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Abstract
In this paper we examine the limitations of
Large Language Models (LLMs) for complex
reasoning tasks. Although recent works have
started to employ formal languages as an inter-
mediate representation for reasoning tasks, they
often face challenges in accurately generating
and refining these formal specifications to en-
sure correctness. To address these issues, this
paper proposes Logic-LM++, an improvement
on Logic-LM (Pan et al., 2023). It uses the
ability of LLMs to do pairwise comparisons,
allowing the evaluation of the refinements sug-
gested by the LLM. The paper demonstrates
that Logic-LM++ outperforms Logic-LM and
other contemporary techniques across natural
language reasoning tasks on three datasets, FO-
LIO, ProofWriter and AR-LSAT, with an aver-
age improvement of 18.5% on standard prompt-
ing, 12.3% on chain of thought prompting and
5% on Logic-LM.

1 Introduction

Large language models (LLMs) have shown
proven capability of reasoning (Brown et al.,
2020; Chowdhery et al., 2022) but still struggle
at complex reasoning problems as seen in real
world assessments (Zhong et al., 2021). For
complex multi hop reasoning tasks current state
of the art approaches (Pan et al., 2023; Ye et al.,
2023) leverage formal languages as intermediate
representation of these reasoning problems and
utilize symbolic reasoners to come up with the
right response. A typical workflow of such
techniques consist of 3 steps: a natural language
prompt which consist of the task information,
a response formulation for the problem, final
response generated with symbolic executor.

While logic-assisted LLM reasoning techniques
are promising, we observe following problems in
such systems: Firstly, LLMs are poor at gener-
ating intermediate formal specifications. A few

techniques try to counter this problem with a re-
finement loop (Madaan et al., 2023a; Welleck et al.,
2022; Shinn et al., 2023) to improve upon the syn-
tactical correctness of the symbolic formulation.
Secondly, the LLMs are poor at repairing the for-
mal representations with limited information with
error information. For example, in Figure 1 the
LLM initially generates a syntactically incorrect
formulation. After a turn of refinement, while the
LLM is able to generate a response that is syn-
tactically correct, it introduces a semantic error in
the formulation by incorrectly translating the state-
ment "No young person teaches". These kind of
incorrect translations from Natural Language (NL)
to intermediate formal specifications is a common
problem we observe over the failing cases of re-
finement. Thirdly, we observe that refinements are
not always linear-resolving an error with the sym-
bolic formulation can take multiple steps of careful
edits and evaluation. The formulations generated
in refinement stage in 1 introduced the wrong in-
terpretation of "No young person teaches" to "All
young people teaches".
To address these challenges we propose to add fol-
lowing measures in Logic-LM to enhance it’s capa-
bilities resulting in improved variant Logic-LM++.

We leverage the ability of LLMs to do pairwise
comparison (Zheng et al., 2023a), this gives us an
opportunity to evaluate the refinements suggested
by the LLM and do a semantic check with respect
to the problem statement to ensure if the edits in
the symbolic formulation generated while refine-
ment improve the formulation semantically not just
syntactically.

We also improve on the refinement mechanism
present in Logic-LM to give more context of the
problem statement during refinement stage, this
eliminates cases where recommended edits are ap-
palling and do not improve the formulation signifi-
cantly.
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2 Related Work

Problem: All students are humans. 
If someone studies . . .
Question: Based on the above 
information, is the following 
statement true, false, or uncertain? 
It is not true Rose is a student and 
jerry is a human.

