
Proceedings of the 2nd Workshop on Natural Language Reasoning and Structured Explanations (@ACL 2024), pages 13–24
August 15, 2024 ©2024 Association for Computational Linguistics

PROC2PDDL: Open-Domain Planning Representations from Texts

Tianyi Zhang1* Li Zhang1* Zhaoyi Hou3

Ziyu Wang1 Yuling Gu2 Peter Clark2

Chris Callison-Burch1 Niket Tandon2

1University of Pennsylvania 2Allen Institute for Artificial Intelligence
3University of Pittsburg

{zty|zharry|ccb}@upenn.edu

Abstract
Planning in a text-based environment contin-
ues to be a significant challenge for AI sys-
tems. Recent approaches have utilized lan-
guage models to predict planning domain defi-
nitions (e.g., PDDL) but have only been evalu-
ated in closed-domain simulated environments.
To address this, we present PROC2PDDL, the
first dataset containing open-domain procedu-
ral texts paired with expert-annotated PDDL
representations. Using this dataset, we evalu-
ate the task of predicting domain actions (pa-
rameters, preconditions, and effects). We ex-
periment with various large language models
(LLMs) and prompting mechanisms, including
a novel instruction inspired by the zone of prox-
imal development (ZPD), which reconstructs
the task as incremental basic skills. Our re-
sults demonstrate that PROC2PDDL is highly
challenging for end-to-end LLMs, with GPT-
3.5’s success rate close to 0% and GPT-4o’s
38%. With ZPD instructions, GPT-4o’s suc-
cess rate increases to 45%, outperforming reg-
ular chain-of-thought prompting’s 34%. Our
analysis systematically examines both syntactic
and semantic errors, providing insights into the
strengths and weaknesses of language models
in generating domain-specific programs.1

1 Introduction

Planning is the task of finding a sequence of actions
to achieve a goal in a given environment (Fikes and
Nilsson, 1971; LaValle, 2006). In real life, the en-
vironment is often described with natural language
texts. To enable text-based, automated planning,
recent work has used language models (LMs) to
generate plans (Valmeekam et al., 2023a; Stein
and Koller, 2023). However, this approach is found
to fall short with regard to both performance and
interpretability (Valmeekam et al., 2023c,b). Alter-
natively, another recent line of worked has instead

*Equal contribution.
1Our resources can be found at https://github.com/

zharry29/proc2pddl.

Figure 1: A PDDL solver produces a plan based on a
minimal domain file and problem file. Previous work
assumes the domain file as given, while we predict the
action definitions in the domain file.

used LMs to translate the natural language descrip-
tion of environments to planning domain definition
language (PDDL) (Ghallab et al., 1998). This sym-
bolic representation can then be solved by a planner
in a plan (Collins et al., 2022; Lyu et al., 2023; Liu
et al., 2023; Xie et al., 2023; Wong et al., 2023).
Despite of the success of such a neurosymbolic
method, all the above work has only been evaluated
in closed-domains simulated environments such as
a household (e.g., ALFRED (Shridhar et al., 2020))
or discrete object placement (e.g., BlocksWorld
(Valmeekam et al., 2024)) (as shown in Table 1).

To enable open-domain, text-based planning,
we propose PROC2PDDL, a dataset to evaluate
models’ ability to generate PDDL given proce-
dural texts. PROC2PDDL consists of 27 pairs of
open-domain procedures and PDDL representa-
tions. Each PDDL representation include a do-
main file DF that models the types, predicates, and
actions, and a problem file PF that models the en-
tities, initial states, and goal states, as illustrated
in Figure 1. Because PROC2PDDL is not bound

1
13

https://github.com/zharry29/proc2pddl
https://github.com/zharry29/proc2pddl

Figure 2: Our formulation of the DF action prediction task is as follows: given a natural language procedure text
and a domain file header, a language model (LM) follows Zone of Proximal Development (ZPD) instructions in
three sequential skills to predict domain actions, including parameters, preconditions, and effects. During evaluation,
the predicted DF is compared to a gold reference and used to solve corresponding PFs.

to any simulation, the PDDL representations are
manually annotated by experts trained on this task
to ensure validity, resulting in 27 domain files and
95 problem files.

Using this dataset, we study the task of action
modeling (Lindsay et al., 2017) formulated as fol-
lows. The input is some relevant natural language
texts and the header of a DF (i.e., types, predicates,
and names of actions). Based on a ZPD instruc-
tion, the output is the domain actions in the DF
(i.e., parameters, preconditions, and effects). Dur-
ing evaluation, the predicted DF is 1) compared
to a ground-truth DF as intrinsic evaluation, and
2) provided to a PDDL solver with ground-truth
PFs for the existence and correctness of plans as
extrinsic evaluation. Our system is delineated in
Figure 2. In this formulation, our assumption of
the DF header is necessary to ensure the consis-
tency of semantics between the DF and the PF for
evaluation. It is also empirically motivated; for
example, a kitchen robot may have access to the
types like ‘ingredients’ and predicates like ‘diced’
via some information extraction system given de-
scriptive texts, but it may still need to predict, for
“swinging a knife”, the precondition that it is only
safe to do so to the ‘ingredients’ and the effect that
they will become ‘diced’.

