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Abstract

In this study, we rigorously evaluated eight machine learning and deep learning classifiers for identifying Alzheimer’s
Disease (AD) patients using crosslinguistic acoustic features automatically extracted from one-minute oral pic-
ture descriptions produced by speakers of American English, Korean, and Mandarin Chinese. We employed
eGeMAPSv2 and ComParE feature sets on segmented and non-segmented audio data. The Multilayer Perceptron
model showed the highest performance, achieving an accuracy of 83.54% and an AUC of 0.8 on the ComParE
features extracted from non-segmented picture description data. Our findings suggest that classifiers trained with
acoustic features extracted from one-minute picture description data in multiple languages are highly promising as a
quick, language-universal, large-scale, remote screening tool for AD. However, the dataset included predominantly
English-speaking participants, indicating the need for more balanced multilingual datasets in future research.
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1.

Alzheimer’s disease (AD) is the most common
type of neurodegenerative disease among individ-
uals over 65, affecting 6.7 millions Americans and
50 million people worldwide (Alzheimer’s Associa-
tion, 2023). Arecentclinical trial (Sims et al., 2023)
of amyloid immunotherapies has showed that pa-
tients at an early stage of the disease gained more
benefits from the treatment, highlighting the impor-
tance of early screening of patients or individuals
at risk. However, most diagnostic tools of AD re-
quire specialized expertise and equipment and are
expensive and/or invasive, making it challenging
to implement the tools at scale within diverse com-
munities.

The quest for a cost-effective and scalable early
screening tool of AD has led to the rise of speech-
based “digital biomarkers” (Hajjar et al., 2023;
Robin et al., 2021; Laguarta and Subirana, 2021).
While automated techniques to detect cognitive
decline using speech have gained much attention
among experts in clinical neurology, signal pro-
cessing, and machine learning, many prior studies
have focused on English-speaking patients. This
limited scope has resulted in a lack of crosslinguis-
tic and cross-cultural validity and feasibility, and
thus health equity. Recently, there has been more
attempts to tackle multilingual AD detection, such
as a recent Signal Processing Grand Challenge
(Luz et al., 2023). This challenge accentuated a
critical societal and medical concern, opening re-
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search potential for robust, crosslinguistic AD de-
tection. In line with these recent efforts, we trained
machine learning classifiers with crosslinguistic
datasets to distinguish AD patients from healthy
controls (HC). In this study, we only employed
acoustic features for training, because acoustic
features relied on acoustic signal of speech and
could be uniformly extracted across languages.
There has been past literature attempting to cre-
ate classifiers using various linguistic and speech
features (Li et al., 2021; Vigo et al., 2022; He et al.,
2023), but research only using acoustic features is
scarce. We included three languages in the exper-
iment: English, Korean, and Mandarin Chinese.
These languages differ in various ways, from writ-
ing systems to morphology and syntax to prosody.
This extensive linguistic spectrum not only aug-
ments the comprehensiveness of our investigation
but also ensures the broad utility and applicability
of our approach. Also, by employing both conven-
tional and deep-learning machine learning mod-
els, we aimed to conduct a comprehensive study
for crosslinguistic AD prediction.

2. Methods
2.1. Data Acquisition and Feature
Extraction

We employed speech datasets of English and
Mandarin from DementiaBank (Lanzi et al., 2023).
The English dataset was drawn from the Pitt Cor-
pus (Beckeretal., 1994) and the Mandarin dataset
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was derived from the Lu Corpus (MacWhinney
et al., 2011), both being picture description data.
We directly imported the patient grouping of the
Pitt corpus from the metadata file that the authors
provided, and we followed Li (2019) to determine
participants’ diagnostic groups in the Lu corpus.
Additionally, we incorporated a Korean picture de-
scription dataset that our team has collected and
fully transcribed. Participants’ diagnostic groups
in the Korean dataset were determined by an ex-
pert clinical neurologist based on published crite-
ria (McKhann et al., 2011). The prosodic systems
of these three languages greatly differ in that En-
glish has a lexical-stress-based system, whereas
Mandarin Chinese is a tone language and Ko-
rean is intonational. Therefore, the inclusion of
these three languages with diverse phonetic and
prosodic characteristics maximizes the crosslin-
guistic aspect of our study. Since there were
not many patients with Mild Cognitive Impairment
(MCI) (English=20, Chinese=0, Korean=16), we
grouped all patients (either with MCI or AD) as “pa-
tients”. In terms of participant counts, the datasets
include 99 HCs and 192 patients for English, 15
HCs and 33 patients for Mandarin, and 20 HCs
and 26 patients for Korean.