Problem: All students are humans. 
If someone studies, then they are a 
student . . .
Question: Based on the above 
information . . .
Formulation: 
Error: execution error

Predicates:
Student(x) ::: x is a student.
. . .
Premises:
∀x (Student(x) → Human(x)) 
¬∃x (Young(x) ∧ Teach(x))
¬Teaches(jerry) ∧ 
¬Manager(jerry)
. . .
Conclusion:
Human(rose, Manager(jerry))

Predicates:
Student(x) ::: x is a student.
. . .
Premises:
∀x (Student(x) → Human(x)) 
∀x (Young(x) → Teach(x))
¬Teaches(jerry) ∧ 
¬Manager(jerry)
. . .
Conclusion:
Human(rose) ∨ 
Manager(jerry)

Problem Statement

First order Logic Formulation

Refinement Prompt

Refined Formulation with a new 
semantic error generated while 

refinement

Incorrect Answer

Response: 
Uncertain

Figure 1: Refinement of logical formulations in Logic-LM

2.1 Reasoning with LLMs
Large Language model (LLM) - based reasoning
techniques commonly entail the deconstruction of
complex questions into a sequence of intermediate
steps, often referred to as chains, before reaching
the ultimate solution. This technique is a reflec-
tion of methods such as Chain of Thought (CoT)
prompting and its variations, as shown in various
studies (Wei et al., 2022; Kojima et al., 2022).
These methodologies require the meticulous seg-
mentation of a problem into a chain of smaller,
manageable chunks. Each of these chunks rep-
resents a step in the reasoning process, guiding
the model towards a comprehensive solution. The
concept of the reflection loop, as explored in pre-
vious research (Shinn et al., 2023; Madaan et al.,
2023b), offers a means of refining the reasoning
by identifying and eliminating any flaws that may
be introduced by the LLM during a reasoning step.
This process enhances the inherent capability of the
LLM to self-correct, contributing to more accurate
and reliable outcomes. Recent works have further
explore the process of self-evaluation at these in-
termediate steps (Welleck et al., 2022; Paul et al.,
2024). This process involves the LLM assessing
its reasoning at each step, allowing it to identify
any inaccuracies. By rectifying these issues before
proceeding to the next step, the LLM can ensure

Problem: All students are 
humans. If someone studies, 
then they are a student. . .
Question: Based on the above 
information, is the following 
statement true, false, or 
uncertain? It is not true Rose is a 
student and jerry is a human.

Problem: All students are 
humans. If someone studies, 
then they are a student. …
Question: Based on the above 
information . . .
Formulation: 
Error: execution error

Predicates:
Student(x) ::: x is a student.
. . .
Premises:
∀x (Student(x) → Human(x)) 
. . .
¬∃x (Young(x) ∧ Teach(x))
¬Teaches(jerry) ∧ 
¬Manager(jerry)
Young(rose) ⊕ 
Student(rose)
Conclusion:
Human(rose, 
Manager(jerry))

Predicates:
Student(x) ::: x is a student.
. . .
Premises:
∀x (Student(x) → Human(x)) 
∀x (Young(x) → Teach(x))
¬Teaches(jerry) ∧ 
¬Manager(jerry)
. . .
Conclusion:
Human(rose) ∨ 
Manager(jerry)

Problem Statement

Formula set 1

Refinement Prompt

Refined Formulation with a new 
semantic error generated while 
refinement (Formula set 2)

Task Description: Given a pair 
of LLM generated First order 
Logic formulas. 
Your task is to evaluate which 
one has more . . . 
Instructions:
Problem: : All students are 
humans. If someone studies, 
then they are a student. …
Question: Based on the above 
information, is the . . .
Formula Set 1:
Formula Set 2:

Formula set 1

Problem: All students are 
humans. If someone studies, 
then they are a student. …
Question: Based on the above 
information . . .
Formulation: 
Error: execution error

Comparison Prompt

Predicates:
Student(x) ::: x is a student.
. . .
Premises:
∀x (Student(x) → Human(x)) 
¬∃x (Young(x) ∧ Teach(x))
¬Teaches(jerry) ∧ 
¬Manager(jerry)
. . .
Conclusion:
Human(rose) ∨ 
Manager(jerry)

Refinement PromptCorrect Formulation

Figure 2: Improvement in refinement by Logic-LM++

a more accurate and reliable chain of reasoning.
Aligned with our objective of capturing the natural
language intent of the user from symbolic formula-
tions, recent works (Endres et al., 2024) have also
explored the translation of natural language into
formal language post conditions. This research
investigates how effectively we can convert the
often-ambiguous language of human conversation
into the precise, unambiguous language of formal
logic. This translation process is crucial for the
accurate interpretation and execution of user intent,
particularly in complex or technical tasks.

