indicate the performance
gap between semantic and language-specific repre-
sentations. With ORACLE, we observe a stronger
positive correlation with STS scores for semantics
and a stronger negative correlation for language
representations. The extent of improvement in se-
mantic results differs depending on both the en-

coder and the objective loss function. For DREAM,
the highest gain is observed for LaBSE as +1.2 and
the lowest for LASER as +0.15. Conversely, for
MEAT, the highest gain is observed for InfoXLM
as +1.0 and the lowest for LASER as +0.23.

Monolingual vs Cross-lingual. We categorize
the STS results into two groups of language pairs:
monolingual and cross-lingual. For both DREAM
and MEAT, regardless of integrating ORACLE,
the semantic embedding performance of monolin-
gual language pairs is superior to that of cross-
lingual language pairs. However, while the perfor-
mance gap between monolingual and cross-lingual
language pairs is larger for vanilla DREAM or
MEAT, ORACLE can mitigate this gap. When ap-
plying ORACLE, the performance gap decreases
by approximately 0.73 points for LASER, 1.47
points for InfoXLM, and 0.50 points for LaBSE.
We report detailed results for each monolingual and
cross-lingual language pairs in Appendix B.3.

7 Detailed Analysis

7.1 Code-switching

We manually create a code-switched dataset us-
ing bilingual dictionaries from MUSE (Conneau
et al., 2018). For each language pair, we randomly
replace words in the source sentence with corre-
sponding translations in the target language. Fur-
ther implementation details are provided in Ap-
pendix 7.1. As illustrated in Appendix Table 11,
our results confirm that integrating ORACLE en-
hances both semantic and language embedding ac-
curacy, even in practical and challenging scenarios
likely encountered during parallel mining, such as
code-switching.

7.2 Visualization

In Figure 5, we visualize the LaBSE sentence em-
bedding space using 1,000 English-Chinese sen-
tence pairs from our held-out test set. While previ-
ous methods ((a) and (c)) effectively align semantic
representations, there is still substantial overlap in
the language-specific representations. By applying
ORACLE ((b) and (d)), we aim to mitigate the se-
mantic leakage issue, distancing the language repre-
sentations in parallel sentences while maintaining
semantic alignment. We show that this trend is
consistent across all language pairs through the
visualizations in Appendix D.
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Figure 5: Visualization of English-Chinese sentence embeddings from our held-out test set. Orange and green denote
language embeddings of English and Chinese respectively. Red and blue represent their semantic counterparts. With
ORACLE, we can preserve the semantic alignment and clearly divide the language-specific representations.

7.3 ORACLE Components

ORACLE is a multi-task learning objective con-
sisting of two components: intra-class clustering
and inter-class separation. Our analysis in Table
4 reveals the distinct impact of each component.
Interestingly, using only the inter-class clustering
loss demonstrates competitive performance, high-
lighting its critical role in the effectiveness of OR-
ACLE. However, employing either intra-class clus-
tering or inter-class separation alone presents trade-
offs. Combining both components yields the most
balanced performance, with highest semantic and
lowest language embedding retrieval accuracy.

Furthermore, we discuss the potential of OR-
ACLE as a stand-alone objective. In Figure 6,
we illustrate the performance gap when ORACLE
is used alone versus alongside DREAM or MEAT
losses. We observe that ORACLE alone effectively
mitigates semantic leakage with low language re-
trieval accuracy. However, this is offset by a de-
crease in semantic alignment compared to its use
with DREAM. Therefore, we opt to integrate OR-
ACLE with previous approaches, making it easily
adaptable to various frameworks.

Figure 6: Performance gap between using ORACLE
with DREAM (left), MEAT (middle) or as a stand-alone
objective (right).

Objective Tatoeba-14 Tatoeba-36 STS

Semantic Embedding (↑)

ORACLE 96.11 95.53 74.21
- LIC 95.89 95.38 74.13
- LIS 96.11 95.54 72.81

Language Embedding (↓)

ORACLE 7.74 9.17 16.47
- LIC 37.78 39.15 30.14
- LIS 8.07 9.59 18.20

Table 4: Performance change when removing each com-
ponent of ORACLE from LaBSE sentence embeddings.
LIC: Intra-class clustering; LIS: Inter-class separation.
Bold denotes best results for each semantic and lan-
guage embedding.

