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Abstract

Natural language is commonly used to describe
instrument timbre, such as a "warm" or "heavy"
sound. As these descriptors are based on hu-
man perception, there can be disagreement over
which acoustic features correspond to a given
adjective. In this work, we pursue a data-driven
approach to further our understanding of such
adjectives in the context of guitar tone. Our
main contribution is a dataset of timbre adjec-
tives, constructed by processing single clips
of instrument audio to produce varied timbres
through adjustments in EQ and effects such
as distortion. Adjective annotations are ob-
tained for each clip by crowdsourcing experts to
complete a pairwise comparison and a labeling
task. We examine the dataset and reveal corre-
lations between adjective ratings and highlight
instances where the data contradicts prevailing
theories on spectral features and timbral adjec-
tives, suggesting a need for a more nuanced,
data-driven understanding of timbre.

1 Introduction

The study of music, whether through performance
or appreciation, takes us on an ever-deepening jour-
ney to understand its many complexities. Among
these complexities is the characteristic sound of the
instruments, a property known as timbre. Within
circles of musicians and music aficionados, unique
vocabularies emerge to help articulate the subtle
and intricate characteristics of instrument sounds.
While common terms like bright or dark might res-
onate with a wide audience, others such as dry, fat,
lush, and round introduce further nuance and intri-
cacy. These terms, rich in nuance, aim to bridge
the gap between the physical experience of sound
and its emotional impact. However, a challenge
arises in establishing a shared understanding of
these descriptors: What defines the qualities that
constitute a dry or fat sound? And more impor-
tantly, how can we navigate the subjective nature

of sound perception to agree on what these terms
truly signify?

To better understand how timbre adjectives are
invented, and how online communities reach a
consensus on their meanings, we construct a new
dataset of aligned audio clips with varying timbres,
annotated with adjective labels and pairwise com-
parison among the clips. Our study focuses on a
single instrument: the electric guitar, motivated
by (a) its extensive use across a broad spectrum
of contemporary musical genres, (b) the presence
of a rich community of online discussion forums
for guitar enthusiasts that have given rise to many
unique timbral adjectives (what does it mean to
chug? What is a brown sound?), and (c) while
the instrument inherently contributes certain tim-
bral characteristics, it is predominantly the appli-
cation of additional processing (effects, amplifi-
cation) that shapes the sound into distinct timbres.
This instrument choice enables us to apply different
processing to a given guitar performance, creating
many recordings where the timbre differs but the
musical content remains constant. This approach
allows us to isolate and study the effects of timbre
independently from other factors. We release all
code and dataset' to facilitate additional research
and aid the development of language and music
creation systems, such as prompt-based music gen-
eration (Agostinelli et al., 2023; Copet et al., 2024;
Huang et al., 2023; Evans et al., 2024).

2 Related Works

The study of how we describe timbre, and the ways
in which we create or borrow words to facilitate
it, has a long history (Wake and Asahi, 1998; Por-
cello, 2004; Wallmark, 2019). Relevant to this
work, it has been empirically found that experts,
over a prolonged period of practice and exposure
to various timbres, develop an ability to acutely
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distinguish between finer timbral variations and de-
velop a sophisticated vocabulary to communicate
them (Bernays and Traube, 2013). Studies support
that experts rely more on timbral differences when
communicating about novel sounds (Lemaitre et al.,
2010), though the creative use of words is not lim-
ited to experts (Wake and Asahi, 1998).

Also relevant to our work is how words are in-
vented, or often borrowed from other contexts to
fulfill a new role as a timbral descriptor. Among
many studies on this topic, a recent study proposes
a categorization of the origins of instrument timbre
descriptors into seven classes (Wallmark, 2019).
The descriptors in our proposed dataset are suffi-
ciently diverse to have examples from each of these
categories. Similar to our work, (Seetharaman and
Pardo (2016)) use crowdsourcing to gather timbre
annotations for recordings of audio effects, such as
equalizers. Our work differs in that we focus on a
variety of timbre for a single instrument and collect
pairwise comparisons, and we construct our anno-
tator pool of participants from online enthusiast
communities.

