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Abstract
The Transformer model and Transformer-based
models have demonstrated their strength in ma-
chine translation tasks. However, their ability
to accurately translate entities that appear in
sentences has not been fully effective, which
is one of the reasons for inefficiencies in se-
mantic transfer between languages. We pro-
pose a novel method that integrates a knowl-
edge graph (KG) into the Transformer model,
called EATT, to produce more accurate trans-
lations of entities. Specifically, this method
implements a cross-attention mechanism be-
tween the internal vectors in the Transformer
model and the embedding vectors obtained
from knowledge graph embeddings. This new
method outperforms the baseline Transformer
model as well as two methods named KB-
Trans and KB-Trans-R, which were proposed
in our previous research. The evaluation is
based on the metrics: BLEU, TER, GLEU, and
SBERT. Our source code is available on Github
at https://github.com/VTaPo/EATT.

1 INTRODUCTION

The Transformer model (Vaswani et al., 2017) and
its variants have achieved great success in machine
translation because they can process all parts of
a sentence at once and focus on the relationships
between different parts of the sentence. However,
some challenges remain, particularly in accurately
understanding and generating meaning in language.
One significant challenge is handling specific en-
tities, such as names or places, that are difficult to
identify correctly in the data. For example, when
translating the sentence “Lionel Messi was born
in Rosario” from English to Vietnamese, there are
two main concerns: ensuring the overall quality of
the translation and correctly translating the entity
names “Lionel Messi” and “Rosario”.

Even before the Transformer model was devel-
oped, researchers had studied the problem of entity
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translation, but the focus was mostly on other ar-
eas of Natural Language Processing (NLP), like
Machine Reading (Yang and Mitchell, 2017) and
Question Answering (Sun et al., 2018). Only a
few studies have directly tackled the issue of out-
of-vocabulary (OOV) words and tried to improve
translation quality for entities. These include algo-
rithms like BPE (Sennrich et al., 2016) and meth-
ods for querying entity information using a multi-
lingual Knowledge Base (KB) (Moussallem et al.,
2019). In this approach, the KB contains multiple
representations of an entity in different languages,
and these are added to both the source and target
sentences to help with accurate translation. An-
other approach involves breaking down entities into
smaller units using knowledge graphs (KGs) (Zhao
et al., 2020). Here, entities and sentence pairs are
split into sub-word units using BPE, and the authors
combined machine translation with knowledge rea-
soning to help the model use knowledge from the
KG more effectively during translation.

These studies still face several challenges. One
major issue is the lack of focus on the importance of
integrating entities into an Entity Linking system or
constructing a Knowledge Graph (KG) and finding
a multilingual Knowledge Base (KB) that is robust
enough for effective querying. Discovering a KB
that is both novel and comprehensive in terms of
data coverage requires significant effort. Addition-
ally, the effective application of information from a
KB depends heavily on accurately converting the
information in the KB into vector space (note that
a KG is the graph-based representation of a KB).

This paper proposes a new method for integrat-
ing knowledge graphs into the Transformer model,
which can leverage knowledge more thoroughly
and effectively than previous approaches for En-
glish as the source language. This method, named
EATT (Entity-Aware Transformer Translation), im-
plements a cross-attention mechanism between the
input sentences (where each token has been en-
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coded into numerical vectors) and the vector repre-
sentations of entities in the knowledge graph (KG).
Additionally, we also improve other components
in our machine translation system, including the
development of an entity linking system to guide
entities from the input data to the knowledge graph,
and the construction of a knowledge graph from the
monolingual knowledge base called Wikidata5M
(Wang et al., 2021) for the English language, using
a knowledge graph embedding algorithm named
Fast Linear (Armand et al., 2017).

In summary, our main contributions are:

• Proposing a new method named EATT that
integrates knowledge graphs (KG) into the
Transformer model to enhance translation
quality for entities in English as the source
language.

• Evaluating the EATT method across various
datasets to demonstrate the generalizability of
the proposed approach.

• Conducting a comprehensive evaluation using
automatic evaluation metrics, semantic simi-
larity measures, and the translation quality of
entities across specific categories.

2 RELATED WORK

In this section, we explore sequence-to-sequence
models, entity linking systems, and knowledge
graph embedding algorithms, with an emphasis
on their contributions to enhancing text processing
capabilities.