Through our experiment, we show that the task
of action modeling in PROC2PDDL is highly chal-
lenging to state-of-the-art LMs, where GPT-3.5
almost fails completely, GPT-4 can only gener-
ate exactly matching DFs 16% of the time and
solvable PFs 33% of the time, and GPT-4o demon-
strate 18% DFs accuracy and 37% PFs solving rate.
By devising a ZPD instruction that prompt LMs
to modularly generate PDDL through extraction-
inference-translation approach, we improve action

#DF Datasets

Ours 27 PROC2PDDL
(Wong et al., 2023) 2 MineCraft, ALFRED
(Lyu et al., 2023) 1 SayCan
(Xie et al., 2023) 2 Blocksworld, ALFRED
(Liu et al., 2023) 7 Blocksworld, etc.
(Huang et al., 2023) 1 Tabletop
(Huang et al., 2022) 1 VirtualHome
(Silver et al., 2022) 18 Blocksworld, etc.
(Valmeekam et al., 2022) 2 Blocksworld, Logistics

Table 1: Our work proposes and evaluates models using
PROC2PDDL which is open-domain and based on proce-
dural texts, while past work has relied on closed-domain
benchmarks which can be expressed with a singular DF
with a fixed set of actions, based on some simulation.

accuracy by 3% and problem solving by 2-7% .
In our analysis, the syntactic errors indicate LMs’
weakness in generating low-resource and domain-
specific programming languages (Cassano et al.,
2023) like PDDL, while the semantic errors sug-
gest LMs’ inaccuracies to reason about actions and
environments.

2 Task Formulation

The task of predicting a planning domain definition
in a text-based environment can be seen as trans-
lating natural language texts to PDDL symbolic
language, which consists of a domain file (DF) and
one or more problem files (PFs).
A DF defines all actions in the environment:
• parameters (e.g., water, pot) as a list of typed

variables
• preconditions (e.g., water and pot belongs to

player; water is not treated) as a conjunctive nor-
mal form of predicates

• effect (e.g., water is treated) as a conjunctive
normal form of predicates

A PF defines the initial and goal environments:

2
14

• initial states (e.g., bucket is empty)
• goal states (e.g., bucket is filled with rainwater;

rainwater is treated)
We say that a DF and a PF can be solved if there
exists a sequence of actions A1, . . . , An that results
in a transition from the initial state to the goal state.

Traditionally, the task of text-based PDDL gener-
ation involves predicting PF based on text T, where
a successfully generated PF can be solved by the
predefined DF.

In this paper, we address an alternative formula-
tion, action modeling (A), in which the generated
DF, given text T and the domain header H2, is
capable of producing plans for PFs.

3 Dataset

We introduce the PROC2PDDL dataset of 27 dif-
ferent T-DF-PFs tuples, drawing procedural texts
from wikiHow articles of various topics (see Ap-
pendix A). A class of graduate students in a U.S.
university with prior knowledge of PDDL are each
given a wikiHow article and annotate a DF and
multiple corresponding PFs from the article, each
with a gold plan to solve it. On average, there are
13.33 defined actions in a DF and 8.07 instantiated
actions in a gold plan. In this work, all our data is
used for evaluation, as all our methods are without
task specific model training. Some sample data of
PROC2PDDL can be found in Appendix B.

4 Methodology

We first introduce a novel prompt design option,
ZPD, and then discuss the choices of text format
(T), which can range from 10 to 2,000 tokens and
influence the selection of LMs.

4.1 ZPD Prompt Design
To predict domain actions A based on relevant
T and the header H , we prompt an LM in zero-
shot or few-shot instructions. Our instruction em-
ploys Zone of Proximal Development (ZPD) the-
ory proposed for human learning (Vygotsky and
Cole, 1978), which is a variant of the chain-of-
thought (CoT) approach. In typical CoT, a task is
decomposed into several constituents (steps), i.e.,
parameters, precondition, and effect. In contrast,
according to ZPD, the complex PROC2PDDL task
is decomposed into atomic skills: 1) extracting the

2The domain header includes types, predicates, and names
of actions in DF. As the information specified by H is guar-
anteed to be consistent with that of the PFs, the evaluation is
well-defined.

Intrinsic Extrinsic
Model % action acc. PF solve

gpt-3.5 0.2 1.0
gpt-4 15.9 33.7
+ CoT 9.3 21.1
+ ZPD 18.1 35.8
+ ZPD, 3 shot 11.9 23.2
gpt-4o 18.2 37.9
+ CoT 19.5 33.7
+ ZPD 21.4 45.3
+ ZPD, 3 shot 20.3 40.0
gold 100 100

Table 2: The intrinsic and extrinsic evaluation results
for all main models. gpt-4(o) demonstrates non-trivial
performance. With a ZPD instruction, the performance
improves consistently.

Model % Parameter Precondition Effect

gpt-4 36.7 31.1 53.0
+ CoT 29.7 25 54.7
+ ZPD 42.2 29.7 48.1
gpt-4o 45.1 31.1 62.5
+ CoT 52.4 34.2 54.1
+ ZPD 53.5 40.1 53.5

Table 3: The generation accuracy of each component
in actions has been evaluated. The ZPD instruction
clearly aids in identifying implicit parameters (entities).
Predicting preconditions is more challenging than pre-
dicting effects, as it requires a greater depth of implicit
knowledge of entity states.

relevant description of an action; 2) extracting and
inferring the incorporated entities and their state
changes; and 3) translating the entity-state changes
to accessible PDDL predicates. Next, we establish
the relationships between these atomic skills: to
perform the task, each skill is a prerequisite for the
next. Finally, we explicitly instruct the LMs to in-
crementally perform the three basic skills, leading
to the successful completion of the PROC2PDDL

task (the prompt can be found in Appendix D):
1. Extraction: describe each action, including the

expected preconditions and effects;
2. Inference: list the involved entities and their

state changes;
3. Translation: based on the information above,

convert T to PDDL.