A widely used quantitative method for study-
ing perceptual qualities of timbre involves rating
sound stimuli on a verbal scale. One approach is
the Semantic Differential (SD) technique (Osgood,
1952), where each question involves rating adjec-
tive pairs that have opposing meanings, e.g., dark-
bright, smooth-rough, etc. Due to the use of verbal
scales, SD studies suffer from issues like polysemy
and non-exact antonymy (bright-dull in (Pratt and
Doak, 1976), bright-dark in (Alluri and Toiviainen,
2010)). A common solution is to use unipolar rat-
ing scales (Kendall and Carterette, 1993), which are
bounded by an attribute (e.g. soft) and its negation
(e.g. not soft). Of note to our study is that while
many adjectives have obvious opposites, many oth-
ers do not. We thus argue that the creation of larger
data is necessary, in order to enable a data-driven
understanding of these terms.

An alternative to verbal scales are dissimilar-
ity studies, in which participants rate differences
between pairs of sounds. Techniques like multi-
dimensional scaling (MDS) are then used to pro-
duce a spatial arrangement where distances be-
tween points correspond to these dissimilarity rat-
ings (Shepard, 1962). The latent dimensions of
MDS can then be correlated with the physical
characteristics of the sound (Peeters et al., 2011;
Mcadams et al., 2014).

3 Dataset Creation

The dataset creation process involves three key
steps, (1) collecting a comprehensive set of adjec-
tives for describing tone from online communities,
(2) generating audio recordings that encompass
a broad range of timbres, and (3) annotating the
recordings via crowdsourcing using an online in-
terface. As our dataset consists of nuanced timbral
distinctions within a singular instrument class, all
data is of electric guitar recordings.

3.1 Collecting Timbre Descriptors

In this work, we aim to study how timbre and
tone are discussed more informally, evolving as the
need develops, in the niche or online communities
discussing specific music tones, genres, or styles.
Thus, we turn to those communities themselves to
know which adjectives are commonly used outside
the established literature. We begin by crawling
the internet for articles discussing guitar timbre
words, using keyword searches of the form “a(n)
x sound/tone” for a given adjective z. We also en-
gage with these communities to gather additional
suggestions. This process resulted in a set of 110
adjectives, which are presented in the appendix A.

3.2 Creating the Audio Files

To study a diverse set of timbral descriptors, it is
necessary to generate a diverse set of instrument
audio recordings such that they could foreseeably
be described using a wide range of the adjectives
gathered in the preceding step. We approach this
problem using a two-step process, first generating
unprocessed guitar sounds in a variety of genres
(diverse content), and then processing them with
different signal processing chains to yield a variety
of sounds (diverse timbre).

First, we record a series of unprocessed signals,
also known as direct input (DI), from an electric
guitar without any sound shaping. We hypothesize
that some timbral descriptions may only apply to
specific genres or styles of playing. For instance,
very percussive and fast rhythm playing is unlikely
to be described as chimey regardless of the instru-
ment timbre. Therefore, to capture a variety of
playing styles, we collect a number of recordings
from three different guitar players, one amateur
and two professional.

We manually sample segments from these
recordings, aiming to select short segments rep-
resenting a diverse set of styles and dynamics. The



final set of DI contained 12 recording segments
with content ranging from slow arpeggios, simple
chords, aggressive-style rhythm playing, and fast
soloing. Each segment is approximately 10 seconds
in length, 44.1kHz monaural audio.

We then process each DI using a different FX
chain to achieve a diverse set of timbres. For
this, we use a commercial plugin (Helix Native)
which emulates various effects, amplifiers, and cab-
inets. To ensure that these chains generate desirable
sound, we utilize the included presets, which are
specific parameter settings designed by manufac-
turers of audio plugins, artists, or other users to
achieve a specific tone of interest. We process each
of the 12 DI clips using the 80 preset effects to pro-
duce 960 audio samples. A complete list of the pre-
sets can be found in the appendix B. The processing
of audio signals is performed using REAPER.

3.3 Annotation Interface Design

We design a web interface for collecting annota-
tions, in which we collect three types of annota-
tions.

3.3.1 Pairwise annotations

The annotator is presented with two samples, A and
B, in random order. For a given adjective X, the
annotator is asked to choose: (1) A is more X than
B, (2) Ais less X than B, (3) Both audio samples
are equally X, or (4) to skip the question.

Each audio sample A and B is based on the same
DI recording, and thus their musical content is iden-
tical. This allows the user to focus solely on the
differences in timbre, and to minimize the con-
founding aspects of other acoustic factors, such as
pitch and loudness, which have been noted to affect
the perception of timbre (Melara and Marks, 1990;
McAdams and Goodchild, 2017).

