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Abstract

Speech-driven facial animation, a technique
employing speech signals as input, aims to gen-
erate realistic and expressive talking head ani-
mations. Despite advancements in talking head
synthesis methods, challenges persist in terms
of achieving precise control, robust generaliza-
tion, and adaptability to various scenarios and
speaker characteristics. Additionally, the major-
ity of existing approaches are primarily tailored
for a restricted range of languages, with En-
glish being the predominant focus. This work
introduces a novel two-stage framework for
Brazilian Portuguese talking head generation,
combining the strengths of Transformers and
Generative Adversarial Networks (GANs). In
the first stage, the transformer-based model ex-
tracts rich contextual information from the au-
dio speech input, generating facial landmarks.
In the second stage, we employ a GAN-based
framework to translate the facial representa-
tions into photorealistic video frames. This
framework separates the modeling of dynamic
shape variations from the realistic appearance,
partially addressing the challenge of generaliza-
tion. Moreover, it becomes possible to assign
multiple appearances to the same speaker by ad-
justing the trained weights of the second stage.
Objective metrics were used to evaluate the syn-
thesized facial speech, showing that it closely
matches the ground-truth landmarks.

Speech synthesis - Audio driven - Talking head
generation

1 Introduction

Expressive facial animation synthesis models, or
talking heads, characterize a key technology for
constructing embodied social interactive agents ca-
pable of enabling collaborative interaction and at-
tributing trustworthiness to Al systems (Mattheyses
and Verhelst, 2015).

In this context, deep learning generative model-
ing techniques have been successful in leveraging

virtual talking heads capable of inspiring more natu-
ral and empathetic interaction through the synthesis
of highly realistic and expressive facial animations
by extracting the underlying patterns and features
from large datasets of human faces (Sheng et al.,
2022). However, state-of-the-art talking head syn-
thesis approaches still grapple with limitations in
controllability and generalization. While animation
fidelity has improved, tailoring facial expressions
and nuances to convey specific emotions or inten-
tions remains challenging. Additionally, models
often struggle to adapt to unseen scenarios or vari-
ations in speaker appearance and voice, hindering
their real-world applicability. (Chen et al., 2020).

Moreover, most of the existing facial animation
systems are designed for English or a few other lan-
guages, such as Chinese/Mandarin (Tao and Tan,
2004; Liet al., 2021; Lu et al., 2021), French (Dah-
mani et al., 2019) and German (Thies et al., 2020).
This currently limits the applicability and acces-
sibility of facial animation systems for speakers
of other languages, especially those with different
phonetic and prosodic features. Despite the hypoth-
esis that models trained on large volumes of data
in English could be satisfactorily adapted or fine-
tuned for other languages, no studies address this
issue in more depth, including perceptual assess-
ments. The hypothesis that existing models trained
on primarily English data might misinterpret lip
movements and expressions for other languages,
potentially leading to cultural misunderstandings,
persists.

In this work, we present a videorealistic, speech-
driven, image-based, Brazilian Portuguese talking
head that was built from the training of a novel
two-stage framework. The first stage of our frame-
work consists of a FaceFormer model, initially pro-
posed by Fan et al. (2022) to convert audio into
3D meshes that we adapted to generate 2D land-
marks. The second stage of our framework adopts
vid2vid model to synthesize photorealistic frames



of animation (Wang et al., 2018). By adopting
this new arrangement that separates the modeling
of dynamic variations of shape driven by speech
(FaceFormer) from the modeling of the dynamic
variations of appearance driven by shape (vid2vid),
our framework addresses, albeit partially, the prob-
lem of generalization. With the appropriate design,
it is possible, for example, to attribute multiple
appearances for the same speaker simply by chang-
ing the trained weights of the second stage. It is
also possible to make the same face talks in mul-
tiple languages, changing the trained weights of
the first stage. Additionally, the facial landmarks,
as first stage output, enhance interpretability, as
they directly correspond to visible facial features,
enabling intuitive understanding and manipulation.