2.2 Tool-augmented Large Language Models

Language models face inherent limitations, unable
to access real-time data, execute actions, or conduct
precise mathematical reasoning.To address this, re-
cent research endeavors have sought to augment
language models by integrating external resources
such as retrievers (Nakano et al., 2021; Shi et al.,
2023; Lazaridou et al., 2022), calculators (Cobbe
et al., 2021), code interpreters (Wang et al., 2022),
planners (Liu et al., 2023), symbolic solvers (Ye
et al., 2023; Pan et al., 2023), and other pretrained
models (Shen et al., 2023). Notably, in the realm of
mathematical reasoning, numerous investigations

57



Dataset
GPT-3.5 Turbo GPT-4

Standard CoT Logic-LM Logic-LM++ Standard CoT Logic-LM Logic-LM++

FOLIO 45.09 57.35 62.80 62.25 69.11 70.58 78.92 84.80
ProofWriter 35.50 49.17 58.33 58.83 52.67 68.11 79.66 79.66
AR-LSAT 20.34 17.31 26.41 28.13 33.33 35.06 43.04 46.32

Table 1: Accuracy of standard promoting, chain-of-thought (CoT) promoting, Logic-LM and Logic-LM++.

have illustrated the efficacy of incorporating cal-
culators (Cobbe et al., 2021; Imani et al., 2023) or
Python interpreters (Gao et al., 2023; Chen et al.,
2022) into language models, significantly enhanc-
ing performance by offloading numerical compu-
tations. Recent studies (Gao et al., 2023; Chen
et al., 2022) have showcased improved effective-
ness in arithmetic reasoning tasks by generating
Python programs that delineate the reasoning pro-
cess through sequenced chained commands.

3 Methodology

3.1 Background
Logic-LM (Pan et al., 2023) is a framework to
decompose a reasoning problem into three stages:

1. Problem Formulation, where given a task de-
scription and a problem statement LLM write
symbolic formulations that represents the NL
problem. In Figure 1 the NL prompt with
task description is the problem formulator in
Logic-LM.

2. Symbolic Reasoning, where we use a symbolic
solver like Prover92 (Robinson, 1965)and Z3
theorem prover (Moura and Bjørner, 2008) to
solve the formulations generated earlier.

3. Result interpretation, where the produced out-
put is mapped to the right answer using regex
parsing.

Logic-LM uses a refinement loop to fix errors in
symbolic formulation at formulation and reasoning
stages. However, Logic-LM still struggles to im-
prove on logical representations, showing almost
no improvement after multiple iterations. Authors
attribute this to semantic limitations of the formula-
tion. To this end, Logic-LM++ aims to mitigate this
limitation by improving the Logic-LM refinement
loop.

3.2 Self-Refinement Agent
Logic-LM defines the notion of a Self-Refinement
Agent to implement the refinement loop in the sym-

bolic formulations in cases where the formulations
did not yield a successful execution within the sys-
tem. This agent is characterized by a refinement
prompt 1 PG: Add more details in figure caption.
In the original work, the refinement prompt con-
stituted various few shot examples to act as exem-
plar for the model. While similar techniques have
proven useful (Madaan et al., 2023a; Shinn et al.,
2023), we anecdotally observe that instead of help-
ing the model it adds extra irrelevant information
that distracts the model from fixing the issues rel-
evant to the current formulation, consistent with
similar studies in other domains (Pan et al., 2023).
To alleviate this, instead of adding few-shots, we
add the problem statement and the question to the
refinement prompt alongside instructions to self-
reflect on the model’s failure to generate the right
response. As we show later in Section 4, this struc-
ture helps better contextualize (Shinn et al., 2023)
the formulation to the self-reflection agent and help
the system generate better refinements.