8 Conclusion

We explore the issue of semantic leakage, which
we define as when language-specific information is
leaked into the semantic representations, across var-
ious multilingual encoders and objective functions.
Addressing this issue is crucial for achieving dis-
entangled semantic and language representations,
which is a cornerstone for effective parallel mining.
We introduce ORACLE, a simple and effective
training objective designed to enforce orthogonal-
ity between semantic and language embeddings.
Through comprehensive evaluations, we demon-
strate that integrating ORACLE not only improves
semantic alignment but also ensures clear separa-
tion of language representations, as evidenced by
embedding space visualization. Further, we con-
duct detailed analysis to understand the roles of
the two key components of ORACLE: intra-class
clustering and inter-class separation. While our
study primarily focuses on integrating ORACLE
with DREAM and MEAT, our method is easily
adaptable to various frameworks, offering promis-
ing avenues for future work.
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9 Limitations

Our work highlights the effectiveness of ORACLE
in addressing semantic leakage and improving se-
mantic alignment. While ORACLE demonstrates
competitive performance as a stand-alone objec-
tive, its integration with DREAM or MEAT losses
yields even better results. This limits the usage
of ORACLE to be used alongside other methods.
This opens many questions for future work to fur-
ther explore the optimal combination of existing
approaches and ORACLE.

Moreover, our study assesses the disentangle-
ment of semantic and language representations
in embeddings, focusing on two key aspects: the
alignment of semantics in bilingual sentence pairs
and the separation of language-specific informa-
tion. While ORACLE effectively addresses the
separation of language-specific information, we no-
tice a trade-off in semantic alignment for certain
language pairs. Future works can delve into meth-
ods that more efficiently mitigate semantic leak-
age without compromising semantic representation
quality.

Lastly, our experiments are limited to 12 selected
language pairs for training. To expand the scope of
our study, future work could involve a wider array
of language pairs and a broader range of multilin-
gual encoder baselines.
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A Implementation Details

A.1 Training Corpus

In this section, we discuss the implementation de-
tails of our ORACLE objective. We describe the
specific training corpus utilized for each language
pair in Table 5.

A.2 Seen vs. Unseen Languages

In Table 6, we present the list of seen and unseen
languages for each multilingual sentence encoder
baseline, listed in alphabetical order. Across all
encoders, Guaraní (gn) is categorized as an unseen
language, while Aymara (ay) is classified as an
unseen language for InfoXLM and LaBSE.

A.3 Training Details

Size of each MLP layer is embedding size of the
encoder (1024 for LASER and 768 for XLM-R
and LaBSE) by the number of language pairs (12).
For training, we use Adam optimizer with an ini-
tial learning rate as 1e-5 and a batch size of 512.
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We train the model for 10,000 iterations, evaluat-
ing the model’s performance on the validation set
at the end of each iteration. We implement early
stopping to halt training when there is no improve-
ment over 10 consecutive iterations. We find that
DREAM converges in approximately 250 iterations
and MEAT in 20 iterations.

B Detailed Results

B.1 Held-out Test set
In Table 8, we present detailed results for the cross-
lingual sentence retrieval task using our held-out
test set. The top section shows the performance
of the initial sentence embeddings from LASER,
InfoXLM, and LaBSE. In the middle section, we
detail the accuracy of extracted semantic embed-
dings, while the bottom rows represent the lan-
guage embedding accuracy. ORACLE, particu-
larly for LaBSE, notably reduces language embed-
ding accuracy, indicating a mitigation of semantic
leakage compared to the vanilla DREAM or MEAT
frameworks. Additionally, we observe an improve-
ment in the semantic retrieval accuracy across all
encoder baselines on average.

B.2 Tatoeba
In our analysis of the Tatoeba dataset detailed in
Table 9, we exclude two language pairs (en-ay and
en-gn) as Tatoeba does not support them. We show
that a similar trend is observed: training MLP net-
works with ORACLE not only improves semantic
alignment but also effectively addresses the seman-
tic leakage issue in the vanilla DREAM or MEAT.
Also, we observe that training LaBSE sentence
embeddings with ORACLE yields state-of-the-art
semantic retrieval accuracy compared to previous
methods.

