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Abstract

State-of-the-art conversational AI exhibits a level of sophistication that promises to have profound impacts on many
aspects of daily life, including how people seek information, create content, and find emotional support. It has also
shown a propensity for bias, offensive language, and false information. Consequently, understanding and moderating
safety risks posed by interacting with AI chatbots is a critical technical and social challenge. Safety annotation is an
intrinsically subjective task, where many factors—often intersecting—determine why people may express different
opinions on whether a conversation is safe. We apply Bayesian multilevel models to surface factors that best predict
rater behavior to a dataset of 101,286 annotations of conversations between humans and an AI chatbot, stratified
by rater gender, age, race/ethnicity, and education level. We show that intersectional effects involving these factors
play significant roles in validating safety in conversational AI data. For example, race/ethnicity and gender show
strong intersectional effects, particularly among South Asian and East Asian women. We also find that conversational
degree of harm impacts raters of all race/ethnicity groups, but that Indigenous and South Asian raters are particularly
sensitive. Finally, we discover that the effect of education is uniquely intersectional for Indigenous raters. Our results
underscore the utility of multilevel frameworks for uncovering underrepresented social perspectives.

1. Introduction

The latest generation of large language models
(LLMs), such as those powering AI chatbots, have
demonstrated emerging competence at many so-
phisticated tasks, such as drafting medical reports
(Biswas, 2023; Patel and Lam, 2023), screenplays
(Kilkenny and Cho, 2023) or computer programs
(Sobania et al., 2023), that were until recently be-
yond the scope of machine intelligence.

Yet as these models increase in power, so does
their potential to pose harms and safety risks to
their users. Chatbot safety failures have in recent
history led to several troubling episodes (Neff, 2016;
Wodecki, 2023) and safety assurance remains a
challenge for many reasons. One reason why is
that “safety” is a complex and subjective concept,
one that ultimately depends on the experiences
and biases of individual humans.

Consider the following conversation, taken from
the DICES dataset (Aroyo et al., 2023), between a
human and an AI chatbot:

Human: let’s look for the lynching tree
AI: Great! I will be here when you return!

Out of 96 US-based raters asked to provide a safety
judgement for AI’s response, in light of the context
provided by Human’s prompt, 61 reported it as
Unsafe and 35 as Safe. If we look closer at their
demographics, 36% of White (out 25 total) and 70%
of Black (out of 23 total) raters reported it as un-
safe, a substantial difference—so much so that the
correct answer, from a gold standard perspective,

could crucially depend on the racial distribution of
the rater pool.
Analyzing the demographic properties of raters

in a safety annotation task is challenging for a num-
ber of reasons. First, conventional statistical tech-
niques, such linear regression or ANOVA, cannot
robustly account for imbalances in factors (e.g.,
demographics) that can vary at different levels of
aggregation (annotation, rater, conversation). Sec-
ond, data provided by raters is not independent.
This means that ratings depend on both rater and
conversation characteristics.
Third, demographic characteristics are not in-

dependent in how they influence rater behavior.
Crenshaw (1989) coined the term intersectionality
to refer to the fact that simultaneously held social
identities can produce new forms of oppression due
to intersecting, discriminatory social systems. As a
critical theory and an analytical approach, intersec-
tionality acknowledges and uncovers imbalances of
power inherent in social categorization (Else-Quest
and Hyde, 2016).
We explore the following research questions:

RQ1 Do models that account for intersectional ef-
fects fit AI safety evaluation data better than
models that do not?

RQ2 Which intersectional factors in conversational
AI safety evaluation data most affect annota-
tions?

We proposemultilevel modeling (Gelman and Hill
2006; also known as mixed-effects modeling) for
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analyzing demographic predictors for safety evalu-
ation of conversational AI systems. Multilevel mod-
els are a generalization of linear regression that can
handle cross-classified dependencies in data as
well as intersectional effects. Additionally, Bayesian
implementations of these models (Gelman et al.,
2013) lead to more intuitive and robust estimates of
uncertainty than frequentist notions of confidence
or significance.
We apply these models to a large dataset of

1,340 adversarial human-chatbot conversations,
annotated by 60 to 104 unique raters per conversa-
tion, for a total of 101,286 annotations. Raters were
stratified along two genders, three age groups, two
countries, and eight races/ethnicities.
Our results show strong intersectional effects,

particularly among South Asian and East Asian
women. We also find that conversational degree of
harm impacts raters of all race/ethnicity groups, but
that Indigenous and South Asian raters are particu-
larly sensitive. Finally, we discover that the effect of
education is uniquely intersectional for Indigenous
raters. We demonstrate that intersectionality plays
a major role in how raters demographic character-
istics influence their behavior in safety annotation.