2.1 Sequence to Sequence models
The Sequence to Sequence (Seq2Seq) model
(Sutskever et al., 2014) consists of two main com-
ponents: the Encoder, which takes an input se-
quence of characters or words (x1, x2, ..., xT ) and
transforms them into a context vector h. The em-
bedding layer maps the words or characters in the
input text into numerical vectors in a continuous
space: et = Embedding(xt). These embedding
vectors are passed through hidden layers to produce
hidden states ht. There can be multiple stacked
hidden layers, with the output of the previous layer
serving as the input to the next hidden layer, and
the computation function f at each layer could be a
basic RNN unit, LSTM, or GRU: ht = f(et, ht−1).
The context vector h is the final hidden state of
the encoder: h = hT . The Decoder receives the
context vector h from the encoder and generates the

output sequence (y1, y2, ..., yT ′ ) step by step. The
initial hidden state of the decoder is usually ini-
tialized with the context vector from the encoder:
s0 = h. The embedding layer and hidden layers
in the decoder function similarly to those in the
encoder, as previously explained. The output layer
is the hidden state of the decoder transformed into
the probabilities of the output words through a soft-
max layer, where W and b are model parameters to
be learned: ot = softmax(Wst + b). Finally, the
word with the highest probability is selected as the
output at each time step: yt = argmax(ot).

2.2 Entity Linking Systems

The architecture of an Entity Linking System (EL
system) varies depending on the task and system
implementation, but generally, an EL system con-
sists of two key components: the NER module
and the Entity Disambiguation module. The NER
module uses machine learning and deep learning
models such as BiLSTM-CRF (Luo et al., 2018),
BERT (Devlin, 2018), RoBERTa (Liu, 2019), etc.,
to recognize entities in the text by tagging them
with labels according to predefined standards such
as BIO (i.e. Begin-Inside-Outside), BILOU (i.e.
Beginning, the Inside and Last token of multi-token
chunks while differentiate them from Unit-length
chunks), and others. The Entity Disambiguation
module’s role is to accurately determine the corre-
sponding entry in the Knowledge Graph (KG) for
each entity in the source text after it has been rec-
ognized. Moreover, when there are multiple similar
potential entities, guiding the system to the most
accurate corresponding entity in the KG is another
crucial role of the disambiguation module to re-
duce entity ambiguity. Various techniques can be
employed to implement the entity disambiguation
module, such as absolute string matching, tagging
with special IDs, or linking through URL links.

2.3 Knowledge Graph Embedding Algorithms

A Knowledge Graph (KG) is a graph-based repre-
sentation of a Knowledge Base (KB), where each
node represents an entity and each edge represents a
relationship between two entities within the knowl-
edge base. Through a knowledge graph embedding
algorithm, the entities and relationships in the KG
are encoded into vector representations in a high-
dimensional latent space, also known as Knowledge
Graph Embeddings (KGEs). These vectors contain
additional knowledge that, when integrated into the
Transformer model, can help the model better un-



derstand the entities that appear in the sentences.
Some notable algorithms include:

• TransE (Bordes et al., 2013) assumes that
the relationship between two entities is rep-
resented by a linear transformation from the
input entity to the output entity. Mathemat-
ically, let S be the set of all valid triples, S

′

be the set of all invalid triples, d be the dis-
tance metric, which can be either Euclidean or
Manhattan, and γ be a hyperparameter of the
model. The TransE loss function is defined as
follows:

L =
∑

(h,r,t)∈S

∑
(h′,r,t′)∈S′

Loss (1)

Loss =
[
γ+d(h+r, t)−d(h′+r, t′)

]
+

(2)

• TransR (Lin et al., 2015) maps each entity
and relationship into a subspace of the vector
space, allowing TransR to effectively handle
multi-relational and complex relationships.
When implementing the TransR algorithm,
a special matrix Mr is typically constructed
to perform this transformation. Mr adjusts
the entity embedding vector to align with the
embedding space of the relationship r. The
TransR loss function is fundamentally similar
to that of TransE but differs in the distance
metric, which is defined using the Euclidean
formula:

d(h, r, t) = ∥Mrh+ r −Mrt∥2 (3)

• TransD (Ji et al., 2015) extends TransR by
mapping each pair of entities and relation-
ships into different vector spaces. This allows
TransD to model the relationship between en-
tities based on the context of that relationship.
However, TransD’s large number of param-
eters increases the risk of overfitting. The
TransD loss function is constructed similarly
to TransR, but the transformation matrix M
is computed using a much more complex for-
mula than in TransR.

• ComplEx (Trouillon et al., 2016) is an ad-
vanced and powerful model that uses complex
numbers for representation, offering greater
flexibility and robustness.

3 METHODOLOGY

In this section, we review the Transformer model,
explain the Fast Linear Knowledge Graph Embed-
ding, and describe our EL system. We also present
our two baseline methods, KB-Trans and KB-Trans-
R, and introduce the new EATT method.