B.3 Semantic Textual Similarity
We present detailed numerical results for the mono-
lingual and cross-lingual STS benchmark in Table
10. The results support our observation from the
cross-lingual retrieval tasks that ORACLE helps
address both semantic alignment and the semantic
leakage issue.

C Code-switching

C.1 Dataset Construction
For our code-switching evaluation, we utilize bilin-
gual dictionaries sourced from MUSE (Conneau
et al., 2018). MUSE provides dictionaries in both

Training corpus Language pair

Europarl en-de, en-es, en-fr, en-it, en-nl, en-pt
Wikimatrix en-ar, en-ja, en-ro, en-zh
Tatoeba en-gn
NLLB en-ay

Table 5: Summary of training corpus for each language
pair.

Encoder Seen Unseen

LASER ar, ay, de, en, es, fr, it, ja, nl, pt, ro, zh gn
InfoXLM ar, de, en, es, fr, it, ja, nl, pt, ro, zh ay, gn
LaBSE ar, de, en, es, fr, it, ja, nl, pt, ro, zh ay, gn

Table 6: Seen and unseen languages for each pre-trained
multilingual encoder. Note that seen refers to languages
used during pre-training.

the to English (XX-EN) and from English (EN-
XX) directions. Specifically, we focus on dictionar-
ies with the XX-EN direction. These dictionaries
comprise root words in the source language paired
with their corresponding translations in the target
language. As noted by Conneau et al. (2018), the
translations are generated using an internal trans-
lation tool, which accounts for word polysemy, re-
sulting in some root words having multiple transla-
tions.

For each language pair listed in Table 3, we ran-
domly substitute words in the source sentences
with their corresponding translations in the target
language, utilizing the dictionaries from MUSE.
We ensure that the selected sentences of our code-
switching evaluation contain at least one code-
switched word. The resulting dataset comprises
1,000 sentences per language pair. We show exam-
ples of the manually created code-switched dataset
in Table 7.

C.2 Results

In Table 11, we present the retrieval accuracy
achieved on our code-switched dataset. Similar
to the trends observed in other tasks, integrating
ORACLE consistently improves both semantic
and language embedding accuracy across all multi-
lingual encoder baselines.

D Visualizations

From Figures 7 to 16, we provide visualizations of
semantic and language embeddings for each lan-
guage pair, complementing the discussion in Sec-
tion 7.2. We use LaBSE to generate the initial sen-
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Language pair Code-switched Example

De-En Source: Wie long should Tom and I hierbleiben?
Target: How long are Tom and I supposed to stay here?

Fr-En Source: Je am here jusqu’à three heures.
Target: I will stay here till three o’clock.

It-En Source: Fadil sparò al dog di Dania.
Target: Fadil shot Dania’s dog.

Ro-En Source: E traditional să gates black la înmormântare.
Target: It is traditional to wear black to a funeral.

Table 7: Examples of code-switched dataset manually created using bilingual dictionaries from MUSE (Conneau
et al., 2018). Italic represent words that are code-switched in the source sentence.

tence embeddings, with 1,000 parallel sentences
sampled from our held-out test set for each lan-
guage pair. When solely using DREAM or MEAT
(depicted in (a) and (c) for each visualization),
we observe a notable amount of overlap in lan-
guage embeddings between the source and target
language, indicating semantic leakage. However,
the integration of ORACLE effectively mitigates
this issue, resulting in clearer separation and re-
duced overlap in language embeddings (depicted
in (b) and (d)). This improvement is consistent
across all language pairs.
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Encoder Objective en-ar en-ay en-de en-es en-fr en-gn en-it en-ja en-nl en-pt en-ro en-zh Avg.