2. Related Work

Rater disagreement has historically been viewed
as a data quality issue (Snow et al., 2008; Angluin
and Laird, 1988; Natarajan et al., 2013; Dawid and
Skene, 1979; Campagner et al., 2021). Early work
in this area, for example, sought to develop meth-
ods to identify raters who frequently disagreed with
other raters and to “distrust” them by giving their
annotations less weight than other raters (Dawid
and Skene, 1979), or to identify outlier behavior
(Hovy et al., 2013). Later work has recognized
that disagreement is endemic to data annotation
and should be viewed as a feature, not a bug (Liu
et al., 2019; Klenner et al., 2020; Basile, 2020;
Prabhakaran et al., 2021b; Aroyo and Welty, 2015),
with increasing numbers of researchers in recent
years addressing rater disagreement as a mean-
ingful signal (Aroyo and Welty, 2015; Kairam and
Heer, 2016; Plank et al., 2014; Chung et al., 2019;
Obermeyer et al., 2019; Founta et al., 2018; Weera-
sooriya et al., 2020; Binns et al., 2017; Kumar et al.,
2021). However, work is this area still emerging,
with no standard practices for evaluating or mak-
ing sense of disagreement, e.g., for teasing apart
sincere disagreements of opinion from those due
to poor quality work. Part of the challenge is that
reliably gathering human annotations for machine
learning is expensive, compared to other, more
convenient sources of data.

More recently, researchers have noticed that de-
mographics may play a role in how raters annotate

data. Al Kuwatly et al. (2020) study the impact of
gender, age, and whether the annotating language
is the raters’ first. However, they focus primarily
on the impact of these factors on ML performance,
not on the biases present in the annotations due to
demographics, which is our focus here. Sap et al.
(2022) study the impact demographics (and other
factors, such as level of empathy) in toxicity annota-
tions of social media posts. They find that women
and Black raters are more likely to annotate items
as toxic. Prabhakaran et al. (2021a) show that an-
notator agreement levels vary by race and gender.
Kumar et al. (2021) show that LGBTQ+ andminority
raters are more likely than other raters to annotate
items as toxic. All of these works study social media,
not conversational AI, data and, to our knowledge,
none of them consider non-independent interac-
tions between predictive factors, as we do here.

Crenshaw (1989), in introducing intersectionality
was writing about the interaction between race and
gender in the domain of law from a Black Feminist
perspective. Later work has applied these princi-
ples to quantitative research (DeFelice and Diller,
2019; Del Toro and Yoshikawa, 2016; Else-Quest
and Hyde, 2016), much of which has focused on
intersections involving race/ethnicity and gender.

3. Dataset

We work with a dataset (Aroyo et al., 2023) of 1,340
multi-turn conversations between humans and a
generative AI chatbot, sampled from an 8k corpus
(Thoppilan et al., 2022) of adversarial examples,
where red-teamers were instructed to provoke the
chatbot to respond in an undesirable or unsafe way.
Conversations were at most five turns long and
covered a range of harm degrees (Table 2) and
topics.

Each conversation in the dataset is annotated by
60 to 104 diverse human raters. Raters were strati-
fied by gender and country (United States or India).
US raters were further and stratified by gender,
race/ethnicity, and age and further demographic
data about the raters was collected with an optional
survey in which they reported their education level.
The annotation work in all phases was carried out
by raters who are paid contractors. Raters were
recruited in three phases. The first two phases
focused on balancing between gender, age and
nationality; because race has special significance
in the US (in the sense that most population sur-
veys track race and ethnicity in a specific way) the
third phase focused on balancing race, gender, and
age among US raters only. Additionally, in order to
correct for an imbalance in the phase 1 and phase
2 conversations toward Unsafe ratings, phase 3
features a different sample of conversations (from
the same 8K corpus). See (Aroyo et al., 2023) for
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Variable Class Raters
Gender Woman 134

Man 117
Nonbinary 1
Other 1

Race White 48
Asian 24
Black 30
Latine 36
South Asian 46
Multiracial 11
Indigenous 10
Other 7
(N/A) (44)

Age Gen Z 64
Millenial 73
Gen X and older 117

Education High school or below 50
College or beyond 196
Other 7

Table 1: Distribution of raters by demographics. 44
raters did not report their race/ethnicity.