3.3 Backtracking Agent

LLMs has shown remarkable results in automated
evaluation benchmarks (Zheng et al., 2023b) and
has shown high alignment with the human judge-
ment (Wei et al., 2024). We use this capability
of LLMs to assess if the repaired formulation by
self-refinement improves the alignment of the hu-
man intent with LLM generated formulations. This
allows us to get rid of the updates that are not help-
ful in future iterations and only use those updates
where the changes help the model to come to the
right formulation. In Figure 1 we can see with-
out the backtracking agent the LLM accepts the
semantically incorrect symbolic formulations as
the statement "No young person teaches" is trans-
lated to "all young people teach" since the code is
syntactically correct there is no proof-check on the
refinement.

However, In Figure 2 we demonstrate in the
same example with the backtracking agent Logic-
LM++ is able to generate right formulation by us-
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Figure 3: Accuracy in subsequent rounds of refinement. The grey line here represents the accuracy scores on
self-refinement without backtracking with GPT-4.

ing the right formulation to represent "No young
person teaches" and use the right formulation to
describe the question "Rose is a student and Jerry is
a human". This showcase how backtracking agent
works as funnel to reduce the semantic error that
is propagated at the refinement stage. In Figure
2 we show on comparison of the two sets of the
formulation, returns a more semantically correct
formulation this allows Logic-LM++ to only ac-
cept the edits if it improves or preserve the logical
structure of the formulation.

4 Experiments and Analysis

4.1 Dataset

FOLIO (Han et al., 2022) is a challenging expert-
written dataset for logical reasoning. The problems
are aligned with real-world knowledge and use nat-
ural wordings, and the questions require complex
first-order logic reasoning to solve. We use the
FOLIO test set for evaluation with 204 examples.

AR-LSAT (Zhong et al., 2022) is a dataset that
collects all analytical logic reasoning questions
from the Law School Admission Test from 1991 to
2016. We use the test set which has 231 multiple-
choice questions. AR-LSAT is particularly chal-
lenging, with state-of-the-art model’s performance
slightly better than random guessing (Liang et al.,
2022; Ribeiro et al., 2023).

ProofWriter (Tafjord et al., 2021) is another
popular dataset on deductive logical reasoning.
Since the problems are in more natual language like
setting it makes semantic evaluation very relevant
in the problem set. Logic-LM use the open-world
assumption (OWA) subset in which each example
is a (problem, goal) pair and the label is one of
PROVED, DISPROVED, UNKNOWN. Logic-LM
evaluate the pipeline with the hardest section of

GPT-3.5 turbo GPT-4

BT - + - +

FOLIO Er 84.3 84.3 85.8 86.7
Ea 64.3 66.2 79.9 85.8

ProofWriter Er 95.6 95.6 99.0 99.0
Ea 74.1 77.2 79.6 79.6

AR-LSAT Er 21.8 22.9 32.6 32.0
Ea 60.3 64.1 60.0 66.2

Table 2: Execution rate (Er) and Execution Accuracy
(Ea) agent with Backtracking (BT).

ProofWriter which contain total of 600 randomly
sampled five step multi-hop reasoning questions.