4.2 Choice of Input Text

We also consider the following choices of wikiHow
text as T.

Prompt without text (w/o T) is an ablation
baseline where the model predicts A solely based
on H . Naturally, none of the three aforementioned
stages are involved in this prompt condition.

3
15

Intrinsic Extrinsic
Model % action acc. PF solve

w/o T (baseline) 13.7 26.3
T =sum 15.9 33.7
T =sum, ZPD 18.1 35.8
T =map 11.8 13.7
T =map, ZPD 8.9 26.3
T =rel 11.6 27.4
T =rel, ZPD 12.2 21.1
T =all 12.1 28.4
T =all, ZPD 12.1 31.6

Table 4: Performance of GPT-4 using different portions
of text T. Metrics include action-wide accuracy and the
proportion of PFs that can be solved.

Prompt with text (w/ T) additionally provides
the model with four different portions of T, involv-
ing the three aforementioned stages, as follows:
(T = all): All steps in a wikiHow article.
(T = rel): In PROC2PDDL, each wikiHow article
consists of step paragraphs that may or may not be
used in defining the actions in the DF. Hence, a
mapping between actions and steps is also anno-
tated. This context includes relevant steps to all
actions in a DF. (e.g., Step 1. Find fresh water...
Step 2. Collect food... Step 7. Set up camp...)
(T = map): Each action is mapped with steps based
on the annotated mapping in PROC2PDDL.
(e.g., clean_water: Step 1. Find fresh water...)
(T = sum): An one-line summary of each action
annotated in PROC2PDDL.
(e.g., clean_water; boil water to clean it)
The four prompts are increasingly general. Dis-
tinguishing from the required skills, the full text
condition demands accurate information extraction,
while the text summary clearly defines the action
but requires the model’s robust ability to infer im-
plicit entity states. All prompts request an exact
translation.

4.3 Experiments

We conducted experiments with three large lan-
guage models3: GPT-3.5-turbo-16k, GPT-4-32k
(dated June 2023), and GPT-4o. For GPT-4-32k,
we used a maximum token limit of 10,000. GPT-
3.5-turbo-16k and GPT-4o were tested with theirs
default hyperparameters. The few-shot examples
can be found in Appendix C.

3Due to the need for very long input and output, the choice
of open-source models is limited. We are in progress of im-
plementing Mixtral-8x7B.

5 Evaluation and Analysis

Now that a model generates the parameters, pre-
conditions, and effects for each action, we have
a complete DF. We evaluate it in two ways (Fig-
ure 2). Intrinsically, we semantically compare the
predicted A with the ground-truth provided by our
PROC2PDDL and report an action-wide accuracy.
Equivalence of two action definitions does not de-
pend on the naming of variables nor on the order
within conjunctions (detailed in Appendix E). Ex-
trinsically, to measure actions’ coherence, a BFS-
based PDDL solver4 attempts to solve ground-truth
PFs with the predicted DF and a success rate is
reported. An unsolved PF is caused by (1.) no
plan can be found, or (2.) the solver runs for more
than 30 seconds, or (3.) the solver returns an error
(usually a syntax error in the generated PDDL).

The intrinsic and extrinsic results are shown
in Table 2. gpt-3.5-turbo which achieves
impressive performance on many tasks has a
close-to-zero performance. In contrast, gpt-4
performs significantly better with 18% action
prediction accuracy and 36% solve rate of PFs.
The most advanced gpt-4o presents the highest
performance, with 21% action accuracy and 45%
PFs solving rate. Still, the performance is far
worse than ideal, showing that even a simplified
open-domain planning formulation is challenging
to state-of-the-art LMs.

ZPD Instruction Analysis
ZPD is helpful in each setting since it explicitly
spells out many implicit entities and state changes
in the inference stage which are critical to predict-
ing parameters. In most situations, the model sum-
marizes the action and extracts the entity states
correctly, though sometimes missing a few implicit
entities. However, ZPD’s bottleneck lies in the
translation stage, during which there are mainly
three types of errors.
1. mismatched predicates: the model uses (at

?loc ?item) instead of (inventory ?item);
2. hallucinated predicates: the model creates a new

predicate (soaked ?item) while neglecting the
existing (submerged ?item);

3. complicated predicates: the model adds
unnecessary predicates (inventory
?submerged_item - item) when already has
(inventory ?item).

4https://github.com/pucrs-automated-planning/
pddl-parser

4
16

https://github.com/pucrs-automated-planning/pddl-parser
https://github.com/pucrs-automated-planning/pddl-parser

Unsolved Solved
Syntactic

Error
Bad

Action
Good

Action
Bad
Plan

Good
Plan

gpt-4 3 7 2 0 3

Table 5: A small-sample inspection shows that models
make both syntactic and semantic errors.