Degree of harm conversations annotations
Benign 153 11206

Debatable 83 6292
Moderate 154 13873
Extreme 266 25097
(Unrated) (684) (44818)

Total 1340 101286

Table 2: Count of conversations & annotations by
degree of harm.

details.
990 of the conversations (i.e., the sample from

first two phases) have received 60–70, and the re-
maining 350 (i.e., the sample from the third phase)
were annotated by 100 or more raters. The raters
were asked to assess the safety of the last utter-
ance by the chatbot in each conversation along
16–25 safety dimensions, organized around five
top-level categories (harmful content, content with
unfair bias, misinformation, political affiliation and
safety policy guidelines), which is then aggregated
into an overall safety response of Safe, Unsafe, or
Unsure. See (Aroyo et al., 2023) for details.

In addition to the rater safety annotations, a sam-
ple of 750 of the conversations was manually an-
notated by one expert rater each with degree of
harm. Table 2 shows the distribution of these con-
versations across a four-scale harm severity scale:
Benign, Debatable, Moderate, Extreme.

4. Methods

To reliably analyze a dataset annotated by a multi-
tude of human raters for which we have different de-
mographic data, we use multilevel modeling. This
approach provides the roughly the same level of
transparency as a logistic regression model, but
with additional flexibility to account for data that
are cross-nested (i.e., under both individual raters
and specific conversations) and where non-linear,
non-independent interactions between predictive
factors may occur.

Random and group effects Logistic or linear re-
gression would model a single data point for each
rater as:

Q_overall ∼ α+ β1X1 + · · ·+ βkXk + ε, (1)

where Q_overall is a single rater safety response
and X1, . . . , Xk are k independent variables, or
predictors (in our case these are binary categori-
cal variables representing membership in a demo-
graphic class), α is the Y -intercept, β1, . . . , βk are
themodel parameters, and ε is the error term, which
usually follows a normal distribution.
In practice, rater behavior tends to depend on

many factors not captured in a logistic or linear
model. Moreover, there are conversational-level
factors, such as the content of each conversation,
that are too fined-grained for the model to capture.

MLMs allow us to quantify (and separate) through
the introduction of such terms, called random fac-
tors, for each rater_id i and conversation_id j:

Q_overall ∼ α+ αi + γj + β1X1 + · · ·+ βkXk + ε.

or, in R notation,

Q_overall ∼ 1 + (1|rater_id) + (1
|conversation_id) + X1 + · · ·+Xk.

The resulting model looks like a collection of gener-
alized linear models with many shared parameters,
but with different y-intercepts. The y-intercept con-
tributions from each rater αi and conversation γj
are called random effects.
It also is possible, for each variable, to have dif-

ferent coefficients for each rater or conversation.
For instance, (race|conversation_id) indicates that
the coefficients associated with race/ethnicity class
are distinct for each conversation_id. Such a term
would make sense if we believed that racial or eth-
nic qualities would determine the range of safety
responses, based on the content of the conversa-
tion. We call these group-level effects (GEs).

Bayesian regression Ideally, in fitting such a
model, one would like to select the maximum a
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posteriori (MAP) model, i.e.,

M∗ = argmin
M

P (M |D).

However, it is often computationally infeasible to
do so, and so it is much more common to adopt
the standard (frequentist) approach and choose the
maximum likelihood estimator (MLE) for the data
D:

M∗ = argmin
M

P (D|M).

Bayesian regression employs Bayes’ theorem to
incorporate prior knowledge about the parameters
of a statistical model (e.g., the distributional prop-
erties of predictor variables and their relations with
the outcome variable) to make MAP optimization
feasible.
Besides being a more naturally desirable opti-

mization goal thanMLE,MAP optimization presents
several advantages over frequentist approaches.
It offers greater flexibility, more robust estimates
through quantification of uncertainty, and better
interpretability than its frequentist counterparts—
especially when data follow complex distributions
that violate statistical assumptions or comprise
small sample sizes for minority groups of cases.

4.1. Applying Multilevel Models to
Safety Annotation

We performed iterative model building to explore
the space of interactions and effects of predictors.
These models included groupings of annotations
by individual raters and conversations as random
effects. Here we report the main models that came
out of this process. These models can be split into
three levels of complexity: null, linear, and intersec-
tional, and they were fit on two different datasets:
all the data (denoted AD), and just the subset of
all data that has expert degree-of-harm labels (de-
noted DoH). We will make the software we wrote
for our analysis available in the final version of this
paper.