To the best of our knowledge, our work builds
the first neural deep learning-driven talking head
for Brazilian Portuguese. In the following sections,
we discuss related works and describe our method-
ology. As a work in progress, the present work
does not include results from perceptual evalua-
tion assessment, but objective metrics and links to
synthetic videos are shared in Section 4.

2 Related Works

In recent years, there has been growing interest in
using deep neural networks to effectively connect
auditory and image-based signals. Many works
try to generate speech-driven talking heads by di-
rectly mapping the speech to the talking head in
an end-to-end style (Jamaludin et al., 2019; Zhou
et al., 2019). On the other hand, other works uti-
lize intermediate facial parameters to bridge the
gap between audio and image (Suwajanakorn et al.,
2017; Jalalifar et al., 2018). These facial param-
eters can be 3D meshes or landmarks. While 3D
meshes provide detailed and volumetric represen-
tation, they require more computational resources
and specialized equipment such as 3D scanners or
depth sensors, making data collection more com-
plex and time-consuming. Alternatively, landmarks
are lightweight and can be easily obtained from 2D
images or videos, making them widely accessible
and applicable in various scenarios (Zhen et al.,
2023). This work obtains inspiration from two-
stage approaches that use landmarks as intermedi-
ate facial parameters.

The pioneering work by Suwajanakorn et al.
(2017) utilized a time-delay e Long Short Term
Memory (LSTM) to map standard Mel-frequency

Cepstral Coefficients (MFCCs) representations of
speech audio to lip shapes, aligning them with a
specific set of 18 lip landmark points. From the
lip landmark, a statistical three-step pipeline is em-
ployed to render realistic speech texture. Jalalifar
et al. (2018) improved the quality of the output im-
age with a simpler pipeline by introducing a Condi-
tional GAN as the second stage (Goodfellow et al.,
2020; Mirza and Osindero, 2014). To address the
pixel jittering issue, Chen et al. (2019) enhanced
the second stage with a novel proposed dynami-
cally adjustable pixel-wise loss with an attention
mechanism and a regression discriminator based
on perceptual loss (Johnson et al., 2016). Addi-
tionally, the intermediate landmarks map 68 facial
points, adding more face detail points such as the
eyes, nose, and jaw.

Many works also focus on improving speech rep-
resentation by adopting deep learning-based Auto-
matic Speech Recognition (ASR), instead of only
relying on hand-crafted features such as MFCC,
to ensure robustness due to the different audio
sources, accents, and noise. Sinha et al. (2020)
and Das et al. (2020) utilize DeepSpeech, which
uses recurrent neural network layers to model the
temporal dependencies in the audio signal. Zhou
et al. (2020) employed AutoVC, a voice conver-
sion neural network, to learn disentangled speech
content and identity features (Qian et al., 2019).
Autoregressive Predictive Coding (APC) adopted
by Lu et al. (2021), offers a powerful framework for
learning speech representations in an unsupervised
manner (Chung and Glass, 2020). It is worth men-
tioning FaceFormer, although it is a work focusing
on 3D Meshes, it uses wav2vec 2.0, a Transformer-
encoder-based network that employs unsupervised
pre-training with contrastive learning to learn ro-
bust speech representations (Baevski et al., 2020).

The predominant choice of LSTM models for
synthesizing facial landmarks from speech features
has shifted to a variety of advanced deep learn-
ing techniques. Contemporary methodologies, in-
cluding GANSs, Convolutional Neural Networks
(CNNs), Temporal Convolutional Network (TCNs)
and Transformer-based models, have demonstrated
significant efficacy in capturing intricate relation-
ships between input features and corresponding
facial landmarks (Sinha et al., 2020; Das et al.,
2020; Yu et al., 2022).

