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Abstract
Recent advancements in neural information re-
trieval systems have focused on optimizing ef-
ficiency and effectiveness using BERT-based
models for semantic encoding. The ColBERT
model’s late-interaction mechanism, while ef-
fective, leads to larger indexes and slower re-
trieval speeds compared to single-vector ap-
proaches. This study introduces a pruning
method for ColBERT vector embeddings, uti-
lizing a small network to assign weights to es-
sential tokens for scoring and eliminating less
significant ones with a threshold. Our method
significantly reduces space requirements and
enhances retrieval speed, with a minimal de-
crease in performance, as demonstrated using a
Vietnamese Wikipedia-based dataset.

1 Introduction

Information retrieval (IR) has been a significant
area of research within Natural Language Process-
ing (NLP) for a long time. Traditional IR meth-
ods, such as sparse retrievers (e.g., BM25), are
now being outperformed by dense neural retrievers
that use deep learning models to calculate simi-
larity scores between queries and documents. Re-
cent advancements in pre-trained language mod-
els (PLMs) based on the Transformer architecture
(Vaswani et al., 2017) have significantly improved
neural IR techniques, boosting performance across
various benchmarks.

Neural IR paradigms mainly differ in their scor-
ing mechanisms. Cross-Encoder architectures
leverage self-attention across all tokens in a query-
passage pair to generate similarity scores, yielding
superior ranking performance with fine-grained,
contextualized embeddings. In contrast, Single-
Vector Bi-Encoders create single-vector represen-
tations for each query and document by employing
pooling mechanisms, with similarity assessed us-
ing metrics like cosine similarity. These models,
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trained with contrastive learning and sophisticated
pre-training procedures, effectively capture seman-
tic nuances and offer high performance and effi-
ciency, enabling rapid retrieval via pre-indexing
and efficient nearest neighbor search.

However, both Cross-Encoders and Single-
Vector Bi-Encoders have their limitations. Cross-
Encoders are not scalable for real-world appli-
cations because they require processing both the
query and the document through a large language
model for every pair, preventing search time re-
duction through precomputation. Single-Vector
Bi-Encoders, while allowing faster searches, often
provide lower ranking effectiveness and struggle to
encapsulate the semantics of entire documents for
some datasets (Sciavolino et al., 2021).

To balance efficiency with contextual depth in
IR, the ColBERT model (Khattab and Zaharia,
2020) employs token embeddings from PLMs and
a late interaction technique to calculate query-
document similarity scores. ColBERT uses multi-
ple embeddings per document, capturing complex
semantic relationships and outperforming most
Single-Vector Bi-Encoder and some Cross-Encoder
models. However, this comes at the cost of in-
creased computation and storage requirements, po-
tentially exceeding RAM capacities and affecting
retrieval speed on limited hardware.

This research introduces a novel token pruning
method for ColBERT to reduce the number of vec-
tors stored by ColBERT with minimal performance
trade-offs. We propose directly learning the impor-
tance of tokens in documents via a neural network
layer during training and use this layer to assign
weights to tokens based on their relevance, keeping
only the important ones (tokens with high weights)
when indexing. This approach effectively preserves
document keywords, significantly reducing storage
requirements and improving retrieval speed.

In summary, our contributions include:



1. We introduce a novel token pruning method
for ColBERT that achieves a balance between
efficiency and effectiveness, enabling flexible
adjustment of the pruning threshold.

2. We propose an effective training approach for
the weight-assigning neural network, utilizing
distillation from a well-trained model and su-
pervision from token classification tasks such
as NER and POS.

3. Our method is evaluated on a Vietnamese
Wikipedia-based dataset, and we compare it
with other research aimed at improving the
efficiency of ColBERT.

2 Background & Related Works

2.1 Neural Information Retrieval

As data grows, traditional match-based search
methods are becoming less effective, prompting
a shift toward semantic search. The Transformer
architecture (Vaswani et al., 2017) and advanced
language models (Devlin et al., 2019; Liu et al.,
2019) have established neural retrieval as the dom-
inant approach, leading to the development of nu-
merous models (Karpukhin et al., 2020; Nogueira
and Cho, 2020; Formal et al., 2021).

