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Abstract

The potential of transformer-based LL.Ms risks
being hindered by privacy concerns due to their
reliance on extensive datasets, possibly includ-
ing sensitive information. Regulatory measures
like GDPR and CCPA call for using robust au-
diting tools to address potential privacy issues,
with Membership Inference Attacks (MIA) be-
ing the primary method for assessing LLMs’
privacy risks. Differently from traditional MIA
approaches, often requiring computationally in-
tensive training of additional models, this paper
introduces an efficient methodology that gen-
erates noisy neighbors for a target sample by
adding stochastic noise in the embedding space,
requiring operating the target model in infer-
ence mode only. Our findings demonstrate that
this approach closely matches the effectiveness
of employing shadow models, showing its us-
ability in practical privacy auditing scenarios.

1 Introduction

Advancements in natural language processing
(Vaswani et al., 2017) have made large language
models (LLMs) (Radford et al., 2019) essential
for many text tasks. However, LLMs face issues
like biases (Narayanan Venkit et al., 2023), privacy
breaches (Carlini et al., 2021), and vulnerabilities
(Wallace et al., 2021), underscoring the importance
of protecting user privacy. The use of large datasets
including personal information, has raised privacy
concerns, leading to regulations such as GDPR (Eu-
ropean Parliament, European Council, 2016) and
CCPA (State of California, 2018).

Membership inference attacks (MIA) (Shokri
et al., 2017) are effective auditing tools aiming at
determining if a specific data point was used in
an LLM’s training dataset by analyzing its output.
Such attacks highlight potential privacy breaches,
relying on models’ tendency to overfit to familiar
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data (Carlini et al., 2019). By employing calibra-
tion strategies and training shadow models, the
accuracy of MIAs can be improved, although chal-
lenges such as computational demands and limita-
tions in effectiveness when deviating from training
distribution assumptions persist. In this paper, we
contribute to this field by: 1) exploring membership
inference attacks from the standpoint of a privacy
auditor, ii) introducing a computationally efficient
calibration strategy that sidesteps training shadow
models, and iii) empirically assessing its potential
in replacing other prevalent strategies.

2 Background

LLMs generate a probability distribution over their
vocabulary based on a tokenized input sequence
converted into numerical inputs through an em-
bedding layer. This layer maps tokens to a dense
representation, which can be learned during train-
ing (Radford et al., 2018, 2019) or derived from
public word embeddings (Devlin et al., 2018).
For a model f with input sequence x, we define
Plw|z] = fw(z) as the conditional probability that
the token following = is w. LLMs are typically
trained on large datasets of text to minimize a mea-
sure of surprise in seeing the next token, called
perplexity. For a sequence z, it is defined as the
average negative log-likelihood of its tokens:
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with |z| the number of tokens in the sequence.
Membership inference attacks (Shokri et al.,
2017; Watson et al., 2021; Carlini et al., 2022) aim
to determine whether a particular data record x was
used in the training dataset Dy,.4;, of a machine
learning model. These methods leverage model
outputs like confidence scores or prediction proba-
bilities to compute a score for the targeted sample.
For LLMs, the typical assumption is to grant the
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adversary access to the output probabilities f(z),
which may be used to estimate the perplexity on
the targeted samples as a score. Given a sample z,
the goal of the attacker is to learn a thresholding
classifier to output 1 when the perplexity is lower
than a certain value ~:

Ay (f,x) = Lppz(f,z) <] 2

MIA is a simple and effective tool to measure the
privacy risk in a trained machine learning model,
and it has interesting connections with other pri-
vacy frameworks. In particular, it is known to have
a success rate bounded by the privacy parameters
of Differential Privacy (DP) (Dwork et al., 2006).
A randomized mechanism M is said to be e-DP
if for any two datasets D, D’ that differ in at most
one sample, and for any R C range(M), we have:

PIM(D) € R < PIM(D') € R]  (3)

Notably, DP quantifies the worst-case scenario of
the privacy risk, so it is a fundamental tool in pri-
vacy assessment. From the performance of the
thresholding classifier A, (f,x) one can obtain a
lower bound to the empirical e-DP (Kairouz et al.,
2015):

£
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with TPR and FPR being, respectively, the true and
false positive rates, given a certain threshold.

3 Related works

Privacy attacks against language models is an ac-
tive area of research and different refinements have
been proposed. Some works have focused on an
attacker where data poisoning is allowed, granting
the adversary write access to the training dataset, to
increase memorization (Tramer et al., 2022) or in
general to induce malicious behaviours (Xu et al.,
2023; Wallace et al., 2021; Yan et al., 2023; Shu
et al., 2024; Huang et al., 2020) and improve prop-
erty inference attacks (Mahloujifar et al., 2022).
Other works have adopted similar techniques to
achieve actual training data extraction from the
training set, with only query access to the trained
model (Carlini et al., 2021, 2023).