Original Embedding

LASER - 99.87 11.36 96.13 97.88 93.38 5.12 96.78 98.86 96.48 97.83 99.34 99.39 82.70
InfoXLM∗ - 21.24 1.40 25.53 29.31 28.41 0.69 29.07 10.48 14.72 23.80 15.59 13.06 17.78
LaBSE - 99.00 16.33 96.16 97.82 93.37 12.82 96.77 92.30 96.21 97.66 87.60 94.05 81.67

Semantic Embedding (↑)

LASER

DREAM 94.22 7.27 93.85 96.81 92.28 4.33 95.13 82.94 93.46 96.39 77.05 87.10 76.74
+ORACLE 94.10 7.23 93.87 96.79 92.28 4.26 95.13 82.95 93.54 96.39 77.27 87.13 76.75
MEAT 99.58 13.50 95.91 97.71 93.18 8.73 96.29 97.20 95.95 97.54 95.82 98.42 82.49
+ORACLE 99.78 11.11 95.92 97.71 93.21 8.91 96.33 97.57 96.02 97.67 98.16 98.54 82.58

InfoXLM

DREAM 88.74 2.06 88.61 94.89 90.47 1.80 91.14 68.71 87.44 93.06 64.87 74.96 70.56
+ORACLE 89.11 2.89 89.20 95.00 90.50 1.96 91.49 69.21 87.85 93.27 65.23 75.46 70.93
MEAT 35.24 1.87 58.32 84.47 79.28 0.79 66.85 36.85 57.57 77.28 35.81 48.18 48.54
+ORACLE 37.13 1.87 60.09 85.46 80.35 0.87 68.79 38.02 59.00 78.80 36.92 48.96 49.69

LaBSE

DREAM 98.88 14.14 96.20 97.85 93.42 10.87 96.79 91.90 96.50 97.79 92.49 92.52 81.61
+ORACLE 98.87 15.94 96.22 97.84 93.44 11.97 96.86 92.52 96.46 97.80 92.66 93.45 82.00
MEAT 98.75 17.97 96.14 97.83 93.38 13.85 96.71 92.42 96.53 97.77 91.32 93.30 82.16
+ORACLE 99.08 17.18 96.29 97.87 93.41 12.96 96.86 93.17 96.54 97.79 92.95 93.99 82.34

Language Embedding (↓)

LASER

DREAM 1.58 0.24 1.66 6.76 4.02 0.22 1.74 0.45 0.82 5.78 1.87 0.50 2.14
+ORACLE 0.53 0.09 0.08 0.37 0.07 0.04 0.07 0.14 0.04 0.25 0.48 0.15 0.19
MEAT 7.13 0.96 11.83 27.65 16.07 0.38 11.20 3.67 8.61 25.16 9.04 3.95 10.47
+ORACLE 0.76 0.11 0.21 1.26 0.25 0.04 0.18 0.22 0.12 0.86 1.04 0.40 0.45

InfoXLM

DREAM 0.22 0.07 0.00 0.02 0.01 0.08 0.05 0.09 0.03 0.01 0.31 0.11 0.08
+ORACLE 0.03 0.01 0.01 0.01 0.00 0.02 0.05 0.03 0.02 0.01 0.08 0.03 0.03
MEAT 1.30 1.05 0.11 0.18 0.14 0.26 0.20 0.55 0.15 0.17 2.10 0.36 0.55
+ORACLE 0.28 0.30 0.02 0.00 0.00 0.07 0.04 0.14 0.03 0.01 0.47 0.07 0.12

LaBSE

DREAM 7.42 0.66 1.12 2.73 1.68 0.69 2.35 4.65 1.54 1.21 3.15 4.59 2.65
+ORACLE 0.85 0.13 0.04 0.03 0.03 0.08 0.13 0.40 0.10 0.03 0.52 0.26 0.22
MEAT 60.54 6.84 18.34 28.36 21.33 6.27 23.46 54.32 20.33 20.38 44.17 60.28 30.39
+ORACLE 1.98 0.50 0.18 0.22 0.22 0.38 0.31 1.59 0.35 0.16 2.36 1.14 0.78

Table 8: Cross-lingual sentence retrieval accuracy with our test set, comprising 0.5M pairs for each language. We
expect the semantic retrieval accuracy to be higher and lower with language embedding. Bold represents when our
method surpass the vanilla approach and highlight denotes when the average value is higher. vanilla: original
DREAM or MEAT approach; ORACLE: incorporation of our objective. *: We use mean pooling to compute
sentence embedding. All average improvements are statistically significant with p-value ≤ 0.001.
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Encoder Objective en-ar en-de en-es en-fr en-it en-ja en-nl en-pt en-ro en-zh Avg.