4.2 Principal Findings

We report the final results of Logic-LM++ in Table
1. We try to answer 2 major research questions.
RQ1: Can LLMs conduct pairwise comparisons
of symbolic formulations based on their rele-
vance to a natural language task description?
LLMs have demonstrated promising capabilities in
pairwise comparisons for NLG evaluations (Kim
et al., 2024), even in low-resource languages where
their natural language generation abilities remain
underdeveloped (Zheng et al., 2023a). As depicted
in Table 2, the execution accuracy of the frame-
work employing a backtracking agent is enhanced
by approximately 6% with GPT-4 and around 3%
with GPT3.5-turbo. Despite the average gain in
execution rate being less than 1%, these statistics
underscore the empirical improvements in code
quality in terms of semantic correctness. Figure
1 provides a working example from the FOLIO
dataset. Although the code is syntactically correct
after refinement, it misinterprets a logical statement.
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However, by implementing pairwise comparisons,
the LLM can select the semantically correct for-
mulation. This leads to the correct answer in the
subsequent refinement iteration.

RQ2: Does refinement by LLM always posi-
tively affect the formulations?

In Figure 3, we evaluate the refinement process
with and without backtracking. Logic-LM’s ac-
curacy plateaus with more runs because refined
solutions may not represent the intended code. The
author’s also discuss this as a known limitation of
the refinement process in the refinement loop they
proposed. Backtracking, which reverts to the initial
code if no semantic improvement is found, allows
Logic-LM++ to perform consistently better by con-
tinually reassessing and correcting refinements for
more reliable results.

Figure 4 shows that the backtracking agent sig-
nificantly improves results in the second round
within the FOLIO dataset, with a similar impact
in later rounds. This indicates that backtracking
is most effective early on since the generated re-
finement can also degrade the performance of the
formulations, enabling Logic-LM++ to achieve
substantial better and iterative improvements over
time.

4.3 Error Analysis

Even though Logic-LM++ shows impressive im-
provements over standard refinement techniques, it
still lacks behind in the cases where the first set of
formulation generated is completely different from
the ground truth formulation. On analyzing the
failure cases in Logic-LM we note that the current
pipeline relies a lot on fixing the bugs with current
formulation without losing on semantic understand-
ing, however in cases where the generating seman-
tically correct formulations is hard the technique is
contingent to initial formulations generated.

5 Discussion and Future Work

Figure 3 reveals a significant observation regard-
ing the iteration increase of Logic-LM, which ap-
pears to reach convergence substantially earlier
than Logic-LM++. Logic-LM associates attributes
this to the hard limit of semantically correctness
that can be achieved with Logic-LM. The findings
stress the importance of semantic accuracy, as the
Logic-LM++ exhibits consistently improved out-
comes over multiple iterations, contrary to findings
by Logic-LM. This outcome is primarily attributed
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Figure 4: Number of symbolic formulations corrected
after each turn of self-refinement with backtracking
agent (purple) and without backtracking agent (green)
in FOLIO with GPT-4.

to the model’s capability to revert to the initial
formulation if the refined version does not offer a
semantically superior representation. Eventhough,
Logic-LM++ show promising results it only focus
on symbolic formulations, this effort can be well
generalised to other tool augmented techniques that
rely on intermediate code representation with se-
mantic improvements during refinement.

6 Conclusion

We propose Logic-LM++ which beats state of the
art results on natural language reasoning tasks on
three datasets. Logic-LM++ takes leverage of
LLMs’ reasoning capabilities to show significant
improvements in efficient use of logic solvers for
reasoning, we demonstrate that LLMs show promis-
ing results at conducting comparison between sym-
bolic formulations even in cases where generating
symbolic formulations is a hard task for LLM.

Limitation

At present, Logic-LM++ faces constraints in its
capacity to effectively capture the semantic in-
tricacies in reasoning tasks. This limitation no-
tably complicates the evaluation process, especially
when dealing with smaller LLMs like (Rozière
et al., 2023). The understanding required for ac-
curate reasoning poses a significant challenge, par-
ticularly in contexts where the model’s semantic
comprehension may be insufficient. Due to this the
assessment of performance becomes notably more
complex. This limitation underscores the need for
continued advancements in semantic understand-
ing within LLMs to enhance their efficacy across
reasoning tasks.
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