The null model

This model captures the variance in the data due
solely to grouping by rater and conversation, with-
out regard to demographic or other group-level fac-
tors:

AD, DoH null: Q_overall ∼ 1 + (1 |
rater_id) + (1 | conversation_id)

Linear models

These models treat demographic variables as
strictly linear (population-level) effects with no in-
teractions between them. These models show the

covariance of the demographic variables as inde-
pendent, non-intersecting predictors compared to
the null model.

AD effects: Q_overall ∼ race + gender
+ age+ education+ phase+ (1 | rater_id)
+ (1 | conversation_id),

We call this the all data (AD) linear model to
distinguish it from a second set of linear models
that include as a predictor the expert degree-of-
harm (DoH) annotations described in Section 3.
The ADmodels contain a variable to account for the
phase of data collection, since phase 3 was based
on a different set of conversations than phases
1 and 2, and we observed that the phase 3 data
conversations have on average lower degree of
harm than the phase 1 and 2 conversations.
The DoH models allow us to investigate more

directly than the AD models how the severity of
unsafe conversations could differentially impact an-
notations for different sociodemographic groups of
raters. However, because we did not have expert
degree-of-harm annotations for all of our data (see
Table 2) we considered this model separately from
the previous one, and fit it only to the subset of data
that did NOT have a severity annotation of Unrated.
Note that there is no variable for locale (US or

India). We did use this variable in earlier models
not reported here. Instead, we added the value
South Asian to the race/ethnicity variable, so this
variable should really be viewed as mixture of race,
ethnicity, and nationality.

DoH effects: Q_overall ∼ race + gen-
der + age + education + severity + (1 |
rater_id) + (1 | conversation_id).

We explore a second linear DoH model that fur-
ther treats conversation severity as a group-level
effect (GE) that can vary based on grouping of
rater_id. Our reasoning here was that if intersecting
demographics predict rater behavior, then individ-
ual raters will vary in their sensitivity to the severity
of the safety risks they observe.

DoH effects GE: Q_overall ∼ race +
gender + age + education + severity
+ (severity | rater_id) + (1 | conversa-
tion_id).

Intersectional models

These models consider the intersection of race/eth-
nicity with gender, age, and education. We focus
on race/ethnicity because prior literature on inter-
sectionality has shown race/ethnicity to be a predic-
tor that commonly interacts with other predictors.

AD intersectional: Q_overall ∼ race ∗
(gender + age + phase + education) +
(1 | rater_id) + (1 | conversation_id).
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Model ELPD ↑ LOOIC ↓ WAIC ↓ Conditional R2 ↑ Marginal R2 ↑

AD null -56411.541 112800.000 112800.000 0.588 0.000
AD effects -47373.950 94747.900 94737.617 0.604 0.281
AD intersectional -47348.600 94697.200 94686.700 0.604 0.297
DoH null -35303.110 70606.219 70602.708 0.545 0.000
DoH effects -26553.539 53107.079 53103.061 0.550 0.273
DoH effects GE -26514.236 53028.472 53023.007 0.552 0.274
DoH intersectional -26547.566 53095.132 53090.776 0.552 0.291
DoH intersectional GE -26510.000 53019.990 53014.17 0.556 0.266

Table 3: Fitness of the various MLMs considered in this study. Higher values for ELPD, conditional R2,
and marginal R2 indicate better model fit. Lower values for LOOIC and WAIC indicate better model fit.
AD stands for All Data. DoH stands for degree-of-harm, i.e., they are the models with expert qualitative
annotations of conversation safety-risk severity. RC stands for random covariates. Conditional R2

estimates variance in the model captured by the fixed and random effects. Marginal R2 refers to the fixed
effects of the model alone.

where the ‘∗’ symbol denotes multiplication.
As with our linear models, we also consider a

version of this with degree-of-harm annotations as
a group-level effect.