Original Embedding

MUSE ❖ - - - 95.40 93.50 94.30 93.80 94.00 94.90 30.00 94.30 86.90
CRISS ♥ - - - 96.30 92.70 92.50 84.80 93.40 - - 85.60 90.20
DuEAM ♠ - - - 93.00 91.50 85.70 84.20 - 91.20 88.50 90.20 87.90
LASER - 91.95 99.05 98.00 95.65 95.30 95.35 96.30 95.15 97.40 95.45 95.96
InfoXLM∗ - 20.95 38.50 30.85 32.35 24.85 28.20 19.85 36.90 30.40 34.05 29.69
LaBSE - 89.75 99.20 98.10 96.05 94.75 96.40 96.90 95.55 97.40 96.20 96.03

Semantic Embedding (↑)

LASER

DREAM 60.35 89.85 83.40 76.55 80.95 71.70 80.10 82.15 80.60 74.20 77.99
+ORACLE 60.30 90.00 83.40 76.65 81.00 72.05 80.35 82.30 80.60 74.60 78.13
MEAT 86.95 96.55 96.00 91.35 91.80 90.65 91.75 93.45 94.80 92.95 92.63
+ORACLE 87.30 98.05 96.65 92.75 92.55 87.95 93.70 94.25 95.40 93.80 93.24

InfoXLM

DREAM 44.05 57.65 68.65 62.80 54.80 56.45 62.70 66.50 58.15 67.10 59.89
+ORACLE 44.80 58.00 68.85 62.65 54.80 57.05 62.30 66.65 57.95 67.20 60.03
MEAT 31.60 67.25 70.75 67.30 63.70 42.05 68.95 74.05 59.05 57.70 60.24
+ORACLE 31.80 69.00 71.60 68.35 64.15 43.10 70.85 75.25 60.45 60.30 61.49

LaBSE

DREAM 89.90 99.10 98.50 95.80 95.05 95.75 97.35 95.45 97.50 95.35 95.98
+ORACLE 89.70 99.15 98.50 95.90 94.85 95.90 97.30 95.50 97.70 95.55 96.01
MEAT 90.30 99.20 98.15 98.90 94.55 96.15 97.30 95.55 97.55 95.50 96.32
+ORACLE 90.95 99.40 98.50 96.30 95.20 96.40 97.40 95.75 97.85 95.80 96.36

Language Embedding (↓)

LASER

DREAM 1.20 1.50 2.95 1.50 4.45 1.15 2.00 3.70 1.85 1.70 2.20
+ORACLE 0.25 0.10 0.30 0.20 0.25 0.10 0.35 0.30 0.20 0.05 0.21
MEAT 19.40 9.75 13.55 6.70 14.30 5.65 9.90 16.15 16.20 10.85 12.25
+ORACLE 0.60 0.20 0.45 0.30 0.55 0.30 0.65 0.40 0.75 0.45 0.47

InfoXLM

DREAM 0.10 0.10 0.25 0.15 0.45 0.20 0.40 0.20 0.15 0.20 0.22
+ORACLE 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
MEAT 0.35 0.55 2.00 0.90 2.75 0.30 3.35 0.85 1.15 0.40 1.26
+ORACLE 0.10 0.15 0.25 0.15 0.10 0.10 0.20 0.20 0.15 0.15 0.16

LaBSE

DREAM 24.50 11.50 18.95 17.85 24.25 11.20 14.20 9.70 12.35 24.70 16.92
+ORACLE 2.15 1.20 1.00 0.30 1.45 1.15 1.30 9.30 0.70 1.00 1.96
MEAT 64.25 55.30 64.10 64.30 64.50 65.45 60.25 58.15 57.60 60.45 61.44
+ORACLE 8.30 7.25 5.05 5.00 8.15 9.70 7.20 3.90 6.75 5.65 6.70

Table 9: Cross-lingual retrieval accuracy with Tatoeba task. For each language pair, we report the average accuracy
of both directions (from English and into English). Bold represents when our method surpass the vanilla approach
and highlight denotes when the average value is higher. ❖: results from Lee and Chen (2017) (supervised) ; ♥:
results from Tran et al. (2020) (weakly supervised); ♠: results from Goswami et al. (2021) (self-supervised). *:
We use mean pooling to compute sentence embedding. All average improvements are statistically significant with
p-value ≤ 0.001.
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Encoder Objective ar-ar en-en es-es en-ar en-de en-tr en-es en-fr en-it en-nl Avg.