3.1 Transformer Architecture

The Transformer model has a structure quite sim-
ilar to Seq2Seq models, consisting of two main
components: an encoder and a decoder. However,
the Transformer can process the input sentence
simultaneously. In the encoder, a list of vectors
Xsource, where each vector represents a token in
the source sentence, is processed. This component
uses multiple stacked encoding layers, each con-
sisting of a self-attention layer and a feed-forward
network layer. This process involves a sequence
of computations carried out across these encoding
layers. The output from the first encoding layer,
with self_attn(Xsource) as the output of the self-
attention layer, and f representing the feed-forward
network with a ReLU activation function, is as fol-
lows:

X(1)
source = f(self_attn(Xsource)) (4)

The decoder predicts the token sequence for the
sentence in the source language, similar to how the
encoder processes the input. The main difference is
that each decoding layer includes a cross-attention
layer positioned between the self-attention layer
and the feed-forward layer. The cross-attention
layer connects the final output from the encoder
with the output from the self-attention layer in each
decoding layer, allowing the model to focus on
relevant parts of the input. The output of the first
decoding layer is:

X
(1)
target = f(cross_attn(self_attn(Xtarget)))

(5)
Considering the computational process of the

self-attention mechanism, the input is transformed
into related components: the Query matrix (Q), the
Key matrix (K), and the Value matrix (V). Each
vector in these matrices plays a distinct role in
the computational process within the self-attention
mechanism. Mathematically, this can be expressed
as: Q = XWQ, K = XWK, and V = XWV. Here,
X represents the input matrix, where each row is
the embedding vector of a word. WQ, WK, and WV



are the weight matrices that transform the input into
Q, K, and V, respectively. The computation process
of the self-attention mechanism is as follows:

attentionScores(Q,K) = softmax
(
QKT

√
dk

)
(6)

output = attentionScoresV (7)

where
√
dk is a normalization factor to prevent ex-

cessively large values, with dk being the dimension
of the key vector.

3.2 Fast Linear Knowledge Graph Embedding

We utilized the knowledge base known as Wiki-
data5M (Wang et al., 2021) to construct the graph
for our research. Each entity in Wikidata5M is
represented by an identifier called Qid, and each
relationship between two entities is represented by
an identifier called Pid. The data format in Wiki-
data5M is similar to most other knowledge bases,
where each line is a triplet in the form of <subject-
s, relation-r, object-o>. For example: <Q615, P19,
Q52535> corresponds to <Lionel Messi, location
of birth, Rosario>, meaning Lionel Messi was born
in Rosario. When considering the Wikidata5M
knowledge base as a graph, we can visualize it as
a graph with nodes and edges representing entities
and the relationships between them.

We employed the Fast Linear algorithm to em-
bed the entities and relationships in our knowl-
edge graph into vector representations in a high-
dimensional latent space, known as Knowledge
Graph Embeddings (KGEs). This algorithm draws
inspiration from the classical Bag of Words (BOW)
method used in word embedding, where Fast Lin-
ear emphasizes the co-occurrence between enti-
ties and between entities and their relationships.
Both BOW and Fast Linear work effectively with
datasets containing discrete tokens, and we can
consider a triplet <subject-s, relation-r, object-o>
as discrete tokens that are correlated with each
other. The generation of additional training sam-
ples from the entire set of triplets in Wikidata5M
is similar to the sample generation process for the
skip-gram model in word embedding. These sam-
ples, along with all triplets, are used in the training
process for KGEs as follows: The entire training
dataset for KGEs, generated from Wikidata5M, is
passed through a classifier consisting of two loss
functions. Initially, a lookup table V is randomly
created, which will serve as the lookup for the ini-
tial vector representations of each discrete token.

The two main loss calculations include the stan-
dard loss computation similar to word embedding
in the skip-gram model and the loss calculation for
predicting the object o in a triplet, where the vector
xn is a combination of the vector representations
for the subject and relation in V. There are various
combination methods, and we use normalization in
this research. The softmax function used is hierar-
chical softmax to speed up operations with a large
corpus. Theoretically, the optimization of the Fast
Linear algorithm involves optimizing Equation 8
below:

1

N

N∑
n=1

yn log(f(WV xn)) (8)

where xn is a normalized combination represen-
tation or a pure representation of the token of the
n-th input set, yn is the label.