Among these neural models, deep interaction-
based models known as cross-encoders (Nogueira
and Cho, 2020; Dai and Callan, 2019; Phan and
Le, 2023) achieve high retrieval effectiveness but
at the expense of speed. Despite efforts to reduce
their latency (MacAvaney et al., 2020; Gao et al.,
2020), these models remain impractical for real-
world applications and are typically reserved for
re-ranking after initial retrieval.

In contrast, representation-based models, such
as Single-Vector Bi-Encoders (Karpukhin et al.,
2020), leverage deep language models to produce
single embedding vectors representing documents
or queries. These embeddings retain the content
and context of the entire input text. Similarity is
then computed using simple metrics such as cosine
similarity, with retrieval performed by selecting
the top results via nearest neighbor search. This
approach is widely favored, and many studies have
proposed various training methods to create robust
embeddings that yield accurate retrieval results (Qu
et al., 2021; Xiao et al., 2022; Nguyen and Le,
2023).

2.2 Multi-Vector Bi-Encoder
In addition to learning a single representation, sev-
eral studies have proposed using multiple represen-
tations for queries and documents, coupled with
simple interaction mechanisms to compute similar-
ity scores. This approach mitigates the limitations
of single-vector representations in terms of accu-
racy and interpretability.

The Poly-encoder model (Humeau et al., 2019)
encodes queries into a set of vectors, and the Me-
BERT model (Luan et al., 2021) does the same for
documents. Notably, ColBERT (Khattab and Za-
haria, 2020) encodes both queries and documents
into multiple vectors and employs the MaxSim late
interaction mechanism for similarity computation.
COIL (Gao et al., 2021), developed concurrently
with ColBERT, adopts a similar idea but incorpo-
rates hard matching for faster search.

While these models are highly effective, they
have higher computational complexity than Single-
Vector Bi-Encoders, higher retrieval latency, and
require storing numerous vectors. Subsequent stud-
ies have focused on improving these aspects by re-
ducing latency and index size through advanced
search procedures (Santhanam et al., 2022a), quan-
tization (Santhanam et al., 2022b), and more robust
training methods (Santhanam et al., 2022b).

2.3 Pruning for ColBERT
Pruning directly addresses the storage and compu-
tational costs of ColBERT by retaining embeddings
only for the most important tokens. Recent research
on token pruning (Liu et al., 2024; Lassance et al.,
2021; Lassance, 2022) proposed heuristics for se-
lecting tokens to retain, such as:

• The first few tokens in a document.

• Tokens with the highest IDF scores.

• Tokens with the highest attention scores.

These heuristics, applied during training or as a
post-processing step, have shown effectiveness but
are not optimal, often significantly reducing re-
trieval accuracy.

The ColBERTer model (Hofstätter, 2022) further
proposes reducing the number of vectors by using
whole-word embeddings and a ReLU gate to filter
tokens. Although this method can identify impor-
tant tokens, it faces challenges in achieving training
convergence and lacks flexibility in adjusting the
pruning level.



Our research directly learns from data to identify
important tokens, aiming to achieve high accuracy
while using soft weights for tokens to enable flexi-
ble pruning during retrieval.

3 Methodology

In this paper, our primary objective is to minimize
the space requirements and enhance the retrieval
speed of the ColBERT model. To contextualize
our contributions, we begin with a comprehensive
overview of the ColBERT model, followed by the
introduction of our proposed ColBERT-Kw model,
which uses a small network to assign weights to
each document token, facilitating effective token
pruning based on importance. Since ColBERT-Kw
exhibits training difficulties with conventional su-
pervised contrastive learning, we propose a knowl-
edge distillation procedure to improve convergence.