Original Embedding

LASER - 68.85 66.55 57.93 77.62 79.68 64.20 71.98 69.05 70.83 68.68 69.54
InfoXLM∗ - 19.11 50.20 36.17 12.89 16.31 24.86 9.10 25.12 28.10 30.55 25.24
mSimCSE - 69.06 74.50 65.71 79.45 80.83 73.85 72.07 76.98 76.98 75.22 74.47

Semantic Embedding (↑)

LASER

DREAM 57.10 53.98 46.36 43.22 41.92 40.60 32.88 48.58 49.94 47.47 46.21
+ORACLE 57.16 54.14 46.64 43.55 42.11 40.67 32.83 48.70 49.98 47.80 46.36
MEAT 66.87 71.95 79.16 62.41 60.44 65.06 54.63 61.94 66.27 63.90 65.26
+ORACLE 67.14 72.69 78.75 63.59 60.03 66.19 55.20 61.38 65.80 63.76 65.45

InfoXLM

DREAM 50.28 56.39 56.16 43.35 39.54 42.71 38.42 48.02 47.80 50.18 47.29
+ORACLE 50.25 56.38 56.16 43.35 49.55 42.61 38.40 47.98 47.82 50.19 48.27
MEAT 35.83 61.23 51.14 11.09 25.58 33.32 20.04 29.38 41.58 37.50 34.67
+ORACLE 35.87 61.40 50.73 11.26 28.15 34.83 21.41 31.55 42.72 38.77 35.67

LaBSE

DREAM 69.84 74.78 79.82 70.97 70.82 71.30 64.22 75.67 76.28 75.56 72.93
+ORACLE 70.65 76.03 81.06 72.37 72.49 73.33 66.18 76.13 76.76 76.29 74.13
MEAT 72.03 80.34 83.66 74.71 75.40 73.59 70.48 77.82 78.18 77.43 76.36
+ORACLE 72.05 80.41 83.86 75.09 75.67 74.56 70.98 77.75 78.57 77.44 76.64

Language Embedding (↓)

LASER

DREAM 45.12 34.87 39.95 18.94 11.89 21.50 17.64 8.29 14.91 10.81 22.39
+ORACLE 21.43 12.77 18.40 20.85 11.65 17.12 15.30 6.14 16.87 11.51 15.20
MEAT 52.51 40.35 55.29 35.78 22.93 27.26 27.89 22.73 30.74 25.99 34.15
+ORACLE 21.26 14.97 21.75 21.48 6.09 15.71 15.51 4.86 15.37 8.49 14.55

InfoXLM

DREAM 39.62 51.03 49.74 3.87 2.66 4.53 12.95 9.94 9.37 12.21 19.59
+ORACLE 24.62 31.07 36.01 -10.84 -7.12 -9.51 2.85 -3.18 -2.06 2.67 6.45
MEAT 33.00 50.01 51.02 -6.10 8.21 -2.50 -1.97 8.44 13.58 10.87 16.46
+ORACLE 33.13 46.96 51.63 -11.63 0.14 -8.14 -7.91 1.57 7.25 3.59 11.66

LaBSE

DREAM 44.32 40.35 50.81 24.12 22.56 28.29 18.76 22.86 20.38 22.02 29.45
+ORACLE 33.10 19.88 28.60 1.59 1.14 17.39 15.57 12.17 8.36 12.53 15.03
MEAT 52.11 68.57 68.18 38.57 28.94 35.87 31.27 28.66 29.40 27.21 40.88
+ORACLE 37.25 27.30 33.61 0.08 0.79 16.94 16.60 10.98 8.01 13.12 16.47

Table 10: Spearman’s rank correlation coefficients (ρ) of monolingual and cross-lingual STS task. Bold

represents when our method surpass the vanilla approach and highlight indicates when the average value is higher.
*: We use mean pooling to compute sentence embedding. All average improvements are statistically significant
with p-value ≤ 0.001.
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Encoder Objective en-ar en-de en-es en-fr en-it en-nl en-pt en-ro Avg.