In the context of MIAs with query access to the
target model, most research focused on strategies
to improve the calibration of the per-sample scores,
i.e. techniques to improve the precision and recall
in distinguishing members from non-members of
the training set. In principle, if we can assert that

an out-of-distribution non-member of the training
set will induce a high perplexity in a target LLM,
there are a number of scenarios where the distinc-
tion is not as clear cut, and a thresholding clas-
sifier essentially ends up distinguishing between
in-distribution from out-of-distribution samples. A
refined MIA then employs calibration strategies to
tune the scoring function based on the difficulty of
classifying the specific sample, as in (Watson et al.,
2021). Thus, a relative membership score is ob-
tained by comparing f(x) with one of two results
based on whether the adversary is assumed to have
access to neighboring models f(x) (Carlini et al.,
2022; Watson et al., 2021) or neighboring samples
f(z) (Mattern et al., 2023). The new classifier
becomes:

A, (f,2) = L[ppz(f,x) — ppz(f.x) <] (5)

where ppx(f, x) is the calibrated score over a set
of neighboring models ppx( f ,x) or over a set of
neighboring samples ppx( f, Z). Neighboring mod-
els can be obtained by an adversary who is assumed
to have some degree of knowledge of the training
data distribution and trains a number of shadow
models to mimic the behaviour of the target LLM.
For instance (Carlini et al., 2022) trains multiple
instances of the same architecture on different par-
titions of the training set, (Carlini et al., 2021) uses
smaller architectures trained on roughly the same
data, (Watson et al., 2021) leverages catastrophic
forgetting of the target model under the assumption
of white-box access. Neighboring samples do not
require this assumption nor additional training and
only need a strategy to craft inputs that are sim-
ilar to the target sample under a certain distance
metric. For instance, (Mattern et al., 2023) crafts
neighboring sentences by swapping a number of
words with their synonyms, showing good results
but applicable primarily when the adversary has
limited knowledge of the training data distribution.
The authors then base the neighboring relationship
in the semantic space, which is hard to quantify
and fix, resulting in the need to generate a large
number of neighbors to reduce the effects of these
random fluctuations. Additionally, we emphasize
how (Mattern et al., 2023) requires the use of an
additional BERT-like model to generate synonyms,
thus increasing the computational and memory cost
of the attack. In (Tramer et al., 2022) instead, cal-
ibration is done by comparing scores of the true
inputs with scores of the lower-cased inputs. These
strategies are known to be under-performing when



knowledge of the training distribution is available,
and are therefore proposed as an effective calibra-
tion mechanism when training shadow models is
not possible.

4 Method

The intuition behind noisy neighbors is that, fixed
a distance from a sample, the target model will
show a larger difference in perplexity between a
training sample and its neighbors than between
a test sample and its neighbors. Thus, if we de-
scribe a language model as a composition of layers
f(z) = g(e(x)) where e is an embedding layer
and g is the rest of the network, one can artificially
create neighbors in the n-dimensional embedding
space by directly injecting random noise at the
output of e(z). In particular, if we create noisy
neighbors by injecting Gaussian noise such that
f@5) = gle(x)+p), with p~N(0,01,) (6)
then the Euclidean distance between the true and
randomized input in the embedding space will be

Ellle(z) — e(z) = pll = Elllpl] = ov/n (7)

thus fixing, in expectation, the distance from the
true sample at which the perplexity of the models
will be evaluated. Generating multiple neighbors
for each sample is crucial to mitigate randomness
from stochastic noise, requiring repeated LL.M in-
ferences. Choosing the standard deviation o po-
tentially involves a complex parameter search with
many model queries. However, the strategy’s per-
formance shows a clear peak at the optimal o value,
as shown in Figure 1, which can be efficiently iden-
tified using binary search.

We emphasize the challenge of isolating the em-
bedding layer from the remainder of the network
in an LLM when considering a scenario where an
attacker has only black box access to the model.
However, when this limitation does not apply, we
think it is still within the capacity of an auditor to
utilize a slightly stronger attacker model, where the
first embedding layer is exposed, to save computa-
tional resources in simulating an adversary without
access to the model architecture. Most importantly,
in fact, we are inclined to explore this option as a
more computationally efficient substitute for train-
ing shadow models for calibration, particularly in
the context of auditing, rather than viewing it as a
novel, realistic attack.
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Figure 1: The AUC of the thresholding classifier for
MIA shows a single and prominent peak at the optimal
o value in the noisy neighbors strategy.