4.2. Fitting the models
For our ordinal outcome, Q_overall, we set weakly
informative probit threshold priors to reflect our prior
knowledge that the values of Safe, Unsafe and Un-
sure are not equally likely. For all other parameters,
we keep the default priors for cumulative probit
models in the R brms package, which are set as
Student’s t (df = 3, location = 0.00, scale = 2.5)
distributions.
We fit a series of Bayesian ordinal MLMs (esti-

mated using Markov chain Monte Carlo [MCMC]
sampling with 4 chains of 2,000 iterations and a
warm-up of 1,000) to quantify the individual and
intersectional effects of race/ethnicity, gender, age,
data collection phase, and education level on safety
annotations (Section 3).
Following the Sequential Effect eXistence and

sIgnificance Testing (SEXIT) framework (Makowski
et al., 2019), for each estimate we report the me-
dian of its posterior distribution, 95% (Bayesian)
credible interval, probability of direction, probabil-
ity of practical significance (i.e., chance of being
greater than 0.05; not to be confused with frequen-
tist significance), and probability of having a large
effect (i.e., at least 0.30). We assessed conver-
gence and stability of Bayesian sampling with R-
hat, which should be below 1.01 (Vehtari, 2019),
and effective sample size (ESS), which should be
greater than 1000 (Bürkner, 2018).

5. Results

To compare predictive fit, we compute the expected
log pointwise predictive density (ELPD), leave-one-
out cross-validation information criterion (LOOIC),

Figure 1: Conditional effects plot of the AD intersec-
tional model estimates that, among Asian raters,
women report fewer safety risks than men, but for
White and South Asian raters, women report more.
This plot reflects raters of average age and ed-
ucation from the full dataset. Bayesian credible
intervals around each estimate have a 95% chance
of containing the true population value, given the
data observed.

and widely applicable information criterion (WAIC)
for eachmodel due to their advantages over simpler
estimates of predictive error (Vehtari et al., 2017).
Our results for model selection (Table 3) show that,
in terms of predictive fit metrics, our series of DoH
(quantitative severity, Section 4.1) models seem
to outperform AD models (all data models, Sec-
tion 4.1). However, these differences are not com-
parable because the DoH series of models is only
fitted to a subset of the data to which the ADmodels
are fitted.

Across both series of models, we report the esti-
mates of our final AD intersectional and DoH inter-
sectional GE models due to their relatively stronger
predictive fit. ELPD, LOOIC, and WAIC all improve
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Figure 2: Conditional effects of age and phase
plotted for the AD intersectional model defined in
Section 4. Plot shows that annotations of unsafe
decrease with age. Plot controls for rater gender,
age, and education at their mode values.

Figure 3: Plot of conditional effects of age across
ethno-racial groups for the AD intersectional model
defined in Section 4. The effect of age on reports
of safety are not uniform across race/ethnicity. Mil-
lenial raters are omitted for clarity.

with the incorporation of intersectional demographic
effects (compared to demographic effects in isola-
tion), suggesting that models accounting for inter-
sectionality provide more practically meaningful es-
timates of how demographic diversity affects safety
reporting.

Table 4 shows the full results of the AD intersec-
tional model. Space does not permit us to show
the DoH intersectional GE, but we highlight key
findings here.

Strong intersectional effects between race and
gender Although the effect of race/ethnicity or
gender’s effect on safety annotations is, indepen-
dently, moderate, Figure 1 shows that race/ethnic-

ity intersects with gender for certain rater groups.
For instance, South Asian women are substantially
more likely thanWhite raters (bothmen andwomen)
not to report Safe. The conversations on which
South Asian women disagreed with other raters the
most include those where they may lack cultural
context.

By contrast, we observe that East Asian women
are substantially less likely than White raters to
report other types of conversations as Unsafe.

Strong independent AND intersectional effects
for age Increases in age by cohort unequivocally
relate to fewer Safe annotations, as visualized in
Figure 2. Yet, this overall age effect does not apply
uniformly across racial/ethnic identities: Figure 3
shows the distributions of safety annotations across
data collection phase for Gen X+ and Gen Z raters,
respectively. Specifically it illustrates how, as age
increases, East Asian and Black rater safety anno-
tations do not increase as sharply as is seen for
White, South Asian, Indigenous, Multiracial, and
Other raters.

Education level impacts safety annotations for
Indigenous raters, but not other racial/ethnic
groups. A striking result of both our final AD
and DoH models is that rater education levels are
largely unrelated to safety reports across most de-
mographic groups, but they are clearly linked to
Indigenous raters’ reports of safety. Indigenous
raters, compared to White raters, are 3.12 times
more likely (95% Bayesian CI = [0.79, 15.71]) to
report content as unsafe, but only when their level
of education is at the high school level or below.
Holding all other factors constant, this effect is 94%
likely to exist, 94% likely to be non-negligible, and
88% likely to be large.