3.3 Entity Linking System

We developed an Entity Linking system (EL sys-
tem) as follows: We downloaded a set of all real-
world aliases for all entities and relationships ex-
isting in Wikidata5M. This set was manually com-
piled from the information stored on the Wikidata
website. In this set, an entity is not limited to a
single unique real-world name but is accompanied
by a list of common real-world names associated
with that entity. For example, Q615 has a list of
real-world aliases including M10, Messi, messi,
Lionel Messi, lionel messi, Messi Lionel, messi
lionel, Lionel Andrés Messi, El Pulga. We then
created a dictionary data structure where the keys
are the aliases, and the values are the correspond-
ing Qid associated with that alias. This dictionary
is used for exact string matching and to look up
the Qid corresponding to the alias that matches the
entity extracted from the sentence. The ability to
cover multiple names for a single Qid reduces the
ambiguity of natural language, such as name order
swaps due to grammatical structure or differences
in full and abbreviated names across different re-
gions and countries.

3.4 KB-Trans and KB-Trans-R

We recognized the significant importance of ra-
tionally integrating the vector representations of
entities in the Knowledge Graph (KG) into the in-
ternal vectors of the Transformer model. In this
study, we also implemented two baseline methods
for incorporating information into the Transformer



Figure 1: Knowledge-based Transformer methods.

model, named KB-Trans and KB-Trans-R, respec-
tively.

The first method, KB-Trans, begins by extracting
the entities from the source sentence. These entities
are then mapped to embedding vectors constructed
based on the KG, also known as Knowledge Graph
Embeddings (KGEs), through the guidance of the
EL system. Once the entities are mapped to the
KGEs, the obtained embedding vectors are inte-
grated into the Transformer model by concatenat-
ing the embedding vectors obtained from the KGEs
with the internal vectors randomly generated within
the Transformer architecture. This concatenation
provides the model with additional semantic infor-
mation from the entities. However, a limitation is
the ambiguity caused when an entity has multiple
names or variations across different languages, af-
fecting the ability to retrieve information about the
entity from the KG.

The second method, KB-Trans-R, aims to ad-
dress the ambiguity left by KB-Trans. After the
entities in the input sentence are identified, their
corresponding Qids are retrieved, and these enti-
ties are then marked with their Qids. For example,
the sentence “Lionel Messi was born in Rosario”
would be marked as “Q615 was born in Q52535”.
The process of entity linking and extracting em-
bedding vectors from KGEs is similar to the KB-
Trans method. However, these vectors are inte-
grated into the Transformer model by completely
replacing the internal vectors of the correspond-
ing entities generated by the Transformer’s embed-
ding layer. This method not only supplements the
model with additional information but also ensures
consistency, especially for entities with multiple
names or variations in different languages. Ad-
ditionally, it improves upon KG-Trans when data
has been preprocessed with BPE. Figure 1 illus-
trates the general architecture of the two methods

we propose. The “aggregation module” compo-
nent performs the integration of information from
the knowledge embedding vectors obtained from
KGEs into the Transformer model. Specifically, the
KB-Trans method uses concatenation, represented
by red squares, while the KB-Trans-R method uses
replacing to completely substitute the random in-
ternal vectors (represented by yellow squares).

3.5 Entity-Aware Transformer Translation

Although both methods provide certain improve-
ments for the translation process, they still face
certain limitations and do not offer groundbreak-
ing interactions with the information present in the
Knowledge Graph (KG). To further enhance perfor-
mance and fully exploit the potential of knowledge
from KGs, we propose a new method that alters
the architecture of the Transformer model, named
EATT.

In general, this new method focuses on imple-
menting a cross-attention mechanism between the
internal vector representations for the input sen-
tence and the vector representations for the en-
tities in the KG. This approach effectively lever-
ages knowledge by avoiding the rigid reintroduction
of knowledge back into the Transformer model as
done by the previous two methods. EATT shares
information about the entities across the entire text,
thereby eliminating inconsistencies in the represen-
tation of certain entities and reducing bias related
to the positional distance of entities compared to
other tokens in the input sentence. Each token in
the input sentence is encoded into numerical vec-
tors and undergoes a cross-attention mechanism
with the vector representations of the entities in the
KG (i.e., the KGEs), enabling the model to learn
complex relationships and semantic context from
both data sources (Figure 2).

3.5.1 Entity Linking and Input Components
First, in terms of entity linking, after the enti-
ties in the input sentence are identified, they will
be mapped to the KG to extract the correspond-
ing knowledge embedding vectors associated with
those entities. These embedding vectors will then
participate in the cross-attention mechanism with
the internal vectors, which are the vectors that the
Transformer model encodes for the tokens in the
input sentence.