For all datasets, we segmented the audio files
into utterances based on the timestamps in the
transcripts. We excluded interviewers’ utterances
from the analysis, using the timestamps in the tran-
scripts. We extracted low-level descriptors from
segmented and non-segmented data without inter-
viewers’ speech and calculated several statistical
derivatives (e.g., mean, standard deviation, mini-
mum, maximum) for training. All audio files were
configured to be WAV audio files of 44.1 kHz and
16-bit PCM using ffmpeg (Tomar, 2006).

To extract acoustic features from the audio record-
ings, we employed openSMILE (Eyben et al,
2010), a widely recognized tool for automatic fea-
ture extraction in paralinguistic research. Specifi-
cally, we utilized eGeMAPS v2 (extended Geneva
Minimalistic Acoustic Parameter Set; Eyben et al.,
2015) and ComParE (Computational Paralinguis-
tics Challenge; Schuller et al., 2013) feature sets
provided by openSMILE. The eGeMAPS v2 and
ComParE feature sets were specifically chosen
due to their demonstrated performance in previous
studies on pathological speech analysis (Valsaraj
et al., 2021; Xue et al., 2019; Vats et al., 2021).
These feature sets included various acoustic fea-
tures such as pitch, intensity, voice quality, articu-
lation, and other spectral features, which were es-
sential in distinguishing patients’ vocal patterns in
our multilingual datasets.

We standardized extracted features using Stan-
dardScaler from scikit-learn. Dimensionality was
further reduced using Principal Component Anal-
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ysis (PCA), retaining components that explained
95% of the variance in the data to maintain a bal-
ance between data simplification and the reten-
tion of crucial information for better performance.
Participants speaking different languages were
equally distributed to train and test sets to prevent
any learning biases.

2.2. Traditional Machine Learning
Classifiers

We evaluated the performance of several tradi-
tional machine learning classifiers, implementing
10-fold stratified cross-validation for all models for
accuracy assessment. The selected array of clas-
sifiers, including Random Forest, Support Vector
Classifier, and Gradient Boosting, are known for
their robustness in handling high-dimensional data
and their flexibility in hyperparameter tuning. Each
classifier was integrated into a pipeline compris-
ing PCA with a 0.95 variance threshold and the
classifier itself. This pipeline was subsequently
assessed using 10-fold stratified cross-validation.
For each classifier, we computed the mean accu-
racy and its standard deviation across the 10 folds.
Additionally, a grid search was conducted over a
range of hyperparameters to identify the optimal
parameters that maximized accuracy. The best
performance of each classifier was reported after
hyperparameter tuning.

2.3. Deep Learning Models

For this study, we employed two distinct deep
learning architectures, namely Multi-Layer Per-
ceptrons (MLPs) and Recurrent Neural Net-
works (RNNSs), utilizing the Keras library in
Python. Both architectures were tailored to ad-
dress the heterogeneous nature of acoustic fea-
tures across the languages under study. The
MLP model comprised multiple dense layers and
utilized LeakyReLU as the activation function.
LeakyRelLU was chosen to introduce a small,
non-zero gradient for the negative input domain,
thereby mitigating the "dying ReLU” problem and
allowing the network to learn from the negative in-
put space. Additionally, L2 regularization, Batch-
Normalization, and AlphaDropout layers were in-
cluded in the MLP model to ensure generalizability
and mitigate overfitting.