3.1 ColBERT Modelling

ColBERT is a Multi-Vector Bi-Encoder model that
uses a pre-trained Language Model (PLM), such as
BERT, to independently encode queries and doc-
uments into high-dimensional vector embeddings.
In this model, a query encoder and a document
encoder transform a query Q and a document D
into sequences of fixed-size embeddings. The key
innovation in ColBERT is its late interaction mech-
anism, MaxSim, which calculates the maximum
similarity for each query token embedding against
all document token embeddings. The overall simi-
larity between Q and D is then defined as:

s(Q,D) =
∑
i∈EQ

max
j∈ED

EQ[i] · ED[j]
⊺︸ ︷︷ ︸

MaxSim

(1)

where EQ and ED are the sequences of contextu-
alized vector embeddings from Q and D. EQ[i]
and ED[j] are the vector embeddings of token i
in EQ and token j in ED, respectively. The intu-
ition behind this mechanism is to align each query
token with the most contextually relevant passage
token, quantifying these matches and combining
the partial scores across the query.

During offline indexing, all vector embeddings
for the corpus are precomputed and stored. For
retrieval, ColBERT first calculates the query vec-
tor embeddings, then performs a nearest neighbor
search for all query vectors. Documents with vec-
tors appearing in the top neighbors are then fully
scored using MaxSim.

Query Document

s

MaxSim MaxSim MaxSim

∑

PLM PLM

w w w
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Figure 1: ColBERT-Kw

In this study, we utilize the ColBERT model with
a few modifications:

• Normalizing the ColBERT score by dividing
it by the query length (number of tokens). This
normalization does not affect document rank-
ing but improves model convergence during
training:

s(Q,D) =
1

l

∑
i∈EQ

max
j∈ED

EQ[i] · ED[j]
⊺ (2)

in which l is the query length.

• Omitting token clipping and augmentation
with [MASK] tokens as in the original paper,
as they lead to information loss and slight,
hard-to-interpret improvements (Giacalone
et al., 2024), respectively.

3.2 ColBERT-Kw

KwNet

Linear

Layer Norm

Linear

σ

Figure 2: KwNet

We propose the ColBERT-
Kw model, where "Kw"
denotes "Keyword". This
model retains the core com-
ponents of the standard Col-
BERT model and introduces
an additional network layer
named KwNet. KwNet pro-
cesses contextually enriched
token representations from a
document, generated by the
PLM, and assigns weights to
these tokens. The architec-
ture of ColBERT-Kw is illus-
trated in Figure 1. We implemented KwNet as a



simple Multi-Layer Perceptron (MLP), as depicted
in Figure 2, though its architecture can be made
more complex as needed. The importance of a to-
ken, represented as token weights, is computed as
follows:

wD = KwNet (PLM ([D]d1d2 . . . dn)) (3)

where d1d2 . . . dn represents the token sequence
of the document D, and [D] is a special token
prepended to the documents as in the original Col-
BERT model. Instead of using ReLU, we normalize
the weight of tokens by using Sigmoid as the final
activation in KwNet. This provides more control
over the pruning level by allowing a threshold to be
set during the indexing phase. While other options
such as tanh or arctan exist, Sigmoid was chosen
for its favorable gradient behavior, making it easier
to train.

In the ColBERT-Kw model, the similarity com-
putation differs between training and retrieval. Dur-
ing training, without a predetermined token prun-
ing threshold, the similarity between a query Q and
a document D is calculated as follows:

sim(Q,D) =
1

l

∑
i∈EQ

max
j∈ED

wD[j] · EQ[i] · ED[j]
⊺

(4)

During retrieval, ColBERT-Kw allows us to choose
a pruning threshold through a hyperparameter τ ,
leading to the following similarity calculation:

sim(Q,D) =
1

l

∑
i∈EQ

max
j∈ED

JwD[j] ≥ τK · EQ[i] · ED[j]
⊺

(5)

where J·K is the Iverson bracket, equal to 1 if the
condition is true and 0 otherwise.

Only the vectors of tokens whose importance
scores meet the threshold are retained in the
database during indexing. This significantly re-
duces the number of embeddings, leading to sub-
stantially lower computational costs in both the
candidate generation and re-ranking phases of Col-
BERT.

This approach provides flexibility in determining
a pruning threshold without requiring retraining,
and it allows for directly learning the importance of
tokens during training instead of relying on heuris-
tics.