Assume that the embedding layer of the Trans-
former model generates internal input vectors with
a dimension of 512, and the KGEs also use a di-



Figure 2: Overview of the EATT method.

mension of 512. For the sentence “Lionel Messi
was born in Rosario”, the input internal vector ma-
trix will have a size of 6x512 (the “Input Embed-
ding” block in red in section (b) of Figure 2). The
two entities “Lionel Messi” and “Rosario”, once
identified, will be mapped to the KG by the entity
linking system to extract the corresponding knowl-
edge embedding vectors for those two entities from
the KG. At this point, the “KGEs” component in
green in section (b) of Figure 2 will have a size of
2x512. The cross-attention mechanism between the
“Input Embedding” and “KGEs” components will
be carried out in a block named the Entity-Aware
Attention Block before forming the complete in-
put that goes into the encoder of the Transformer
model.

3.5.2 Entity-Aware Attention Block
The detailed structure of the Entity-Aware Atten-
tion Block includes two subcomponents: the Multi-
Head Cross Attention Block and a Feed Forward
Neural Network. After each of these two compo-
nents, there is a residual connection and normal-
ization layer to enhance the training process’s effi-
ciency. For the Multi-Head Cross Attention Block,
we follow a similar structure to the decoder compo-
nent of the Transformer model, with the difference
being in how the components serve the roles of
query Q, key K, and value V.

The practical interpretation of these roles can be
explained as follows: The original sentence con-
tains entities that need to be learned, so this sen-
tence acts as the information to be queried, request-
ing the KG to provide the necessary knowledge
to answer those queries. The knowledge-encoded
vectors from the KG serve both as the keys, used to
match the corresponding information of the enti-

ties in the KG with the queried entities, and as the
values—the knowledge that the KG returns to the
Transformer model during the learning process.

Mathematically, we set Q = Input Embedding,
K = KGEs, and V = KGEs. The process of single-
head cross-attention between the "Input Embed-
ding" and "KGEs" is represented mathematically
as follows:

output = softmax
(
QKT

√
dk

)
V (9)

where dk is the dimension of the key vector.
The Feed Forward network is designed with a

single hidden layer using the ReLU activation func-
tion. The purpose of the Feed Forward network
within the Entity-Aware Attention Block is to pro-
cess the newly gathered information. Conceptually,
these two processes can be simply described as
follows: cross-attention—“Collect new informa-
tion from the integrated knowledge”, and the linear
network—“Think and process this newly collected
information”. Additionally, in the structure of the
Entity-Aware Attention Block, after each subcom-
ponent, there is a residual connection layer and
a normalization layer. These layers optimize the
training process by ensuring faster convergence of
the block during training and preventing informa-
tion loss throughout the entire training process.

3.5.3 Entity-Aware Attention Block Output
The output of the Entity-Aware Attention Block is
referred to as EAEs (Entity-Aware Embeddings).
EAEs are not directly fed into the encoder; instead,
they are added to the initial “Input Embedding”,
and the newly generated result becomes the final
complete input to the Transformer model’s encoder.
We perform this additional addition operation,



rather than using the EAEs directly as the com-
plete input, due to findings from our experiments,
which are as follows: When using EAEs directly
as input to the encoder, the generated translations
were significantly shorter compared to the trans-
lations produced by the base Transformer model,
as well as the translations from the KB-Trans and
KB-Trans-R methods we previously introduced.

This may be because the output of the Entity-
Aware Attention Block represents each token in the
original input sentence “attending” to the entities in
the sentence that have been supplemented with in-
formation from the KG. As a result, the translation
tends to focus solely on translating these entities
from the source language to the target language,
leading to relatively short translations and poten-
tially introducing unfamiliar entities into the trans-
lation. By performing the addition operation, we
aim to supplement the input data with entity infor-
mation before it is passed into the Transformer’s en-
coder. This ensures that this information is learned
in detail through the cross-attention mechanism.

4 EXPERIMENTS

In this section, we provide an overview of the
dataset, configuration settings, experimental pro-
cedures, and a thorough analysis of the results.

4.1 Dataset

We conducted experimental evaluations on the
IWSLT dataset for four language pairs as fol-
lows: English-Vietnamese (En-Vi), English-
German (En-De), English-French (En-Fr), and
English-Romanian (En-Ro). Additionally, we per-
formed statistical analyses on several noteworthy
parameters related to Wikidata5M, as well as the
datasets and entities within these datasets. The re-
sults of these analyses are provided in Appendix A.