The benefit of the ranked comparison is that it
allows us to gather data about very precise timbral
relationships, e.g., in situations where the overall
sound of timbre A vs. B is presumably much closer
than that of previous work, where such clips would
represent different instruments entirely. Second,
ranking directly supports important practical use
cases, such as “In which of these songs is the sound
of guitar more X ?”.

3.3.2 Label annotations

Pairwise rank comparison can be an extremely in-
formative annotation, but because we must arrange
comparisons randomly in order to avoid imparting

any bias to the study, some ranked comparisons
will be less useful and irrelevant. The ternary na-
ture of our ranked comparison (an (A, B, X) tuple)
may also lead to sparsity. In order to counteract
this and ensure more information-per-recording,
we also collect label annotations. After the annota-
tor has made a ranked comparison, the annotator is
asked to select any adjectives from the adjective list
that may apply to the selected clip of the pairwise
annotation.

3.3.3 Custom Annotations

A final source of annotations is an open text field,
where annotators may enter any other adjectives
that apply to the selected clip and are not contained
in the adjective list. These adjectives aren’t in-
cluded in the annotation list but are retained in the
dataset for future research.

3.4 Collecting Annotations

We seek to understand more nuanced descriptions
of tone that arise in online communities under the
need to describe increasingly specific timbral qual-
ities. By the very nature of the study, a pool of
general annotators (like those commonly hired via
Mechanical Turk) is not appropriate for the study,
as they lack the expertise and experience in dis-
cussing these sounds. Instead, we enlist volunteers
from online guitar and music enthusiast communi-
ties by incentivizing participation using an online
raffle system. In total, we collect 2038 annotations
from 38 participants. In addition to timbral annota-
tions, we also record participant information, such
as where they heard about the study, and how many
years of experience they have playing the guitar.
Notably, 87% of our annotators have more than 10
years of experience playing guitar.

3.5 Unifying Annotations

As we collect multiple types of annotation on the
level of individual clips, we present a method to
unify the annotations and provide a single score for
each clip-adjective combination (which can then
be averaged over clips to provide a score between
any preset/timbre and adjective). For pairwise com-
parisons, models like Bradley—Terry (Bradley and
Terry, 1952) can be used, however, as we also in-
clude multi-label annotations on clips, we instead
present a simple graph-based algorithm that com-
bines the two types of annotations for its potential
future use.

For every adjective in the label annotations, we



add a constant ¢ to the presets labeled with the
adjective, representing a single “unit” of adjective-
preset correlation. Working with these ratings, we
utilize pairwise annotations to discover and en-
hance the greater than or less than relationships
among the data. For every adjective, we find the set
of presets, { H }, with the highest label annotation
score. From the pairwise comparison data, we then
find the relationships where A is rated less than B
and A € {H}. In alignment with such pairwise
comparisons, we adjust the score of B to be greater
than A by a constant, ¢. We then infer scores lower
than the lowest label annotation score. We repeat
this inference process until no new higher or lower
preset is found. In the case of ties, we prioritize the
pairwise annotation data over the label annotations.
We release these scores with the dataset.

4 Analysis

4.1 Presets By Adjectives

The table 1 shows presets corresponding most to
a sampling of adjectives. Evaluating the correct-
ness of a dataset of this type is difficult, as by its
very nature there is no gold standard to refer to.
However, we find many of the highly correlated
presets correspond well to known descriptions of
the sounds they are modeled on. For instance, 07B
Line6 Litigator, which is ranked in the dataset as be-
ing most correlated to warm, is based on a Dumble
Overdrive amplifier, which is expertly described as
having a “very open and uncompressed feel, over-
drive without fuzz, warm sustaining cleans, and of
course that saxophone-like midrange and sing that
these amps are famous for”>. We encourage the
reader to listen to the clips for a better understand-
ing of the extent to which these presets relate to
these adjectives.