3.3 Knowledge Distillation for KwNet

Training KwNet is challenging due to the absence
of explicit labels to identify key tokens within a
document. The authors of ColBERTer (Hofstätter,
2022) suggest using a ReLU layer to determine
whether to retain or discard tokens by regularizing
token weights, encouraging sparsity. Their loss
function is formulated as follows:

L = Lsim + λLreg (6)

where Lsim is computed using conventional con-
trastive loss functions, and Lreg is a regulariza-
tion term that forces the model to assign reason-
able weights to tokens, retaining only the important
ones. However, our experiments show that select-
ing an appropriate λ is difficult, making it hard for
the model to converge to the desired state.

To address the absence of labels for important
tokens, we propose a knowledge distillation ap-
proach for training KwNet. This strategy leverages
the MaxSim mechanism of the ColBERT model,
which inherently identifies the most important to-
kens in documents responding to queries. These
tokens are treated as keywords for ColBERT-Kw,
and we train KwNet to assign high scores to them.
The loss function is now defined as:

L = Lsim + αLdistill + λLreg (7)

where α controls the weight of the distillation loss
Ldistill in the overall objective. Ldistill for a query-
document pair is calculated as:

Ldistill(Q,D) =

√ ∑
0≤j≤n

Jj ∈ SK · (1− wD[j])
2

(8)
where S represents the set of tokens selected by
MaxSim:

S =

{
argmax
j∈ED

EQ[i] · ED[j]

}l

i=0

(9)

Intuitively, minimizing Ldistill equates to maxi-
mizing the weights of the tokens selected by the
MaxSim mechanism of ColBERT. We also experi-
mented with an L1 variant to evaluate its effect on
KwNet’s token weighting:

Ldistill(Q,D) =
∑

0≤j≤n

Jj ∈ SK · |1− wD[j]|

(10)



Models trained using Equation 8 will be referred to
as ColBERT-Kw, while those trained using Equa-
tion 10 will be referred to as ColBERT-Kw-L1.
These formulations result in significantly different
distributions of token weights, which will be eluci-
dated in the upcoming experimental results section.
The regularization component is straightforwardly
calculated as:

Lreg(D) =
1

n

∑
0≤j≤n

wD[j] (11)

To prevent ColBERT-Kw from converging into
a Single-Vector Bi-Encoder, we prohibit gradient
backpropagation from the KwNet layer to the PLM
of the document encoder. In this study, this is
achieved by freezing the ColBERT component and
updating only KwNet, utilizing pre-trained Col-
BERT parameters. Specifically, we first train an ef-
fective ColBERT model, then freeze its parameters,
and subsequently train KwNet through knowledge
distillation. This approach leverages the already
optimized ColBERT model to facilitate more ef-
ficient learning within KwNet. By ensuring that
the PLM remains unchanged, KwNet can focus on
learning the importance of tokens while preserving
the integrity of the pre-trained document encoder.

In scenarios where it is desirable to initialize and
train ColBERT-Kw from scratch, we recommend
using the stopgrad operator to prevent gradient
backpropagation from KwNet. This approach cal-
culates the token weights as follows:

wD = KwNet (sg [PLM ([D]d1d2 . . . dn)]) (12)

where sg[·] indicates that gradients are not propa-
gated back through the enclosed expression.

Other components within the formula remain un-
changed. When updating the weights of ColBERT-
Kw, the gradient of L, as defined in Equation 8,
can be applied directly. Alternatively, the weights
of KwNet can be updated based on this gradient,
while the ColBERT component is updated using a
contrastive loss function, with similarity computed
by the standard ColBERT formula as in Equation
2.