To address these, we leave to future work to
demonstrate and standardize the translation pro-
cess by clearly describing all necessary entity-state
change and encouraging the model to compare and
strictly match the given predicates. Finer-grained
evaluation results are shown in Table 3 to tease
out the performance regarding such component
within an action. It is clear that the LM is worse
at predicting preconditions than at predicting
effects. This is understandable as procedural
texts like wikiHow tend to be less explicit about
predictions than about effects (e.g., from ‘bake
for 10 minutes’ it is obvious that the food will
be baked, but it is unclear what state it had been in).

Text Format Analysis
As shown in Table 4, in w/o T setting, fully
relying on its implicit knowledge, the model is
already capable of inferring PDDL syntactically
and semantically. In w/ T settings, our model
shows an ‘U’ performance in terms of the text
length. Using a sentence-long description for
each action (T = sum) provided by PROC2PDDL,
the model achieves the best performance among
all, showing a strong deduction ability with the
limited but precise NL input. The T = all setting
ensues, which requires the most extraction rather
than inference. In contrast, the middle ones (T
= rel/map) with decreasing signal-to-noise ratio
lead to worse results, indicating its shortage of
extraction-inference trade-off. The signals contain
both the described entity states and step relations,
explicitly and implicitly. This shortage may come
less from the entity states (e.g., fish, spear in
hunt_fish), but more from the relation between
actions (e.g., make_spear to hunt_fish) which may
be expressed in the T = sum and all settings.

Case Analysis
To provide deeper insights into model performance,
we manually inspect the model output of gpt-4 on
all 6 examples (15 PFs) in the development set. We
consider the following scenarios.
Unsolved Whenever the predicted DF cannot

solve a PF, either a syntactic or a semantic er-
ror has occurred. For a syntactic error, the out-
put may contain illegal expressions that cannot
be parsed. For example, (inventory ?player
(clean ?strips)) is unacceptable because the
arguments to a predicate must be atomic types, not
another predicate. For a semantic error (namely,
a ‘bad action’), we identify the first problematic
action that differs with the ground-truth. For ex-
ample, if the action cut_plant misses a critical ef-
fect of (inventory ?player ?stalk), then other
actions such as graft_stalk requiring it cannot
be executed. At times, there could be false nega-
tives where the predicted action definitions are in
fact reasonable but still cannot lead to a solution
(namely, a ‘good action’).

Solved Even when the predicted DF solves a PF,
the plan may be different from the gold plan. It is
naturally possible that the predicted plan is a fluke
made possible by under-specified preconditions or
over-exaggerated effects, as well as loopholes in
the PF leading to unreasonable shortcuts. For the
example in Figure 1, a model could cheat by defin-
ing the action get by not requiring the person and
object to be in the same location; thus, the pre-
dicted plan would unreasonably omit the action go.
However, at times, the predicted plan could also be
a reasonable alternative.

The statistics of these errors are shown in Ta-
ble 5. When no solution can be found, true neg-
ative is highly likely as the model indeed makes
aforementioned mistakes during action prediction.
When some solution is found, false positive is still
possible as the predicted plan may be unreason-
able. See attached materials for a complete error
analysis of these examples. Our aforementioned
future pipeline that separates summarization and
translation would likely mitigate these errors.

6 Conclusion

We present PROC2PDDL, the first open-domain
dataset that juxtaposes natural language and plan-
ning domain definition language. Our experiments
show that ZPD instructions facilitate LMs’ perfor-
mance, while still find it challenging to translate
the precondition and effects of actions. We hope
our instruction design, evaluations and dataset help
future progress towards integrating the best of LM
and formal planning.

5
17

7 Limitations

Any planning language, including PDDL which
we consider in this work, is an approximation of
planning in the real world and cannot accurately
reflect its complexity. Due to the consideration
for simplicity in the annotation process, we use
the primitive version of PDDLs, with restricted
expressions and syntax, instead of newer versions
of the planning language which extend its syntax
in a variety of way.

Annotating PROC2PDDL is extremely costly as
it requires knowledge of PDDL and much effort
to translate procedural texts to PDDL. Thus, our
dataset is relatively small with a limited range of
topics. Due to the highly complex and subjective
nature of the annotation process, each annotated
example may reflect idiosyncratic though processes
and biases of the individual annotator.

As with many similar works, there is a known
gap between high-level planning such as ours (with
high-level actions like “boil”) and the actions used
by present-day robots (with low-level motor func-
tions like “move”). However, like similar works,
we believe our efforts can see more practical appli-
cation in the near future.

Our modeling efforts so far have mainly con-
sidered options of zero-shot prompting. There of
course exists many other approaches including the
few-shot setting, fine-tuning, and the model distil-
laion paradigm, which we plan to experiment with
in the future. Moreover, our evaluation is imperfect
in that even a well-annotated DF-PF pair might
have multiple successful plans. Manual inspection
is still necessary to accurately gauge models.

Acknowledgements

This research is supported in part by the Office
of the Director of National Intelligence (ODNI),
Intelligence Advanced Research Projects Activ-
ity (IARPA), via the HIATUS Program contract
#2022-22072200005. The views and conclusions
contained herein are those of the authors and should
not be interpreted as necessarily representing the
official policies, either expressed or implied, of
ODNI, IARPA, or the U.S. Government. The U.S.
Government is authorized to reproduce and dis-
tribute reprints for governmental purposes notwith-
standing any copyright annotation therein.