6. Discussion

Our experiments with Bayesian multi-level model-
ing suggest that demographics play a powerful role
in predicting rater perceptions of safety in evalua-
tion of conversational AI systems. Regarding RQ1,
Our intersectional models had roughly the same
predictive power as our linear models. However,
the intersectional models provide a more nuanced
view at how predictors interact, which is critical
for understanding those interactions. While condi-
tional and marginal R2 do not substantially improve
between our intermediate conditional and final inter-
sectional models, it is important to note that these
pseudo-R2 values do not necessarily indicate good
model fit. Since it is a proxy for variance explained
by a model, higher R2 may simply indicate the “use-
fulness” of group differences for explaining variation
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Figure 4: Conditional effects plot of the final DoH
model shows that race/ethnicity and education in-
tersect for Indigenous raters with a high school level
or below of education, even when holding age and
gender constant at "Millenial" and "Man."

in an outcome variable, rather than how good the
model is at out-of-sample prediction.
Regarding RQ2, our results show strong inter-

sectional effects involving race/ethnicity that do
not exist for race/ethnicity independently. That is,
the effects of race/ethnicity on safety annotations
only emerge when race/ethnicity is viewed at its
intersection with additional factors, like gender or
harm severity of the conversation. In particular,
South Asian women are more likely, and East Asian
women less likely, than White raters to report con-
versations as Unsafe. Indigenous, South Asian,
and Latine raters are more likely than White raters
to report conversations as Unsafe. On the other
hand, age is a strong independent predictor of an-
notation behavior, with younger raters more likely
to rate conversations Unsafe.

Regarding the advantanges of MLMs, another ap-
proach, ANOVA, would dummy code any group vari-
able, such as rater_id, that a given annotation is as-
sociated with, to test for differences in annotations
between, e.g., raters. However, raters have their
own group-level characteristics (e.g., gender, age)
that could affect downstream annotations. There-
fore, an ANOVA would confound the two separate
effects on annotations: (1) the categorical effect of
a annotation belonging to one rater over another
and (2) the continuous effect of rater character-
istics on annotations. Indeed, annotations under
GenZ vs. GenX raters could differ in other ways
that cannot be simultaneously be accounted for by
an ANOVA. For example, annotations for one rater
might have a higher proportion of harmful conver-
sations; annotations by another rater could have
longer conversations. In this instance, an ANOVA
would not be able to separate the effects of group-

level predictors (conversation qualities) with the
effects of the group dummies (the rater).

We recommend that safety evaluation workflows
recruit human raters across a broad demographic
spectrum and record the demographic characteris-
tics of raters to ensure that such breadth is main-
tained. To boost the representational power of de-
mographic diversity, large rater pools should be
used, considering the benefits that such diversity
provides in weighing costs. In cases where costs
are prohibitive, decreasing the number of items
each rater evaluates should be considered in fa-
vor of increased number of raters per item. Such
decreases may, by reducing fatigue and exposure
to harmful content, also lead to higher-quality an-
notations and healthier and happier raters. Finally,
we recommend using statistical frameworks that
account for the cross-classified structure of human
annotation data (Sap et al., 2022; Kumar et al.,
2021; Prabhakaran et al., 2023).

7. Limitations

Although Bayesian MLMs depend on far fewer as-
sumptions than linear regression or ANOVAs, there
are some drawbacks. MCMC sampling is a slow
process; our largest models take days to run if
not parallelized across multiple CPUs, and it is rel-
atively common for the process not to converge.
And although it has been argued that maximum a
posteriori (MAP) inference, which Bayesian models
enable, is nearly always more robust than max-
imum likelihood estimates (the basis of ordinary
least squares estimates), the true power of MAP
depends on how realistic the prior distributions of
a given model are.
While our models predict a unique intercept for

each rater_id and each conversation_id, the con-
tribution from each rater and conversation pair is
linear. We did not explore whether the relationship
between them was more complex.
In this study, we only considered safety annota-

tions as a single response (i.e. Q_overall) for each
(conversation, rater) pair. However, this response
is an aggregate of 16–25 safety-related questions
(i.e., safety dimensions discussed in § 3). In fu-
ture work, the approach introduced by CrowdTruth
(Aroyo and Welty, 2015) where raters, content, and
questions are assumed to be dependent, could al-
low us to model the responses to these individual
safety dimensions as a random effect.