Original Embedding

LASER - 90.82 98.75 98.26 95.17 94.63 95.22 95.91 98.37 95.89
InfoXLM∗ - 13.71 39.04 37.05 36.20 29.44 29.54 41.44 31.37 32.22
LaBSE - 90.06 99.48 98.49 95.60 93.46 97.02 96.56 98.24 96.11

Semantic Embedding (↑)

LASER

DREAM 59.75 88.58 84.67 73.90 84.46 80.66 82.02 82.43 79.56
+ORACLE 59.62 88.79 85.02 73.90 84.46 80.45 82.24 82.18 79.58
MEAT 84.91 97.82 96.28 92.70 93.34 93.84 95.05 96.86 93.85
+ORACLE 86.54 97.09 97.79 92.59 93.22 92.67 95.26 96.11 93.91

InfoXLM

DREAM 28.05 55.14 58.07 59.72 54.09 53.99 54.90 56.46 52.55
+ORACLE 27.80 56.39 58.19 60.15 54.67 54.84 56.62 56.34 53.13
MEAT 15.35 42.26 60.51 58.22 56.43 56.43 57.70 50.69 49.70
+ORACLE 16.35 42.26 61.32 59.94 58.06 57.17 59.31 52.07 50.81

LaBSE

DREAM 87.78 99.27 97.33 95.38 92.87 96.60 96.45 97.99 95.46
+ORACLE 88.30 99.27 98.14 95.38 93.22 96.81 96.66 98.11 95.74
MEAT 88.43 99.38 98.03 94.95 92.87 96.49 96.12 97.74 95.50
+ORACLE 89.56 99.69 98.37 96.60 93.34 97.13 96.34 98.24 96.16

Language Embedding (↓)

LASER

DREAM 2.01 4.15 7.08 3.01 7.36 6.06 9.36 3.76 5.35
+ORACLE 0.25 0.83 1.39 0.43 0.93 0.85 2.48 0.75 0.99
MEAT 35.72 23.88 35.31 17.72 27.57 31.77 49.62 22.84 30.55
+ORACLE 1.51 1.66 3.02 1.07 2.45 2.34 5.06 1.25 2.30

InfoXLM

DREAM 0.13 0.52 0.93 0.64 0.93 2.34 0.54 0.53 0.82
+ORACLE 0.13 0.10 0.46 0.11 0.23 0.85 0.11 0.13 0.27
MEAT 1.89 10.38 20.44 13.64 20.56 36.03 23.90 15.93 17.85
+ORACLE 0.38 1.04 3.37 1.40 3.15 8.93 3.12 1.76 2.89

LaBSE

DREAM 11.57 14.54 21.24 23.52 27.69 27.21 19.38 17.44 20.32
+ORACLE 1.26 1.25 1.39 2.69 1.99 2.98 0.75 0.88 1.65
MEAT 48.81 37.80 53.31 51.34 56.54 53.35 43.27 34.00 47.30
+ORACLE 6.42 7.06 6.04 7.63 9.11 10.52 6.14 6.40 7.42

Table 11: Retrieval accuracy with our code-switching dataset. Bold represents when our method surpasses the
vanilla approach and highlight denotes when the average value is higher. vanilla: original DREAM or MEAT
approach; ORACLE: incorporation of our objective. *: We use mean pooling to compute sentence embedding. All
average improvements are statistically significant with p-value ≤ 0.001.
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Figure 7: LaBSE sentence embeddings for English-Arabic sentence pair.
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Figure 8: LaBSE sentence embeddings for English-Aymara sentence pair.
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Figure 9: LaBSE sentence embeddings for English-German sentence pair.
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Figure 10: LaBSE sentence embeddings for English-Spanish sentence pair.
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Figure 11: LaBSE sentence embeddings for English-Guaraní sentence pair.
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Figure 12: LaBSE sentence embeddings for English-Italian sentence pair.
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Figure 13: LaBSE sentence embeddings for English-Japanese sentence pair.
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Figure 14: LaBSE sentence embeddings for English-Dutch sentence pair.
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Figure 15: LaBSE sentence embeddings for English-Portuguese sentence pair.
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Figure 16: LaBSE sentence embeddings for English-Romanian sentence pair.
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