3.4 Leverage Domain Knowledge by Auxiliary
Task Labels

Besides the keywords generated by ColBERT-Kw,
other heuristics can be applied to select a good key-
word set, such as domain-specific heuristics that
extend beyond traditional methods based on term

rarity or general grammatical rules. This strategy,
tailored specifically to each dataset, significantly
boosts the method’s adaptability and effectiveness.
In this paper, we utilize Named Entity Recognition
(NER) and Part-of-Speech (POS) tagging labels
to supplement additional keywords from the input
document. Nouns and entities are considered as
important keywords of the document. All of these
keywords are included in a designated set, S, de-
tailed further in Section 3.3. We selected NER
and POS for our research due to their relevance to
entity-rich datasets. Moreover, there are numerous
tools available today for part-of-speech tagging and
named entity recognition that provide high accu-
racy.

4 Experiments

In this section, we describe experiments conducted
with the ColBERT and our proposed ColBERT-
Kw models on a Vietnamese information retrieval
dataset derived from Wikipedia. We compare the
effectiveness and efficiency of both models against
established baselines. Additionally, we assess the
pruning performance of ColBERT-Kw relative to
traditional heuristic methods, particularly its abil-
ity to minimize index size while preserving the
retrieval accuracy inherent to ColBERT.

4.1 Dataset and Evaluation Metric

We evaluate the ColBERT and ColBERT-Kw mod-
els on a Vietnamese information retrieval dataset
derived from the 2019 Zalo AI Challenge’s Viet-
namese Question Answering task1 comprising
15,957 text documents and 5,070 unique queries
from Vietnamese Wikipedia. A total of 507 queries
were randomly selected for testing, with the re-
maining queries used for training.

We assess the performance of the models based
on the following criteria:

• Retrieval Effectiveness: Measured using
metrics such as Recall@1, Recall@10, Re-
call@50, and MRR@10 (Mean Reciprocal
Rank at 10).

• Retrieval Speed or Latency: The time re-
quired to process a query and retrieve relevant
documents.

1This specific dataset version is available in an unofficial
repository: https://github.com/namnv1113/Nanibot_
ZaloAIChallenge2019_VietnameseWikiQA.

https://github.com/namnv1113/Nanibot_ZaloAIChallenge2019_VietnameseWikiQA
https://github.com/namnv1113/Nanibot_ZaloAIChallenge2019_VietnameseWikiQA


• Index Size: Determined by the number of
embedding vectors and the overall size of the
index structures.

4.2 Baseline

The baseline retrieval models selected for compar-
ison include Okapi BM25, vietnamese-bi-encoder2

(Nguyen et al., 2024), and vietnamese-bert3. Okapi
BM25 is a variant of the well-established BM25
algorithm, chosen for its effective term matching-
based retrieval capabilities, offering a balance of
accuracy, low retrieval costs, and high speed. The
vietnamese-bi-encoder model, trained on the Viet-
namese mMARCO dataset (Bonifacio et al., 2021),
is noted for its high accuracy in text information
retrieval tasks. Similarly, vietnamese-sbert demon-
strates robust performance in semantic similarity
tasks.

4.3 Setup

For training ColBERT and ColBERT-Kw, we used
PhoBERT-base-v2 (Nguyen and Nguyen, 2020), a
state-of-the-art Vietnamese language model, as the
backbone PLM. The training process was divided
into two phases:

• First, we trained the ColBERT model using a
contrastive learning approach. Positive sam-
ples were directly sourced from the dataset,
while negative samples were randomly se-
lected from the top BM25 results, excluding
the positive samples. The online contrastive
loss function 4 was employed.

• After training ColBERT, we initialized
ColBERT-Kw with the trained model’s pa-
rameters and randomly initialized KwNet. We
then optimized KwNet’s parameters using the
loss function from Equation 7.

The models were trained using the Adam opti-
mizer (Kingma and Ba, 2014), with each phase
conducted over 24,000 steps with a batch size of
32 and a learning rate of 3e-6. The embeddings
for ColBERT and ColBERT-Kw were projected to
128 dimensions. The hyperparameters chosen for
KwNet training are λ = 0.1 and α = 0.4.