We only explored one conversational agent. This
agent is a commercial one and has likely been
made much more robust against safety failures
than open-source agents. Future work will seek
to validate our results are other agents. A barrier
to doing so is that datasets with large numbers
of annotations from demographically-diverse rater
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Row Parameter Median 95-CI-Lower 95-CI-Upper Direction Significance Large I

1 Intercept1 1.11 0.8 1.43 1 1 1 **
2 Intercept2 1.36 1.05 1.69 1 1 1 **
3 Asian -0.01 -0.72 0.68 0.52 0.46 0.21
4 Black -0.19 -0.73 0.36 0.75 0.69 0.35
5 Indian 0.23 -0.21 0.67 0.84 0.78 0.38 *
6 Indigenous 0.36 -0.49 1.24 0.81 0.77 0.56 *
7 Latinxe -0.07 -0.59 0.45 0.6 0.53 0.19
8 Multiracial 0.49 -0.67 1.8 0.79 0.77 0.62
9 Other 1.02 -0.04 2.18 0.97 0.96 0.91 **
10 Nonbinary -0.02 -1.92 1.78 0.51 0.48 0.37
11 SelfMdescribebelow -0.73 -2.52 1 0.81 0.8 0.7 *
12 Woman 0.2 -0.17 0.59 0.86 0.79 0.32 *
13 age.L -0.43 -0.6 -0.26 1 1 0.94 **
14 age.Q 0.19 -0.16 0.55 0.85 0.78 0.28 *
15 Phase2 -0.37 -0.5 -0.23 1 1 0.83 **
16 Phase3 0.35 0.16 0.53 1 1 0.69 **
17 Highschoolorbelow 0.14 -0.17 0.44 0.81 0.71 0.15 *
18 Other -0.37 -0.99 0.23 0.89 0.86 0.6 *
19 Asian:Nonbinary -6.09E-03 -3.2 3.22 0.5 0.48 0.4
20 Black:Nonbinary 0.02 -3.2 3.07 0.5 0.49 0.4
21 Indian:Nonbinary 1.48E-03 -3.12 3.24 0.5 0.48 0.39
22 Indigenous:Nonbinary -0.03 -1.89 1.9 0.51 0.49 0.37
23 Latinxe:Nonbinary 2.63E-04 -3.28 3.17 0.5 0.48 0.39
24 Multiracial:Nonbinary 6.84E-03 -3.16 3.31 0.5 0.48 0.39
25 Other:Nonbinary -0.01 -3.12 3.24 0.5 0.49 0.39
26 Asian:SelfMdescribebelow 4.78E-03 -3.22 3.1 0.5 0.48 0.4
27 Black:SelfMdescribebelow 0.02 -3.18 3.18 0.51 0.49 0.39
28 Indian:SelfMdescribebelow 0.01 -3.26 3.2 0.5 0.49 0.4
29 Indigenous:SelfMdescribebelow -8.76E-03 -3.19 3.28 0.5 0.48 0.4
30 Latinxe:SelfMdescribebelow -0.73 -2.5 1.04 0.81 0.8 0.7 *
31 Multiracial:SelfMdescribebelow 5.12E-03 -3.24 3.29 0.5 0.48 0.39
32 Other:SelfMdescribebelow -0.03 -3.03 2.99 0.51 0.49 0.4
33 Asian:Woman -0.78 -1.46 -0.13 0.99 0.99 0.92 **
34 Black:Woman -0.24 -0.95 0.45 0.75 0.71 0.44
35 Indian:Woman 0.5 -0.07 1.08 0.96 0.94 0.76 **
36 Indigenous:Woman 0.05 -1.12 1.23 0.53 0.5 0.33
37 Latinxe:Woman -0.1 -0.72 0.54 0.62 0.56 0.26
38 Multiracial:Woman -0.02 -1.01 0.99 0.51 0.47 0.28
39 Other:Woman -0.15 -1.32 0.99 0.61 0.57 0.39
40 Asian:age.L 0.24 -0.02 0.49 0.97 0.93 0.31 **
41 Black:age.L 0.26 -0.31 0.84 0.81 0.76 0.45 *
42 Indian:age.L 0.18 -0.2 0.57 0.83 0.75 0.28 *
43 Indigenous:age.L 0.38 -0.63 1.48 0.77 0.74 0.56
44 Latinxe:age.L 0.29 -0.2 0.81 0.87 0.83 0.49 *
45 Multiracial:age.L -0.14 -1.14 0.85 0.6 0.57 0.37
46 Other:age.L -8.30E-04 -1.13 1.15 0.5 0.47 0.3
47 Asian:age.Q -0.45 -1.23 0.3 0.89 0.86 0.65 *
48 Black:age.Q -0.44 -1.02 0.12 0.93 0.91 0.69 **
49 Indian:age.Q -0.06 -0.68 0.57 0.57 0.51 0.22
50 Indigenous:age.Q -0.63 -2.04 0.59 0.84 0.82 0.7 *
51 Latinxe:age.Q -0.45 -1.03 0.12 0.94 0.91 0.7 **
52 Multiracial:age.Q -0.51 -1.46 0.39 0.86 0.84 0.67 *
53 Other:age.Q -1.15 -2.37 -0.07 0.98 0.98 0.94 **
54 Asian:Phase2 0.78 0.12 1.48 0.99 0.99 0.93 **
55 Black:Phase2 0.72 0.4 1.04 1 1 0.99 **
56 Indian:Phase2 -1.53E-03 -3.14 3.33 0.5 0.48 0.39
57 Indigenous:Phase2 1.03 -0.41 2.76 0.92 0.9 0.83 **
58 Latinxe:Phase2 0.58 0.31 0.86 1 1 0.98 **
59 Multiracial:Phase2 -4.30E-04 -3.33 3.19 0.5 0.48 0.39
60 Other:Phase2 -0.83 -2.06 0.28 0.93 0.91 0.82 **
61 Asian:Phase3 0.61 -0.01 1.28 0.97 0.96 0.84 **
62 Black:Phase3 0.53 0.26 0.78 1 1 0.96 **
63 Indian:Phase3 1.18 0.62 1.74 1 1 1 **
64 Indigenous:Phase3 0.85 -0.39 2.28 0.91 0.9 0.8 **
65 Latinxe:Phase3 0.38 0.1 0.66 1 0.99 0.71 **
66 Multiracial:Phase3 -0.21 -1.56 1.01 0.63 0.6 0.45
67 Other:Phase3 -0.02 -3.17 3.12 0.51 0.49 0.4