4.2 Configuration Settings

We obtained the set of aliases for all Qids in Wiki-
data5M thanks to the aggregation efforts and pub-
lic release by the DeepGraphLearning team1. We
applied the Fast Linear implementation from the
fastText library2, with the hyperparameters used
for training KGEs with fastText provided in Ap-
pendix B. We used the spaCy library3 for entity
extraction from the data. For the Transformer

1https://deepgraphlearning.github.io/project/wikidata5m
2https://github.com/facebookresearch/fastText
3https://github.com/explosion/spaCy

model, we employed the implementation provided
by fairseq4. The hyperparameters for all methods
across all language pairs were configured as fol-
lows: 6 layers for both the encoder and decoder, 8
heads for multi-head attention, an embedding size
of 512 for the model, and a feed-forward network
dimension of 2048. The learning rate was set at
3e-4 for KB-Trans, and 5e-4 for the original Trans-
former, KB-Trans-R, and EATT. We used a dropout
rate of 0.3, a label smoothing factor of 0.2, a batch
size of 8000 tokens, and trained for 30 epochs.
We performed a grid search to optimize certain
hyperparameters: model embedding sizes of 512
or 1024, learning rates of 3e-4, 5e-4, or 7e-4, and
label smoothing constants of 0, 0.1, or 0.2.

4.3 Ablation Study

We evaluated the performance of the EATT method
compared to the base Transformer and the two
baseline methods. To demonstrate the generaliza-
tion capability of EATT, the evaluation is based on
automatic evaluation metrics across four language
pairs: English-Vietnamese (En-Vi), English-French
(En-Fr), English-German (En-De), and English-
Romanian (En-Ro). The three metrics used are
BLEU (Papineni et al., 2002), TER (Snover et al.,
2006), and GLEU (Mutton et al., 2007). The results
in TABLE 1 show that both the KB-Trans and KB-
Trans-R methods outperform the base Transformer
model across all three metrics for the En-Vi lan-
guage pair. A similar trend is observed in other lan-
guage pairs, though there are some instances where
these two methods perform slightly worse than the
base Transformer on certain language pairs. Specif-
ically, KB-Trans performs worse on the En-De pair
with the GLEU metric, and KB-Trans-R performs
slightly worse on the En-Fr pair with the TER met-
ric.

Most notably, when evaluated using our EATT
method, the results indicate that EATT outperforms
the base Transformer model and the two baseline
methods across all three metrics for all language
pairs, with a significant difference in performance,
demonstrating substantial improvements over the
other methods. The arrows indicate whether a
higher (↑) or lower (↓) score is better.

Additionally, the translations produced by the
KB-Trans method for relatively long sentences ex-
hibit fewer word reordering (swapping order or us-
ing synonyms) or word omissions compared to the

4https://github.com/facebookresearch/fairseq



KB-Trans-R method. This explains why the KB-
Trans-R method performs better than the KB-Trans
method on the two automatic evaluation metrics,
GLEU and BLEU, but slightly worse in terms of
the word correction cost measured by the TER met-
ric. In contrast, the EATT method performs well on
both short and long sentences, indicating that sen-
tence length does not affect its ability to utilize the
cross-attention mechanism for learning knowledge.

4.4 SBERT semantic similarity

SBERT addresses the computational challenge by
fine-tuning each sentence in a sentence pair sep-
arately and in parallel. SBERT utilizes a mean
pooling layer to extract the output embedding vec-
tors, which are then used to calculate similarity
based on the cosine similarity function. TABLE 2
shows the average semantic similarity score across
the entire test set of the English-Vietnamese dataset
between the machine translations and the reference
translations. This result demonstrates that EATT
is capable of providing accurate representations of
entities, resulting in more fluent and semantically
rich translations. EATT can lead to significant im-
provements in many natural language processing
tasks that rely on understanding the meaning and
relationships between entities in text.

4.5 Evaluation of entity translation quality

The evaluation was conducted by examining the
number of incorrectly translated entities for all
three of our proposed methods as well as the base-
line Transformer model. Additionally, we analyzed
the number of incorrectly translated entities across
specific entity types, including: Person (PER), Lo-
cations (LOC), Organizations (ORG), and Miscel-
laneous (MISC). The results from TABLE 3 and
TABLE 4 indicate that entities of the types Per-
son names and Organizations tend to be translated
more accurately than entities of the other types
when comparing the number of incorrect transla-
tions for each type across the three proposed meth-
ods. When comparing the number of improved
translations between the three proposed methods
and the baseline Transformer model, Person names
and Location entities show the greatest number of
improved translations. Notably, the EATT method
continues to demonstrate superiority by achieving
the highest number of correct translations.

5 LIMITATION

In general, the cases where the proposed meth-
ods could not resolve certain issues are due to the
following challenges:

• Some entities in the test set, such as “Remi”,
“Max Little”, and their corresponding Qids,
were encoded as <unk> tokens after the data
processing stage. This vocabulary size limi-
tation is also the reason for the differences in
handling by the two KG-Trans variants.