References
Federico Cassano, John Gouwar, Francesca Lucchetti,

Claire Schlesinger, Carolyn Jane Anderson, Michael
Greenberg, Abhinav Jangda, and Arjun Guha. 2023.
Knowledge transfer from high-resource to low-
resource programming languages for code llms.
arXiv preprint arXiv:2308.09895.

Katherine M. Collins, Catherine Wong, Jiahai Feng,
Megan Wei, and Joshua B. Tenenbaum. 2022. Struc-
tured, flexible, and robust: benchmarking and improv-
ing large language models towards more human-like
behavior in out-of-distribution reasoning tasks.

Richard E Fikes and Nils J Nilsson. 1971. Strips: A new
approach to the application of theorem proving to
problem solving. Artificial intelligence, 2(3-4):189–
208.

Malik Ghallab, Adele Howe, Craig Knoblock, Drew
McDermott, Ashwin Ram, Manuela Veloso, Daniel
Weld, and David Wilkins. 1998. PDDL - the plan-
ning domain definition language. Technical Report
"CVC TR-98-003/DSC TR-1165", Yale Center for
Computational Vision and Control.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. 2022. Language models as zero-
shot planners: Extracting actionable knowledge for
embodied agents. In International Conference on
Machine Learning, pages 9118–9147. PMLR.

Wenlong Huang, Fei Xia, Dhruv Shah, Danny Driess,
Andy Zeng, Yao Lu, Pete Florence, Igor Mor-
datch, Sergey Levine, Karol Hausman, et al. 2023.
Grounded decoding: Guiding text generation with
grounded models for robot control. arXiv preprint
arXiv:2303.00855.

Steven M LaValle. 2006. Planning algorithms. Cam-
bridge university press.

Alan Lindsay, Jonathon Read, Joao Ferreira, Thomas
Hayton, Julie Porteous, and Peter Gregory. 2017.
Framer: Planning models from natural language ac-
tion descriptions. In Proceedings of the International
Conference on Automated Planning and Scheduling,
volume 27, pages 434–442.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu,
Shiqi Zhang, Joydeep Biswas, and Peter Stone. 2023.
Llm+p: Empowering large language models with
optimal planning proficiency.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,
Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. 2023. Faithful chain-of-
thought reasoning.

Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. 2020. Al-
fred: A benchmark for interpreting grounded in-
structions for everyday tasks. In Proceedings of
the IEEE/CVF conference on computer vision and
pattern recognition, pages 10740–10749.

6
18

http://arxiv.org/abs/2205.05718
http://arxiv.org/abs/2205.05718
http://arxiv.org/abs/2205.05718
http://arxiv.org/abs/2205.05718
http://arxiv.org/abs/2304.11477
http://arxiv.org/abs/2304.11477
http://arxiv.org/abs/2301.13379
http://arxiv.org/abs/2301.13379

Tom Silver, Varun Hariprasad, Reece S Shuttle-
worth, Nishanth Kumar, Tomás Lozano-Pérez, and
Leslie Pack Kaelbling. 2022. Pddl planning with
pretrained large language models. In NeurIPS 2022
Foundation Models for Decision Making Workshop.

Katharina Stein and Alexander Koller. 2023. Au-
toplanbench:: Automatically generating bench-
marks for llm planners from pddl. arXiv preprint
arXiv:2311.09830.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo,
Sarath Sreedharan, and Subbarao Kambhampati.
2023a. Planbench: An extensible benchmark for eval-
uating large language models on planning and rea-
soning about change. In Thirty-seventh Conference
on Neural Information Processing Systems Datasets
and Benchmarks Track.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo,
Sarath Sreedharan, and Subbarao Kambhampati.
2024. Planbench: An extensible benchmark for eval-
uating large language models on planning and reason-
ing about change. Advances in Neural Information
Processing Systems, 36.

Karthik Valmeekam, Matthew Marquez, Sarath Sreed-
haran, and Subbarao Kambhampati. 2023b. On the
planning abilities of large language models–a critical
investigation. arXiv preprint arXiv:2305.15771.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan,
and Subbarao Kambhampati. 2022. Large language
models still can’t plan (a benchmark for llms on plan-
ning and reasoning about change). arXiv preprint
arXiv:2206.10498.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan,
and Subbarao Kambhampati. 2023c. Large language
models still can’t plan (a benchmark for llms on plan-
ning and reasoning about change).

Lev Semenovich Vygotsky and Michael Cole.
1978. Mind in society: Development of higher
psychological processes. Harvard university press.

Lionel Wong, Jiayuan Mao, Pratyusha Sharma,
Zachary S Siegel, Jiahai Feng, Noa Korneev,
Joshua B Tenenbaum, and Jacob Andreas. 2023.
Learning adaptive planning representations with
natural language guidance. arXiv preprint
arXiv:2312.08566.

Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong,
and Harold Soh. 2023. Translating natural language
to planning goals with large-language models.

A Topics

Below are a list of the titles of wikiHow articles
in PROC2PDDL, chosen per the requirement of a
gruaduate-level university class.

• create secret society
• throw an anime party

• open a coconut
• calculate pi
• hack
• get out of quicksand
• make a detective kit
• lock picking
• make papyrus
• survive on a desert island
• survive in the jungle
• survive a war
• survive a comet hitting earth
• survive a nuclear attack
• survive in the woods
• survive deserted island
• survive shark attack
• survive emp attack

Each topic may have one or more annotated DFs
representing different domains. The homogeneity
of the last 7 topics is due to the class’ topic of
interactive fictions.