5 Experiments

To validate the noisy neighbor strategy in imple-
menting a calibrated MIA, we run a series of pre-
liminary experiments on an LLM to gauge the
risk of memorization of training data. The cho-
sen architecture is GPT-2 small (Radford et al.,
2019) to compromise learning capacity with mem-
ory and computational footprint at about 1.5 bil-
lion parameters, especially considering that com-
peting strategies require training multiple LLMs
from scratch. The model was pre-trained on Open-
WebText (Gokaslan and Cohen, 2019), an open
reproduction of the undisclosed WebText in (Rad-
ford et al., 2019). The model was then fine-tuned
on 60% of the full WikiText corpus (Merity et al.,
2016), a large collection of Wikipedia articles. The
same data split was then partitioned in 10 sub-
sets used to train 10 shadow models for score cal-
ibration, as in (Carlini et al., 2022). Note that
Wikipedia articles are filtered out of the Open-
Webtext corpus, to avoid data leakage in common
benchmarks, such as ours. The remaining portion
of 40% of WikiText is thus used as source of non-
member, 126-token long samples to analyze the
performance of the attack. We generate only 10
synthetic neighbors for each sample. Given a sam-
ple and its score, the thresholding classifier yields a
binary decision on whether it was part of the train-
ing dataset or not. To determine how good the best
possible classifier may be, we need to evaluate its
accuracy at different thresholds. As it is common
for binary classification problems, though, the ac-



curacy does not give a complete picture of the con-
fidence at which the classifier is able to tell apart
members and non-members of the dataset. Thus
Figure 2a shows the complete range of TPRs ver-
sus FPRs for the three main strategies we included
in this comparison: score by perplexity (loss), by
shadow model calibration (shadow), and by noisy
neighbor (noisy) calibration. We have opted not to
incorporate the lowercasing strategy (Tramer et al.,
2022) and the semantic neighbor approach (Mat-
tern et al., 2023) in our study. These methods have,
however, shown lower performance levels when
information about the training data distribution is
accessible, which is contemplated from the auditor
point of view. Additionally, we faced challenges
replicating some results from (Mattern et al., 2023),
possibly due to limitations in the synonym gener-
ation technique described in (Zhou et al., 2019).
Figure 2a also notes the Area Under the Curve
(AUC), which for noisy and shadow amounts to
0.727 and 0.753 respectively, thus showing a dis-
crepancy of only ~ 3.4%. The AUC is an impor-
tant metric for binary classifiers as it abstracts from
the specific threshold, thus giving an average-case
idea of the strength of the attacker. Still, as high-
lighted in (Carlini et al., 2022), special care should
be given to what happens at low FPRs, that is when
the attacker can confidently recognize members of
the training set. This is what Figure 2b focuses
on, again showing a strong overlap of the shadow
and noisy strategies. Following Equation 4, we
also provide the perspective of empirical DP, as
the privacy community pushes to adopt this frame-
work to comply to regulatory frameworks such as
the GDPR (Cummings and Desai, 2018). Empir-
ical DP measures the extent to which individual
data points can be inferred or re-identified from
the output of the system, and contrary to DP, it is
a post-hoc measurement, not an a-priori guaran-
tee. Figure 3 reports the results, where we see a
strong consistency between the noisy and shadow
strategies, especially for FPRs lower than 1072,

6 Limitations

The effectiveness of the noisy neighbors method
depends on assumptions that may not apply uni-
versally across models or datasets. Its success also
relies on specific noise parameters, potentially lim-
iting its generalizability. Despite being computa-
tionally more efficient than shadow model methods,
it still requires significant computational resources.
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Figure 2: Efficacy of different strategies for MIA. Con-
fidence intervals are computed with the Clopper-Person
method.

7 Conclusion

This work set out to elaborate a strategy for mem-
bership inference attacks. Differently from prior
research focusing on improving the strength of the
attacker, we develop a technique trying to achieve a
similar efficacy, while reducing the computational
burden for an auditor trying to assess the privacy
risk of exposing the query access to a trained LLM.
We propose the use of noise injection in the embed-
ding space of the LLM to create synthetic neigh-
bors of the targeted sample, to shift the comparison
from the perplexity scored by different models on
one sample, to the comparison of different samples
by the same model. This approach allows to only
use the model in inference mode, thus inherently re-
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Figure 3: Empirical differential privacy measured down-
stream of training.

ducing the time and cost of running an MIA. With
a number of experiments we assess how our strat-
egy results converge to the results of using shadow
models, showing a remarkable alignment.
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