In contrast, the RNN model was designed to opti-
mally handle sequences of acoustic features and
incorporated L2 regularization, BatchNormaliza-
tion, and AlphaDropout layers similar to the MLP
model. The RNN model employed the sigmoid ac-
tivation function specifically for the binary classifi-
cation tasks, facilitating the model’s output to be
in the range of 0 to 1, thus making it highly inter-
pretable as a probability measure.

We trained multiple instances of each model type



Acc. Precision Recall F1
LR 56.78 56.42 56.91 56.66
RF 75.52 75.76 75.42 75.45
SvC 58.80 59.01 58.70 58.67
GB 66.91 67.06 66.81 66.82
RR 58.07 58.24 57.97 57.99
kNN 59.38 59.44 59.28 59.35
MLP 75.00 74.89 7493 7491
RNN 73.27 73.21 73.12 7317

Table 1: Performance metrics in percentage, Non-
segmented, eGeMAPSv2. Acc: Accuracy, F1: F1
score.

Acc. Precision Recall F1
LR 57.22 50.69 5712 43.14
RF 58.29 56.82 58.19 56.13
SvC 57.46 55.06 57.36 42.41
GB 57.90 55.77 57.80 52.24
RR 57.34 52.07 57.24 43.13
kNN 55.34 54.53 55.24 50.78
MLP 73.08 63.19 60.49 61.81
RNN 56.92 56.81 56.78 56.80

Table 2: Performance metrics in percentage, Seg-
mented, eGeMAPSv2. Acc: Accuracy, F1: F1
score.

independently, and their predictions were subse-
quently aggregated. The mean of these predic-
tions served as the final prediction for each input
sample, thereby enhancing prediction accuracy
while diminishing tendencies for overfitting. Fur-
ther rigor was added to our methodology through
the use of stratified 10-fold cross-validation, which
ensured the models’ robustness and generalizabil-
ity across unseen, crosslinguistic data. A ran-
dom hyperparameter search was also conducted
to fine-tune each model’s parameters, a necessity
given the diverse acoustic feature space inherent
in crosslinguistic datasets.

3. Results

3.1. Classification results

From the list of multiple machine learning and
deep learning classifiers we trained our data
on, we report the results from 8 different classi-
fiers: Logistic Regression (LR), Random Forest
(RF), Support Vector Classifier (SVC), Gradient
Boosting (GB), Ridge Regression (RR), k-Nearest
Neighbors (kNN), MLP, and RNN. We report our
results on both non-segmented and segmented
datasets using eGeMAPS and ComParE feature
sets. The comprehensive performance metrics of
these classifiers under various configurations are
summarized in Tables 1-4.

The MLP classifier trained with non-segmented
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Acc. Precision Recall F1
LR 52.71 52.36 52.68 52.42
RF 53.77 52.36 53.67 52.44
SvC 57.81 52.11 57.71 43.61
GB 54.40 53.26 54.30 53.05
RR 52.65 52.29 52.62 52.35
kNN 50.41 48.96 50.31 48.99
MLP 83.54 73.68 75.68 74.67
RNN 53.68 53.64 53.62 53.63

Table 3: Performance metrics in percentage, Non-
segmented, ComParE. Acc: Accuracy, F1: F1
score.

Acc. Precision Recall F1
LR 53.98 51.85 53.88 51.70
RF 57.22 55.48 5712 54.73
SvVC 57.50 54.97 57.40 43.63
GB 57.95 55.97 5785 51.58
RR 57.80 55.69 57.70 46.46
kNN 52.95 52.11 5285 52.35
MLP 76.89 76.54 76.79 76.66
RNN 55.36 55.33 55.32 55.33

Table 4: Performance metrics in percentage, Seg-
mented, ComParE. Acc: Accuracy, F1: F1 score.

audio files using the ComParE feature set showed
the best performance with an accuracy of 83.54%
and an AUC of 0.80 (Table 4). The model cor-
rectly identified 190 patients with AD out of 251
and 132 HCs out of 134. Figure 1 shows the Re-
ceiver Operating Characteristic (ROC) plot of the
best performing model. The optimal threshold for
the model is at 0.40, where it attains its best bal-
ance of sensitivity and specificity. The specific hy-
perparameters that we used for this model were a
learning rate of 0.1, a dropout rate of 0.6, and a
batch size of 32. With these optimal parameters,
the model achieved its best precision (73.68%), re-
call (75.68%), and F1-score (74.67%).