B Sample Data: T, DF, and PF

To exemplify PROC2PDDL, below is an example
procedural text T titled ‘survive in the jungle‘, up
to the third step, truncating the rest.
1. Collect rainfall from leaves and bamboo

stalks. Look for large leaves that collect
rainfall and bend them into a funnel to pour
the water into a bottle or straight into
your mouth. Bend bamboo stalks to let the
water that collects in the compartments flow
out into a container or break the bamboo
compartment off at the line that goes across
the stalk to use it as a water bottle. You
could also look for rock formations that
form natural pools and collect rainwater,
but it is best to do this after a fresh
rainfall to avoid pools that have been
sitting for a long time and may be
contaminated with bacteria. If you don't
have a water bottle or other container to
collect water, try to find other natural
containers in the jungle such as a coconut
shell or piece of wood shaped like a bowl.
You can also leave these items out when it
rains to collect the fresh water.

2. Boil water from streams to kill any bacteria.
Look for running streams to find fresh
water. Filter out any particles through a
sock, shirt, or other fabric, then start a
fire and boil the water to kill bacteria
that can make you sick. If you don't have a
pot to boil water in, then you can use a tin
can, single-walled stainless steel water
bottle, or any other metal container. If you
have no way of making a fire or boiling the
water, then you should avoid drinking water
from streams. It can be contaminated with
many types of bacteria from animals that
will make you very sick. Always avoid

7
19

http://arxiv.org/abs/2206.10498
http://arxiv.org/abs/2206.10498
http://arxiv.org/abs/2206.10498
http://arxiv.org/abs/2302.05128
http://arxiv.org/abs/2302.05128

drinking water from stagnant pools as the
water is likely contaminated.

3. Make a solar water still with a container and
a plastic sheet. Dig a hole in an area that
receives at least some direct sunlight and

put a container, such as a water bottle or
can, in the middle of the hole. Fill the
space between the sides of the hole and the
container with wet leaves. Place a plastic
sheet over the top of the hole and put rocks
or other heavy objects around the edges to

hold it in place. Put a small stone in the
middle of the sheet above the container. The
plastic sheet will accumulate condensation

that will drip down the underside of the
sheet and into the container. This water is
distilled and safe to drink. You can use
natural containers such as bamboo or a
coconut shell if you don't have a bottle or
can. A solar still does not collect large
amounts of water. It should be used as a
supplemental source of water rather than a
primary source.

......

Below is a sample annotated DF of the above:
(define (domain survive_in_the_jungle)

(:requirements :strips :typing)
(:types

stone wood bamboo_container water fire
sos_sign fruit - item

basecamp - location
ill dehydrated hungry - condition
player
direction

)

(:predicates
(has_bamboo ?loc - location) ; this

location has bamboo to create a
container

(has_rainfall ?loc - location) ; this
location has received rainfall to
collect water

(has_fruit ?loc - location) ; this location
has fruits to pick

(treated ?water - water) ; True if the
water has been decontaimated by
boiling it

(is ?c - condition ?p - player) ; True if
the player is under the specified
condition

(at ?obj - object ?loc - location) ; an
object is at a location

(inventory ?player ?item) ; an item is in
the player's inventory

(connected ?loc1 - location ?dir -
direction ?loc2 - location) ; location
1 is connected to location 2 in the

direction
(blocked ?loc1 - location ?dir - direction

?loc2 - location) ; the connection
between location 1 and 2 in currently
blocked

)

(:action go ; navigate to an adjacent
location

:parameters (?dir - direction ?p - player ?
l1 - location ?l2 - location)

:precondition (and (at ?p ?l1) (connected ?
l1 ?dir ?l2) (not (blocked ?l1 ?dir ?
l2)))

:effect (and (at ?p ?l2) (not (at ?p ?l1)))
)

(:action get ; pick up an item and put it in
the inventory

:parameters (?item - item ?p - player ?l1 -
location)

:precondition (and (at ?p ?l1) (at ?item ?
l1))

:effect (and (inventory ?p ?item) (not (at
?item ?l1)))

)

(:action get_bamboo_container; get a bamboo
container using surrounding bamboo

:parameters (?p - player ?loc - location)
:precondition (and (at ?p ?loc) (has_bamboo

?loc))
:effect (inventory ?p bamboo_container)

)

(:action collect_rain_water
:parameters (?p - player ?loc - location)
:precondition (and (at ?p ?loc) (inventory

?p bamboo_container) (has_rainfall ?
loc))

:effect (and (inventory ?p water) (not (
treated water)))

)

(:action create_fire
:parameters (?p - player ?loc - location)
:precondition (and (at ?p ?loc) (inventory

?p stone) (inventory ?p wood))
:effect (and (at fire ?loc) (not (inventory

?p stone)) (not (inventory ?p wood)))
)

(:action treat_water
:parameters (?p - player ?loc - location)
:precondition (and (inventory ?p water) (

not (treated water)) (at fire ?loc))
:effect (and (treated water))

)

(:action drink_water
:parameters (?p - player)
:precondition (and (inventory ?p water) (

treated water))
:effect (not (is dehydrated ?p))

)