4.2 Novel Findings

Existing work, utilizing unaligned audio of differ-
ent instruments, has identified spectral features that
correlate with the perception of acoustic properties,
which we describe using timbral adjectives (Schu-
bert and Wolfe, 2006). The annotations of our
dataset allow us to revisit these claims and assess
how well they agree with the crowdsourced con-
sensus. We provide one case study on brightness
and its relationship to the spectral centroid. We
find that in pairs of clips which should be ranked

*https://www.sebagosound.com/index.php?id=18

Adjective Most Relevant Preset
Abrasive 18C THE BLUE AGAVE
Articulate 11A BAS_Woody Blue
Bassy 07D ANGL Meteor
Buzzy 04A Jazz Rivet 120
Clean 09A DI
Distorted 03C Brit 2204
Twangy 04A Jazz Rivet 120
Warm (7B Line 6 Litigator

Table 1: The most relevant preset for various adjectives,
as calculated by the graph-based unification algorithm.

as A > B with respect to existing theories, crowd-
sourced workers ranked them differently. Visu-
alizations of these relationships are presented in
the appendix C.2. We argue that these findings
are evidence that further analysis into the acoustic
causes of human perception of these properties is
necessary.

4.3 Inter Annotator Agreement

As we aim to compare a variety of audio samples
pairwise, across many adjectives, the number of
possible comparisons is very high. And because
annotators needed experience with the instrument,
we’re limited by how many possible data samples
we can get, which naturally leads to sparsity and
limits the ability to conduct inter-annotator agree-
ment. However, amongst the 6 instances where
we found multiple responses on the same annota-
tion question, in only one case did the annotators
disagree about the ranking of the clips.

5 Conclusions

In this work, we present a dataset that focuses on
very fine-grained differences in timbre, isolating
them from other factors by generating recordings of
different timbres based on shared DIs, containing
identical musical content. We find that human as-
sessments sometimes differ from previously estab-
lished correlations between coarse acoustic features
and the perception of adjectives, supporting the
need for a more nuanced understanding of acous-
tic correlates of these descriptors in the context
of guitar music. Furthermore, this understanding
will also yield practical improvements in prompt-
based conditional audio generation, timbre-based
music retrieval, and natural language interfaces for
musical tools (Rosi, 2022).
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A Timbre Adjectives

Table 2: The complete list of adjectives used in the study for pairwise comparison and label annotation.

Table 3: A list of custom adjectives collected from the annotators during the annotation process as described in

Section 3.3.3.

Abrasive Chug Focused Mellow Shrill
Aggressive Chunky Full Metallic Sizzling
Airy Clean Fuzzy Muddy Smokey
Anemic Clear Glassy Muffled Smooth
Articulate | Compressed | Greasy Muted Soft
Artificial Crisp Grind Nasal Sparkly
Balanced Crunchy Gritty Noisy Sterile
Bassy Crushing Grotty Open Strained
Bell-like Cutting Grunting | Piercing Strident
Big Dark Hairy Punchy Sweet
Biting Delicate Harsh Pure Thick
Bold Detailed Heavy Raspy Thin
Boomy Dirty Hissing Raw Throaty
Boxy Distorted Hollow Refined | Thumping
Bright Dry Honky Rich Tight
Brilliant Dull Huge Ringing Tinny
Brittle Dynamic Icepicky Round Twangy
Brutal Edgy Jangly Saturated Velvety
Buzzy Fat Light Scooped Vibrant
Chewy Fizzy Liquidy Searing Vintage
Chimey Flabby Loose Sharp Vocal
Choked Flat Lush Shimmery Warm

Blunt Defined | Nostalgic | Robotic Wavey
Brittle Defined | Plucky Saturated | Wrapped
Chirping | Digital Pointy Scratchy
Contained | Drive Popping Stuffy
Crisp Echoey | Pounding | Subdued
Deep Natural | Present | Telephone




B List of Presets

01A US Double Nrm 01B Essex A30 01C Brit Plexi Jump
01D Cali Rectifire 02A US Deluxe Nrm 02B A30 Fawn Nrm
02C Revv Gen Purple 02D Revv Gen Red 03A Archetype Clean
03B Matchstick Chl 03C Brit 2204 03D Archetype Lead
04A Jazz Rivet 120 04B Fullerton Brt 04C Brit J45 Brt
04D Solo Lead OD 05A Placater Clean 05B Interstate Zed
05C Placater Dirty 05D PV Panama 06A Cali Texas Ch 1
06B Essex A15 06C Derailed Ingrid 06D German Mahadeva
07A WhoWatt 100 07B Line 6 Litigator 07C Cartographer
07D ANGL Meteor 08A US Small Tweed 08B Divided Duo
08C Brit P75 Brt 08D Line 6 Badonk 09A DI
09B BAS_SVT-4 Pro 09C BAS_Cali Bass