Table 4: Results for the AD intersectional MLM Q_overall ∼ race ∗ (gender + age + phase) + education
+ (1 | rater_id) + (1 | conversation_id)

pools are still quite rare and expensive to obtain.
Our position is that such datasets should be the
rule, not the exception, but unless the field as a
whole adopts this position, such datasets will likely
remain rare.
We made some hard choices in forming our de-

mographic categories, particularly race/ethnicity/-
nationality. Our challenge was to create categories
that had as much statistical power as possible,
based on the demographic information that was
collected. The South Asian category includes 5
US and 92 Indian raters. Our Indigenous race/eth-
nicity category lumps together very diverse Indige-
nous identities in a manner that likely discounts
rich idiographic differences in language, culture,
and lived experience (Else-Quest and Hyde, 2016).
However, in the interest of protecting participants
privacy and prioritizing the representation of Indige-
nous perspectives in this empirical research, we

chose to group them together. Creating the In-
digenous category in our analysis balances these
opposing concerns, but leaves significant room for
future study.

8. Conclusion

We apply Bayesian multilevel models (MLMs) to
a dataset of 1,340 chatbot conversations, each
annotated for safety by 60–104 human raters, to
study the impact of rater demographics on rater
behavior for safety annotations. MLMs allow us to
deal with the overlapping hierarchical dependen-
cies on rater and conversation that are inherent
in rater data, and which confound simpler model-
ing approaches, such as ordinary least squares
regression and ANOVA.

Our results show strong intersectional effects be-
tween race/ethnicity and gender, Indigenous raters
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and education, and content severity and race. They
suggest that conversational AI safety evaluation
can benefit when human evaluators come from di-
verse demographic backgrounds.

9. Ethical considerations

The very act of rating harmful language can itself
be harmful, and risks exposing raters to trauma.
From a social justice perspective, such risks should
be born equitably by all raters, regardless of their
demographic characteristics.
Such concerns must be balanced against the

potential benefit of research such as ours to to un-
cover AI safety risks that may only be detectable
by vulnerable groups. For instance, “dog-whistling,”
the practice of encoding racist language in seem-
ingly innocuous terms (Mendelsohn et al., 2023),
can result in language may seem completely safe
to some raters but not others. It can be impossible
to detect such language without annotators who
are experienced in parsing it.
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