(:action drink_untreated_water
:parameters (?p - player)
:precondition (and (inventory ?p water) (

not (treated water)))
:effect (is ill ?p)

)

(:action create_sos_sign
:parameters (?p - player)
:precondition (and (inventory ?p stone) (at

?p basecamp))
:effect (and (not (inventory ?p stone)) (at

sos_sign basecamp))

8
20

)

(:action pick_fruit
:parameters (?p - player ?loc - location)
:precondition (and (at ?p ?loc) (has_fruit

?loc))
:effect (inventory ?p fruit)

)

(:action eat_fruit
:parameters (?p - player)
:precondition (and (is hungry ?p) (

inventory ?p fruit))
:effect (and (not (inventory ?p fruit)) (

not (is hungry ?p)))
)

(:action escape
:parameters (?p - player)
:precondition (and (at ?p basecamp) (at

sos_sign basecamp) (not (is hungry ?p))
(not (is dehydrated ?p)) (not (is ill
?p)))

:effect (not (at ?p basecamp))
)

)

Below is an annotated PF of the above:

(define (problem escape)
(:domain survive_in_the_jungle)

(:objects
npc - player
jungle bamboo_forrest basecamp - location
in out north south east west up down -

direction
stone wood sos_sign - item
ill dehydrated hungry - condition

)

(:init
(at npc basecamp)
(connected basecamp west bamboo_forrest)
(connected bamboo_forrest east basecamp)
(connected basecamp east jungle)
(connected jungle west basecamp)

(has_bamboo bamboo_forrest)
(has_fruit jungle)
(has_rainfall jungle)

(at stone bamboo_forrest)
(at stone basecamp)
(at wood jungle)

(is dehydrated npc)
(is hungry npc)

)

(:goal (and (not (at npc basecamp)) (not (at
npc bamboo_forrest)) (not (at npc jungle)
)))

)

C Few-shot Examples

Example 1:
action: slide_straw_over_skewer

text: Slide a segment of plastic straw over the
2 skewers. Cut a segment of a plastic straw
that is equal to the width between the wheel
wells on your car. Then, slide it onto 1 of
the skewers that's attached to a wheel. Do
the same with the other skewer.

pddl_action:
(:action slide_straw_over_skewer
:parameters (?straw1 - straw ?straw2 - straw ?

skewer1 - skewer ?skewer2 - skewer ?wheel1
- wheel ?wheel2 - wheel)

:precondition (and
(attached ?skewer1 ?wheel1)
(attached ?skewer2 ?wheel2)
(equal_width ?straw1 ?skewer1)
(equal_width ?straw2 ?skewer2))
:effect (and
(over ?straw1 ?skewer1)
(over ?straw2 ?skewer2)))

entity_state_inference:
- action name: slide_straw_over_skewer
- summarize action: The action involves cutting

a segment of a plastic straw and sliding it
over two skewers attached to wheels. The
straw segments should be equal to the width
between the wheel wells on a car.

- what is needed to do the action: A segment of
a plastic straw, two skewers attached to
wheels.

- what is the result: The straw segments are
slid over the skewers, which helps in
maintaining the structure of the car and
providing stability to the wheels.

- entities:
- entity name: plastic straw segment
- before: Not cut and not on skewers
- after: Cut and slid onto skewers
- entity name: skewer
- before: Without straw segments
- after: With straw segments slid onto them
- entity name: wheel
- before: Attached to skewers, without straw

segments on the skewers
- after: Attached to skewers, with straw

segments on the skewers

Example 2:
action: mix_sand_with_color

text: Close the bags tightly, then shake and
squeeze them to mix the sand. Zip the bags
shut tightly first. Next, shake the bags to
help distribute the food coloring. You can
also gently squeeze and massage the sand
through the bags. Keep doing this until the
color is even. Add more food coloring if the
color is too light for you. Keep in mind
that the sand will dry lighter.

pddl_action:
(:action mix_sand_with_color
:parameters (?bag - bag ?sand - sand ?color -

food_coloring)
:precondition (and (sealed ?bag) (contains ?bag

?sand) (contains ?bag ?color) (not (

9
21

evenly_colored ?sand)))
:effect (evenly_colored ?sand))''',

entity_state_inference:
- action name: mix_sand_with_color
- summarize action: This action involves mixing

colored sand by sealing bags containing sand
and food coloring, then shaking, squeezing,
and massaging the bags until the sand color
is evenly distributed. More food coloring

may be added if the color is too light, with
the understanding that the sand will dry

lighter.
- what is needed to do the action: Sealed bags

containing sand and food coloring, ability
to shake and squeeze the bags.

- what is the result: The sand inside the bags
is evenly colored.

- entities:
- entity name: bags
- before: contains uncolored or unevenly

colored sand and food coloring
- after: contains evenly colored sand
- entity name: sand
- before: uncolored or unevenly colored
- after: evenly colored
- entity name: food_coloring
- before: present in the bags
- after: mixed evenly with the sand

Example 3:
action: melt_wax

text: Melt candle wax flakes or cubes in a
double boiler. Set a can, jar, or another
heat-proof container in a pot, and place
your solid candle wax (soy or paraffin are
most common) inside. Surround the container
with water, filling the pot about halfway up
the container, then heat the pot on medium

heat to double boil the wax to melt it
completely, stirring every minute or so to
make sure it melts evenly.

pddl_action:
(:action melt_wax
:parameters (?wax ?container ?pot ?heat_source

?water)
:precondition (and (solid ?wax) (in ?wax ?

container) (heatproof ?container) (in ?
container ?pot) (in ?water ?pot) (cold ?
water))

:effect (and (liquid ?wax) (heated ?water)))

entity_state_inference:
- action name: melt_wax
- summarize action: This action involves melting

solid candle wax using a double boiler
method. The solid wax is placed in a heat-
proof container, which is then placed in a
pot filled with water. The pot is heated,
and the wax is stirred until it melts
completely.