• The number of triplets containing the entity
is too small in the knowledge graph: For ex-
ample, the entity “Tunisian” was incorrectly
translated with different meanings in the trans-
lations due to the fact that there is only one
triplet containing this entity in Wikidata5M.
This, combined with ambiguity in person
name representation, led to the errors.

• The final limitation lies within the proposed
methods themselves: Even when not encoun-
tering the aforementioned issues, the transla-
tions still did not achieve the desired quality.

6 CONCLUSIONS

The new EATT method achieved promising results
across multiple language pairs and various experi-
mental evaluation groups compared to the baseline
models. Additionally, EATT has the potential to
be applied in more general language understand-
ing tasks, where understanding entities and their
relationships is crucial. EATT’s cross-attention
mechanism allows it to learn complex relationships
between entities, leading to a more comprehensive
understanding of their connections within a given
text. The accurate entity linking system employed
by EATT ensures that the model can access com-
prehensive information about each entity, improv-
ing the retrieval of relevant knowledge for ques-
tion answering. EATT leverages the knowledge
graph to create contextualized entity representa-
tions, enabling the model to distinguish between
the same entity used in different contexts. Future
developments that further optimize the utilization
of knowledge graphs: applying the HyperGraph
Transformer architecture with extended reasoning
chains of triplets and integrating knowledge bases
(KB) at the document level to accurately translate
not only entities but also rare terms.



Table 1: Experimental results (the highest results are marked in bold).

Models Dataset GLEU(↑) TER(↓) BLEU(↑)
Transformer EN-VI 33.58 52.89 29.35

KB-Trans EN-VI 33.65 52.57 29.36
KB-Trans-R EN-VI 33.76 52.76 29.64

EATT EN-VI 34.04 52.44 30.00
Transformer EN-DE 32.49 56.52 26.30

KB-Trans EN-DE 32.37 56.37 26.42
KB-Trans-R EN-DE 32.36 56.43 26.53

EATT EN-DE 32.51 55.86 26.68
Transformer EN-FR 42.56 44.83 39.77

KB-Trans EN-FR 43.09 44.46 40.27
KB-Trans-R EN-FR 42.88 45.02 39.93

EATT EN-FR 43.25 44.25 40.41
Transformer EN-RO 20.63 68.77 16.10

KB-Trans EN-RO 21.73 67.30 16.72
KB-Trans-R EN-RO 21.27 66.80 16.97

EATT EN-RO 22.02 65.33 18.01

Table 2: SBERT Average Semantic Similarity Score on
En-Vi (the highest results are marked in bold).

Model Average SBERT
Transformer 0.825

KB-Trans 0.835
KB-Trans-R 0.835

EATT 0.840

Table 3: Comparison of translation quality between
Transformer model and proposed methods.

Model #correct
translation

#incorrect
translation

Transformer 161 35
KG-Trans 176 20

KG-Trans-R 179 17
EATT 181 15

Acknowledgments

This research is funded by University of Science,
VNU-HCM under grant number CNTT 2024-03.

References
Joulin Armand, Grave Edouard, Bojanowski Piotr,

Nickel Maximilian, and Mikolov Tomas. 2017. Fast
linear model for knowledge graph embeddings. arXiv
e-prints.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-

Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. Advances in neural information pro-
cessing systems, 26.

Jacob Devlin. 2018. Bert: Pre-training of deep bidi-
rectional transformers for language understanding.
arXiv preprint arXiv:1810.04805.

Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and
Jun Zhao. 2015. Knowledge graph embedding via
dynamic mapping matrix. In Proceedings of the 53rd
annual meeting of the association for computational
linguistics and the 7th international joint conference
on natural language processing (volume 1: Long
papers), pages 687–696.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and
Xuan Zhu. 2015. Learning entity and relation embed-
dings for knowledge graph completion. In Proceed-
ings of the AAAI conference on artificial intelligence,
volume 29.

Y Liu. 2019. Roberta: A robustly optimized bert pre-
training approach. arXiv preprint arXiv:1907.11692.

Ling Luo, Zhihao Yang, Pei Yang, Yin Zhang, Lei
Wang, Hongfei Lin, and Jian Wang. 2018. An
attention-based bilstm-crf approach to document-
level chemical named entity recognition. Bioinfor-
matics, 34(8):1381–1388.