GANs are commonly employed in the second
stage to render landmarks into highly realistic im-
ages. The evolution of generator models in this



context has progressed from simple CNNs to more
sophisticated architectures. Sinha et al. (2020) in-
cluded attention mechanisms to focus on specific
areas of the face for better detail generation. Lu
et al. (2021) and Zheng et al. (2021) incorporate
U-Net structures, an architecture known for its ef-
fectiveness in image segmentation tasks. Yu et al.
(2022), inspired by Wang et al. (2018), utilized
optical flow, which captures the motion between
consecutive frames of a video. Zhong et al. (2023)
employ SPADE layers to modulate the synthesis
process with semantic information of the scene
(Ronneberger et al., 2015; Park et al., 2019; Ilg
etal., 2017).

In this study, we employ FaceFormer as the ini-
tial stage for its robustness in extracting speech fea-
tures using wav2vec 2.0 and its ability in managing
long-range dependencies through attention mecha-
nisms. For the second step, taking inspiration from
(Yu et al., 2022) and (Wang et al., 2018), we use
a GAN framework integrated with optical flow to
facilitate the translation of landmarks into realistic
images while maintaining temporal consistency.

3 Methodology
3.1 Dataset

The proposed method is trained on a subset of neu-
tral speech videos from CH-Unicamp, a Brazil-
ian Portuguese dataset featuring expressive speech
(Costa, 2015). The aim is to first validate the
methodology on neutral videos, which are simpler,
before enhancing it to include emotional condition-
ing, thereby enabling use of the entire expressive
dataset. These video clips were recorded under con-
trolled conditions to facilitate synchronized audio
and video capture. An actress performed various
scripts, depicting everyday dialogues and encom-
passing all phonemes of the Brazilian Portuguese
language.

The training dataset contains 124 video clips,
while the valid and test dataset contains 13 video
clips each. The total duration of all videos is ap-
proximately 15 minutes, averaging around 7 sec-
onds per clip. The video and audio were recorded
using an HD 1920x1080 pixels, NTSC 29.97 FPS
digital video camera.

3.2 Data Preprocessing

Initially, frames were extracted from all videos at
30 frames per second and then subjected to center
cropping and downsampling, resulting in a resolu-

tion of 256x256 pixels. This reduction was neces-
sary due to the computational demands of training
the second stage model, the vid2vid model. Sub-
sequently, the facealign method was applied to
each frame to extract 68 facial keypoints (Bulat
and Tzimiropoulos, 2017). Additionally, the audio
was extracted from the videos and downsampled to
16kHz to ensure compatibility with wav2vec 2.0,
which is employed as an audio encoder (Baevski
et al., 2020).

3.3 Architecture

As illustrated in Figure 1, the framework consists of
two main components. The first is an audio-to-face
representation, for which we adapted the output of
the FaceFormer model implementation (Fan et al.,
2022). The second component is a neural renderer,
the vid2vid model implementation, which converts
face representations into realistic speech frames
(Wang et al., 2018).

The FaceFormer model utilizes a transformer
encoder-decoder architecture to process raw audio
data and produce a sequence of animated 3D face
meshes (Vaswani et al., 2017; Fan et al., 2022). In
our modification of the model, we altered the mo-
tion encoder dimensions to allow FaceFormer to
produce 2D landmarks with dimensions of 68x2.
This generation is dependent on the contextual in-
formation from the audio and the sequence of pre-
viously predicted facial landmarks.

The FaceFormer encoder utilizes a wav2vec 2.0
model adapted to synchronize audio features with
the predicted frames (Baevski et al., 2020). The
wav2vec 2.0 consists of three primary components:
an audio feature extractor, a multi-layer transformer
encoder, and a quantization module. The audio
feature extractor employs a series of TCNs to trans-
form raw waveform input into feature vectors. The
transformer encoder, comprising a stack of self-
attention and feed-forward layers, further refines
the audio feature vectors into contextualized speech
representations. The quantization module then dis-
cretizes the output from the TCNs into a finite set
of speech units. To mitigate the differences in fre-
quencies between audio (e.g., 16kHz) and video
(e.g., 30 FPS) data, linear interpolation is imple-
mented on the TCN output, resampling the audio
features to match the video frequency.