- what is needed to do the action: The action
requires solid wax, a heat-proof container,
a pot, water, and a heat source.

- what is the result: The solid wax is melted
into liquid wax.

- entities:
- entity name: wax
- before: solid
- after: liquid
- entity name: container
- before: empty or containing solid wax
- after: containing liquid wax
- entity name: pot
- before: empty or containing water and

container with solid wax
- after: containing water and container with

liquid wax
- entity name: water
- before: cold or room temperature
- after: heated
- entity name: heat_source
- before: off
- after: on

D Prompts

For reproducibility, we provide the verbatim
prompts that we used in the above experiments.

D.1 Prompt without ZPD
Could you fill out the below PDDL actions with
the predicates based on the text?
All fields: parameters, precondition and effect,
should have predicates.
For each action, do NOT change the name and
do NOT drop the action and do NOT add more
actions.
The output should be in correct PDDL format.

<wikiHow text and domain header>

here are the actions I want:
<insert_action_names>
here are the types I have:
<insert_types>
here are the predicates I have:
<insert_predicates>
here are the texts containing steps to <insert_goal>:
<insert_text>

Example Completion:
(:action clean_water

:parameters (?player - human ?water - water)
:precondition (inventory ?player ?water)
:effect (treated ?water)

)

D.2 Prompt with ZPD
Could you fill out the below PDDL actions with
the predicates based on the text? All fields:
parameters, precondition and effect, should have

10
22

predicates.
For each action, do NOT change the name and
do NOT drop the action and do NOT add more
actions and:
First, summarize the action in a few sentences
based on the text and provide its requirements and
its aims if it has.
Next, identify ALL the entities involved in the
action and describe whether it changed, unchanged,
added, removed in the action in natural language.
Last, translate it into PDDL format. Check all the
related entities are in the ’parameters’.

Please use this output format:
- action name: ...
- summarize action: ...
- what is needed to do the action: ...
- what is the result: ...

- entities:
- entity name: ...
- before: ...
- after: ...

- describe how to match it to relevant predicates
step by step:
1. ...
2. ...

<wikiHow text and domain header>

here are the actions I want:
<insert_action_names>

here are the types I have:
<insert_types>

here are the predicates I have:
<insert_predicates>

here are the texts containing steps to <insert_goal>:
<insert_text>

Example Completion:
- action name: clean_water
- summarize action: The player cleans water in
their inventory using heat from a fire.
- what is needed to do the action: The player must
have untreated water in their inventory and be at a
location with fire.
- what is the result: The player has treated water in
their inventory.

- entities:
- entity name: player
- before: Having untreated water in inventory.
- after: Having treated water in inventory.
- entity name: water
- before: Untreated.
- after: Treated.

- describe how to match it to pddl relevant
predicates step by step:
1. Check if the player has untreated water in their
inventory.
2. Check if the player is at a location with a fire.
3. Replace untreated water with treated water in
the player’s inventory in the effect.

PDDL:
(:action clean_water

:parameters (?player - human ?loc - location ?wa-
ter - water)

:precondition (and (at ?player ?loc) (inventory
?player ?water) (not (treated ?water)) (has_fire
?loc))

:effect (treated ?water)
)

E Calculating Actions Equivalence

The distance between two actions can be divided
to two parts:

1. The distance between parameters:

We do not need to consider the specific parame-
ter names; we only need to consider the param-
eter types. For each parameter in Action1, we
iterate over the parameter list of Action2 to find
the first parameter in Action2 with the same type.
We use two hash maps, p1 and p2, to record these
two parameters and their corresponding types.
We increment the counter by 1, remove that pa-
rameter from the parameter list of Action2, and
break from the current loop. After the iteration,
we obtain the number of matching parameters,
n. The distance between parameters can be cal-
culated as |number of parameters in Action1 −
n|+ |number of parameters in Action2 − n|.

2. The distance between preconditions/effects:

For each condition in Action1, we iterate over
the condition list of Action2. The conditions can
only match if they have the same predicate and

11
23

the same number of parameters. We iterate over
the parameters in these conditions and make the
following judgments:

• If neither of the two current parameters has
appeared before (in p1 and p2) and these pa-
rameters are not identical, they don’t match.

• If the two parameters have different categories,
they don’t match.

• If the two parameters have the same categories
and don’t have an index, we consider them as
the same parameter entity and give them the
same index. We continue the iteration.

• If the two parameters already have indexes,
we check if the indexes are equal. If they are
not equal, they don’t match. Otherwise, we
continue the iteration.

• In any other case, they don’t match.

If all parameters of the two conditions match,
we increment n by 1. The distance between
preconditions/effects can be calculated as
|number of preconditions/effects in Action1 −
n|+|number of preconditions/effects in Action2−
n|.

12
24