2https://huggingface.co/bkai-foundation-models/
vietnamese-bi-encoder

3https://huggingface.co/keepitreal/
vietnamese-sbert

4https://sbert.net/docs/package_reference/
sentence_transformer/losses.html

We evaluated ColBERT and ColBERT-Kw in
a full-ranking setup similar to ColBERT’s origi-
nal framework. Additionally, we trained the COIL
model for comparative purposes and tested the
PLAID retrieval mechanism (Santhanam et al.,
2022a) with ColBERT. For heuristic-based prun-
ing, we used a method akin to previous work (Liu
et al., 2024), reducing vector counts by 50% to
ensure fair comparison with ColBERT-Kw.

Training and indexing were performed on a P100
GPU provided by Kaggle, and evaluation was done
on a personal computer with an Intel i7-13700H
CPU.

4.4 Result
Table 1 shows the retrieval effectiveness (accu-
racy) of the models compared in this study. We
observe that while BM25 achieves moderate ac-
curacy on this dataset, the two single-vector bi-
encoder models, although trained on extensive data,
do not significantly outperform BM25. In con-
trast, multi-vector bi-encoder models exhibit supe-
rior performance, particularly ColBERT, which uti-
lizes the PhoBERT backbone, achieving the high-
est MRR@10 among the models tested. The COIL
model also surpasses the baseline models but is
constrained by its matching mechanism, unable to
match ColBERT’s retrieval outcomes. This un-
derscores the effectiveness of interaction between
the query and document embeddings in achieving
superior retrieval results.

Simpler models typically have lower accuracy
but provide faster retrieval speeds. BM25 pro-
vides the fastest retrieval, followed by the single-
vector bi-encoders. Among the multi-vector bi-
encoder models, only COIL approaches their re-
trieval speed. ColBERT, due to its higher compu-
tational costs, has about three times the latency.
In real-world scenarios, large datasets generate a
significant number of embedding vectors, which
poses larger engineering challenges. This is one
reason why single-vector bi-encoders and ensem-
ble methods are more widely used compared to
multi-vector approaches.

Token pruning has proven to be an effective
method for reducing ColBERT’s retrieval time.
Among these methods, the ColBERT-Kw models
pruned based on weights threshold offer the most
optimal results, reducing search time by approxi-
mately 40% - 50% while still maintaining signif-
icantly higher accuracy than conventional heuris-
tic methods. Notably, the ColBERT-Kw model

https://huggingface.co/bkai-foundation-models/vietnamese-bi-encoder
https://huggingface.co/bkai-foundation-models/vietnamese-bi-encoder
https://huggingface.co/keepitreal/vietnamese-sbert
https://huggingface.co/keepitreal/vietnamese-sbert
https://sbert.net/docs/package_reference/sentence_transformer/losses.html
https://sbert.net/docs/package_reference/sentence_transformer/losses.html


Recall@1 Recall@10 Recall@50 MRR@10 Latency
(ms/query)

Full model
BM25 0.3034 0.7813 0.9051 0.4628 18.9
vietnamese-sbert 0.2621 0.6284 0.8115 0.3744 33.0
vietnamese-bi-encoder 0.4387 0.7525 0.8743 0.5543 33.0
ColBERT 0.5290 0.9479 0.9785 0.6995 104.6
COIL 0.4548 0.8842 0.9515 0.6034 35.3
PLAID 0.5003 0.8671 0.8869 0.6483 167.1
Pruned ColBERT models
ColBERT-First-tokens 0.4895 0.8680 0.9370 0.6261 74.1
ColBERT-Top-IDF 0.4808 0.9291 0.9740 0.6556 74.1
ColBERT-Top-Attention 0.4877 0.9022 0.9542 0.6478 74.1
ColBERT-Kw-0.7 0.5129 0.9318 0.9704 0.6802 54.9
ColBERT-Kw-L1-0.7 0.5030 0.9309 0.9740 0.6743 56.3
ColBERT-Kw-NER-0.7 0.5147 0.9372 0.9794 0.6850 66.7
ColBERT-Kw-POS-0.7 0.5218 0.9336 0.9794 0.6893 68.4
PLAID-ColBERT-Kw-0.7 0.4895 0.8573 0.8824 0.6381 87.6

Table 1: Retrieval effectiveness. ColBERT-Kw models retrieval result are reported with pruning threshold τ = 0.7