Other models also exhibited relatively good per-
formances under certain configurations. The Ran-
dom Forest (RF) classifier, for instance, showed
great performance with an accuracy of 75.52% on
non-segmented data using the eGeMAPSV2 fea-
ture set (Table 2). This illustrates the efficacy of
the ensemble learning techniques in handling the
complexity of crosslinguistic acoustic data. Simi-
larly, the RNN model displayed a high accuracy of
73.27% under the same condition, underscoring
the potential of recurrent architectures in screen-
ing patients with AD within acoustic features.

3.2. Feature importance

Figure 2 shows 10 features with the highest fea-
ture importance values in SHapley Additive exPla-
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Figure 1: ROC curve illustrating the model’s binary
classification performance.
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Figure 2: SHAP summary plot showing the influ-
ence of various features on model predictions. Ab-
solute values are provided.

nations (SHAP) (Lundberg and Lee, 2017), illus-
trating the significance and impact of each acous-
tic feature on the best performing model’s predic-
tions. Most features in Figure 2 were spectra-
related features, which measured prosodic char-
acteristics of the participants. The only non-
spectral feature was the mean values of zero
crossing rate from the participants’ speech. None
of articulation-related features, such as Mel-
frequent Cepstral Coefficients, had high impor-
tance values in the prediction.

4. Discussion

The MLP classifier trained on the non-segmented
audio files using the ComParE feature set showed
the best performance in distinguishing patients,
showing an accuracy of 83.54% (AUC=0.8). The
results suggest that a large-scale screening of AD
patients using acoustic features extracted from
one-minute picture descriptions in multiple lan-

guages is highly promising. Acoustic features that
we employed could be automatically and uniformly
extracted regardless of languages, which make a
large-scale, remote screening of AD possible.
The MLP models generally performed the best
with both eGeMAPSv2 and ComParE feature sets
and in both segmented and non-segmented condi-
tions, which may suggest that MLP models handle
high dimensional features well, such as the acous-
tic features that we used in this study. Yet, the per-
formance of an MLP model trained on segmented
datasets slightly decreased compared to the same
model trained on non-segmented datasets, which
may suggest possible advantages of employing
non-segmented data that retained linguistic nu-
ances. Also, RNNs generally showed worse per-
formance than MLP models in all segmentation
and feature set combinations, which may suggest
that we need larger datasets for efficient training
with deep learning models.

Selected features with high feature importance
values mostly included spectral-related features,
suggesting that voice timbre and prosody are im-
portant features in distinguishing patients with AD
from HCs. In contrast, the fact that articulation-
related features, such as MFCCs, did not have
high feature importance values in these tasks sug-
gest that information on articulation is no longer in-
formative when the dataset includes multiple lan-
guages with different phonetic and phonological
systems. Future research is needed to confirm this
observation. Other future research directions may
include the exploration of advanced architectures
and a deeper dive into interpretability.

5. Conclusion

In this study, we have rigorously evaluated var-
ious machine learning and deep learning classi-
fiers for the binary task of distinguishing AD pa-
tients from HCs using acoustic features extracted
from crosslinguistic speech data. Acoustic fea-
tures can be automatically extracted from speech,
regardless of languages, which make AD screen-
ing in diverse communities using natural speech
highly plausible. Our findings contribute to both
the methodological advancements and the inclu-
sivity of crosslinguistic machine learning models
in the field of AD and speech, benefiting diverse
linguistic communities.

While showing promising results, this study has
a few limitations in that many participants in the
study were English speakers and only three lan-
guages were included. Future research will need
to have balanced sample sizes for all languages
to prevent any learning biases and include more
languages to benefit numerous patients speaking
non-English languages.
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