The FaceFormer decoder includes three main
components: a periodic positional encoding (PPE),
a biased causal multi-head (MH) self-attention de-
signed for generalizing to longer input sequences,
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Figure 1: Framework Overview. The framework contains two models: i) Faceformer, a transformed-based model
for audio-to-face representation; ii) vid2vid, a GAN-based model for final photorealistic frame construction.

and a biased cross-modal MH attention to synchro-
nize audio-motion features. These modules are in-
fluenced by Attention with Linear Biases (ALiBi),
which adapts the traditional Transformer decoder
to enhance generalization capabilities (Press et al.,
2021).

The vid2vid model is a GAN-based framework
composed of multiple generators and discrimina-
tors, designed to convert a sequence of source video
frames into a target sequence (Wang et al., 2018).
The generator operates in a coarse-to-fine man-
ner, progressively refining the generation process
through hierarchical stages and incorporating op-
tical flow networks to predict subsequent frames
(Ilg et al., 2017). To combat the mode collapse is-
sue prevalent in GAN training, two discriminators,
Conditional Image Discriminator (CID) and Con-
ditional Video Discriminator (CVD), are utilized
(Ghosh et al., 2018; Tulyakov et al., 2018). CID
aims to ensure each generated frame closely resem-
bles the corresponding actual frame, while CVD
focuses on maintaining the temporal dynamics of
consecutive frames, considering the optical flow.
This configuration allows the discriminators to as-
sess both the individual frame quality and the coher-
ent flow of the entire video sequence, identifying
and penalizing any unnatural or abrupt variations.

3.4 Training

The models were trained separately, using the
Adam optimizer (Kingma and Ba, 2014) with a
fixed learning rate of 10~* for FaceFormer and
2.10~* for vid2vid. Both models were trained with
a batch size of 1. The experiment was conducted on
a Linux server equipped with an Nvidia V100 GPU,
eight processor cores, and 32 GB of RAM. The
FaceFormer model was trained 2560 epochs for
approximately one week, with the encoder parame-
ters fixed on the pre-trained wav2vec 2.0 weights

(Grosman, 2021). Meanwhile, vid2vid was trained
for 120 epochs on both realistic and 2D-facial land-
marks video frames, requiring about two weeks to
complete.

4 Evaluation and Results

Examples of animations
using our method can be
bernardo90.github.io/bpsdth.

Well-established methods in the field of com-
puter vision were employed to evaluate the quality
of the synthesized animation frames. These include
the Structural Similarity Index (SSIM) (Wang et al.,
2004), Frechet Inception Distance (FID) (Heusel
et al., 2017), and Learned Perceptual Image Patch
(LPIPS) (Zhang et al., 2018). FID relies on a pre-
trained Inception network to extract and compare
feature embeddings from both real and generated
images. A lower FID score indicates higher image
quality. SSIM provides a comprehensive analysis
of two images by assessing their luminance simi-
larity, contrast similarity, and structural similarity
within their local neighborhoods. SSIM generates
a score ranging from O to 1, with 1 denoting per-
fect similarity. LPIPS is an objective metric for
quantifying the perceptual similarity between two
images. It is designed to assess how similar two
images appear in terms of human perception, with
a higher score indicating greater dissimilarity and
a lower score indicating higher similarity.

synthesized
seen at br-

As a first approach to evaluating the proposed
framework, we focused on studying the 2D land-
mark representation synthesized by the adapted
FaceFormer architecture. To conduct the exper-
iments, we fixed the model checkpoints of the
second stage (vid2vid), and we varied its inputs
(landmarks) to assessing if FaceFormer training is
capable of learning efficient shape representations
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of facial dynamics driven by audio. Finally, we
completely removed the first stage of our pipeline
and compared previous results with synthesized
animation frames driven by 2D landmarks obtained
from ground truth videos.