Embeddings Size
(MB)

BM25 7.1
vietnamese-bi-encoder 15957 46.7
ColBERT 811011 398.5
COIL 811011 169.6
PLAID 811523 19.8
ColBERT-First-tokens 405505 199.2
ColBERT-Top-IDF 405505 199.2
ColBERT-Top-Attention 405505 199.2
ColBERT-Kw-0.7 238209 117.2
ColBERT-Kw-L1-0.7 273603 134.6
ColBERT-Kw-NER-0.7 365156 179.6
ColBERT-Kw-POS-0.7 375952 184.9
PLAID-ColBERT-Kw-0.7 238465 6.1

Table 2: Index size

trained with POS task labels achieves the high-
est MRR@10 at a pruning threshold of τ = 0.7
(98.5% relative to ColBERT), highlighting the ef-
ficacy of incorporating domain knowledge into the
model. Thus, ColBERT-Kw and its pruning strate-
gies emerge as an optimal solution, significantly
reducing ColBERT’s retrieval time with minimal
trade-offs in search accuracy.

Designed for larger datasets, PLAID uses quan-
tization and approximate calculations to reduce re-
trieval times and minimize index sizes for the Col-
BERT model. Surprisingly, on our smaller dataset,

PLAID slowed down retrieval due to increased
computational load during the candidate generation
phase, as shown in Table 1, despite significantly
reducing the index size (Table 2). When combined
with ColBERT-Kw, PLAID further reduced the
index size while still maintaining acceptable re-
trieval performance, as demonstrated in Tables 1
and 2. This suggests that integrating ColBERT-
Kw with PLAID could offer substantial benefits
for very large datasets, optimizing both index size
and retrieval efficiency.

4.5 Ablation Study

4.5.1 Choosing Pruning Threshold τ

A key advantage of ColBERT-Kw is its ability to
optimize performance with a single training ses-
sion, allowing pruning thresholds (τ ) to be adjusted
during indexing. This flexibility surpasses methods
that require a fixed pruning level during training.
The choice of τ impacts both retrieval effectiveness
and performance, depending on dataset size and
desired balance.

Incorporating labels from auxiliary tasks in-
creases the number of tokens identified as impor-
tant, or keywords. Notably, ColBERT-Kw-POS
with τ = 0.7 retains fewer vectors but achieves
higher accuracy than with τ = 0.5. This sug-
gests that combining a good heuristic can help the
model select better keywords. And maybe prun-
ing can eliminate noisy tokens, resulting in even
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Figure 3: MRR@10 and Embeddings count for different pruning thresholds

more accurate retrievals while reducing the num-
ber of vectors used. This aspect will need further
investigation in future studies.

4.6 Token Weight Distribution
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Figure 4: Token weight distribution for ColBERT-Kw
and ColBERT-Kw-L1 (y-axis in logarithmic scale)

During our research, ColBERT-Kw-L1 was ini-
tially proposed. Transitioning to ColBERT-Kw by
changing the distillation loss from Equation 10 to
Equation 8 altered the model’s token weighting
behavior. Figure 4 shows that ColBERT-Kw-L1’s
weight distribution resembles a Bernoulli distri-
bution, with values concentrated near 0 or 1. In
contrast, ColBERT-Kw exhibits a U-shaped distri-
bution with a broader and more even spread. Both
models demonstrate varying token importance
within documents. ColBERT-Kw is preferable for
its flexible pruning threshold, while ColBERT-Kw-
L1 is better suited for classification tasks, retaining
only the most important tokens without threshold

selection.

5 Conclusion

In this work, we introduced ColBERT-Kw, a model
designed to facilitate token pruning for ColBERT
by using KwNet to assign importance weights
to tokens. With adequate training, ColBERT-
Kw significantly improves ColBERT’s retrieval
speed and reduces storage requirements while pre-
serving high accuracy. Our experiments on a
Vietnamese Wikipedia-based dataset demonstrated
that this method effectively minimizes index size
and latency with minimal performance trade-offs.
Our code is available at https://github.com/
haihp02/Enhancing-ColBERT.
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