Diego Moussallem, Mihael Arčan, Axel-Cyrille Ngonga
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A Statistics Appendix

In Appendix A, we will provide statistical data
for the IWSLT dataset across four language pairs,
these statistics relate to entities and the number
of sentences containing the entities in the three
parts train, valid, test of each dataset. We also
provide statistics regarding the number of entities,
relationships, and triplets in the Wikidata5M.

Table 5: Statistics about Wikidata5M.

#entities #relations #triplets
4,813,491 825 21,354,359

Table 6: Statistics about IWSLT EN-VI.

Features Train Valid Test
#total sentences 133,317 1553 1268

#sentences w/ entities 25,721 208 262
#total entities 36,566 264 382

#unique entities 7,967 161 196
Max entities/sentence 14 8 6

B FastText Hyper-parameters Appendix

In Appendix B, we present the parameters used for
training KGEs through the fastText library. The hy-
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Table 7: Statistics about IWSLT EN-DE.

Features Train Valid Test
#total sentences 209,522 3,889 5,078

#sentences w/ entities 42,015 601 909
#total entities 59,284 828 1225

#unique entities 11,154 440 587
Max entities/sentence 44 8 8

Table 8: Statistics about IWSLT EN-FR.

Features Train Valid Test
#total sentences 236,653 3,888 5,599

#sentences w/ entities 47,498 613 1024
#total entities 67,172 842 1390

#unique entities 12,172 444 652
Max entities/sentence 44 8 8

Table 9: Statistics about IWSLT EN-RO.

Features Train Valid Test
#total sentences 133,333 914 1,678

#sentences w/ entities 25,068 161 206
#total entities 34,969 229 290

#unique entities 7,607 146 159
Max entities/sentence 41 7 6

perparameter Dimension represents the number of
dimensions used for the KGEs, and the Loss func-
tion is Hierarchical softmax, as mentioned ear802
lier, to speed up processing with extremely large
corpora. TABLE 10 shows the values for the hy-
perparameters.

Table 10: Hyper-parameters in the fastText model.

Hyper-parameter Value
Model type Cbow
Dimension 512

Window size 2
Learning rate 0.01

Loss Hierarchical softmax
Epochs 100

C Correct Translations Appendix

In Appendix C, we illustrate some examples of cor-
rect translations produced by the proposed meth-
ods compared to the traditional Transformer model.

The results show that the proposed methods have
a superior ability to translate entities compared to
the baseline model; however, there are still minor
differences in the translations between the methods.

Table 11: Example 1.

SRC
I am helping the
North Korean people.

REF
Tôi đang giúp người Bắc
Triều Tiên.

Transformer
Tôi đang giúp người Hàn
Quốc.

KB-Trans
Tôi đang giúp đỡ những người
Bắc Triều Tiên.

KB-Trans-R
Tôi đang giúp người Bắc
Triều Tiên.

EATT
Tôi đang giúp đỡ những người
Bắc Triều Tiên.

Table 12: Example 2.

SRC
I started this as a tryout in
Western Australia.

REF
Tôi bắt đầu điều này bằng việc
thử sức ở Tây Úc.

Transformer
Tôi bắt đầu điều này khi thử ở
miền Tây.

KB-Trans
Tôi bắt đầu điều này khi thử ở
miền Tây nước Úc.

KB-Trans-R
Tôi bắt đầu điều này khi thử ở
miền Tây nước Úc.

EATT Tôi đã bắt đầu điều này ở
miền Tây nước Úc.



Table 13: Example 3.

SRC
We might produce the next
George Washington Carver.

REF
Có thể ta sẽ sản sinh ra George
Washington Carver tiếp theo.

Transformer
Chúng ta có thể sản xuất ra
George Stone lo lắng.

KB-Trans
Chúng ta có thể tạo ra George
Washington Carver tiếp theo.

KB-Trans-R Có thể tạo ra tiếp theo
của George Washington.

EATT Chúng ta có thể sản xuất ra những
tiếp theo của George Carver.

Table 14: Example 4.

SRC
This is South Central: liquor stores,
fast food, vacant lots.

REF
Đây là vùng Trung Nam: cửa hàng
rượu, đồ ăn nhanh, đất hoang.

Transformer
Đây là Trung tâm: các cửa hàng
đóng kín, đồ ăn nhanh,
bỏ đi rất nhiều.

KB-Trans
Đây là vùng Trung tâm Phía Nam:
cửa hàng nước ngọt,
đồ ăn nhanh, vùng trống.

KB-Trans-R
Đây là vùng Trung tâm Phía Nam:
cửa hàng nước ngọt,
đồ ăn nhanh, vùng trống.

EATT
Đây là Trung tâm Phía Nam: trang
cửa hàng, thức ăn nhanh,
bỏ trống rất nhiều .
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