In the experiment, a k-fold cross-validation ap-
proach was adopted, with £ = 4 and each subset
comprising 13 test samples. This method parti-
tioned the data into ‘k’ subsets, systematically us-
ing one subset for testing and the remaining data
for training in each iteration. The choice of k-
fold cross-validation was especially pertinent given
the small dataset size, as it allowed for a more
robust and thorough evaluation of the model’s per-
formance and generalizability across various data
subsets. The Table 1 showcases the aggregate re-
sults from the k-fold cross-validation iterations,
specifically capturing the mean () and standard
deviation (o) of the objective evaluation metrics
across different epochs. For each epoch, the mean
score is computed from all 13 test samples within
a single iteration. Subsequently, the means and
standard deviations of these scores are calculated
across all iterations for each epoch. This process
offers a comprehensive view of the model’s perfor-
mance at various stages of training

Ep FID | LPIPS | SSIM
n o n o m o

160 | 31.1 | 1.6 | 0.0576 | 0.0005 | 0.317 | 0.002
320 | 28.5 | 0.73 | 0.0567 | 0.0004 | 0.320 | 0.002
640 | 27.3 | 0.35 | 0.0561 | 0.0004 | 0.324 | 0.002
1280 | 26.8 | 0.12 | 0.0554 | 0.0003 | 0.328 | 0.001
2560 | 26.6 | 0.09 | 0.0552 | 0.0001 | 0.330 | 0.001
GT | 254 | 0.07 | 0.0450 | 0.0001 | 0.390 | 0.001

Table 1: Objective scores were computed using synthe-
sized and ground-truth 2D landmarks as input to the
second stage of our pipeline. The arrows up indicate
that higher is better, while the arrows down indicate
that lower is better. We see that FaceFormer training
successfully learns facial shape dynamics. With 2560
training epochs, we get landmark representations that
result in scores close to those obtained by ground-truth
representations. "Ep" stands for epochs. "GT" stands
for Ground Truth.

The initial rows of Table 1 display a consistent
decrease in FID and LPIPS scores over epochs,
signifying an enhancement in image quality. Also,
it demonstrates a corresponding increase in SSIM
score over the epochs, further confirming improved
image quality. These metrics collectively exhibit
a positive trend, implying potential for even better

results with extended training.

The final row of Table 1 presents the scores ob-
tained when ground-truth landmarks are input to
the second stage. Although the use of ground truth
yields better photorealism in animations, the scores
are comparatively close to those obtained using the
fully synthetic pipeline.

5 Conclusion

To the best of our knowledge, our work builds
the first neural deep learning-driven talking head
for Brazilian Portuguese. We also present a novel
two-stage arrangement adapted from existing mod-
els capable of delivering photorealistic animations,
with an intermediate facial landmark representation
that attributes interpretability and generalization as-
pects to the framework.

Among the limitations of our work, we empha-
size that our models were trained with neutral
speech only. The next steps include enhancing the
framework to incorporate emotion conditioning.

Also, while recognizing the valuable insights
offered by objective metrics like SSIM, LPIPS,
and FID in quantifying visual fidelity, we readily
acknowledge their limitations in comprehensively
evaluating the quality of synthesized talking heads.
These metrics excel at capturing pixel-level simi-
larity, but the human perception of facial animation
extends far beyond mere visual sharpness. Vide-
orealism, for instance, encompasses subtleties in
lighting, skin texture, and hair dynamics that defy
reduction to single numerical scores. Similarly,
cultural nuances in the expression through facial
movements cannot be captured by objective metrics
alone. Therefore, we plan to complement objec-
tive metrics with subjective evaluation by human
observers.
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