09D BAS_Aqua 51

10A BAS_Cougar 800

10B BAS_SVT Nrm 10C BAS_Cali 400 Chl
10D BAS_Del Sol 300 11A BAS_Woody Blue 11B Trademark
11C AUS Flood 11D Justice Fo Y all 12A Lonely Hearts
12B Pull Me Under 12C Stone Cold Loco 12D Plush Garden
13A Cowboys from DFW 13B G.O.A.T Rodeo 13C BIG DUBB
13D BIG VENUE DRIVE 14A BUBBLE NEST 14B DUSTED
14C SUNRISE DRIVE 14D GLISTEN 15A WATERS IN HELL
15B FAUX 7 STG CHUG 15C RICHEESE 15D RC REINCARNATION
16A RIFFS AND BEARDS 16B FELIX MARK IV 16C FELIX JAZZ 120
16D FELIX DELUXE MOD 17A FELIX ENGL 17B SPOTLIGHTS
17C BUMBLE ACOUSTIC | 17D BMBLFOOT PRINCE | 18A SHEEHAN PEARCE
18B SHEEHAN SVT4PRO 18C THE BLUE AGAVE 18D BULB RHYTHM
19A BULB LEAD 19B BULB CLEAN 19C BULB AMBIENT
19D EMPTY GARBAGE 20A ONLY GARBAGE 20B GARBAGE BASS
20C BILLY KASTODON 20D THIS IS THE END

Table 4: A list of presets from Helix Native used for obtaining different timbres. See the guide for more detail.


https://line6.jp/helix/assets/Helix_Native_v192_Pilots_Guide-English.pdf

C Further Analysis

Distorted
Thick
Crunchy
Muffled
Compressed
Aggressive
Round
Bright
Fuzzy
Buzz
Dar
Dirty
Fzzy
Abrasive
Saturated
Gritty
Twangy
Masal
Scooped
Dull
Thin
Hollow
Clear
Sharp
Clean
Tight
Articulate
Boom
Full
Raw
Harsh
Muddy
Ringing
Muted
Brittle

20

40

Figure 1: Frequencies of labels

C.1 Label Frequencies

Figure 1 shows the most frequent 35 labels. Among the most annotated labels, we find a frequency of
annotation of 20-40 times. Even among the top labels, we observe a good diversity in timbre, although
there seems to be some skew towards heavier genres. This may be a bias in our dataset stemming from
uniformly sampling the Helix presets, many of which are geared toward metal and rock genres. These
labels cover all the categories proposed in the comprehensive taxonomy study (Wallmark, 2019), some
examples from each of the categories are Aggressive, Dull from Affect; Round, Full from Matter; Bright,
Sharp from CMC; Boomy, Twangy from Mimesis; Muffled, Saturated from Action; Ringing, Muted from
Acoustics; and Buzzy, Fizzy from Onomatopoeia. This diversity underscores the richness and complexity

of timbral descriptions in our dataset.
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Figure 2: Each row represents one paired comparison. Audio on the right column is labeled more bright than the
one on the left. In the top row, the pairwise annotation is consistent with the spectral centroid (shown in white),
whereas it is not consistent with the centroid in the bottom row.

C.2 Case Study: Spectral Centroid

“Brightness”, which is a commonly studied timbral descriptor, dating back at least to (Helmholtz, 1877)
and has more recently been correlated to the center of mass of the spectrum, often referred to as the spectral
centroid (Schubert and Wolfe, 2006). While this result holds generally in our dataset, and recordings with
higher spectral centroids are more likely to be labeled as “bright”, we also observe many confounding
factors. The rows of Figure 2 show spectrograms of pairwise comparison between two clips from our
dataset where the left clip was annotated as less bright than the right one. In the top-row comparison, the
spectrogram with the higher spectral centroid is indeed considered brighter, but in the second (bottom)
comparison, the relationship does not hold.

Why is this the case? Although existing work on correlating spectral features to acoustic properties
and adjectives provides a general approach, we hypothesize that other factors should be considered when
correlating the acoustic feature to timbral adjectives. In the case of brightness, features like FO and
Harmonic-to-Noise ratio (HNR) may play a role (Rosi, 2022). However, the difficulty of understanding
the interactions between these features and how they relate to brightness supports the notion that a more
data-driven (or machine learning-driven approach) may be necessary.
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Figure 3: Cross-correlation plot. Darker colors indicate stronger correlations. A win in the rank comparison is
treated as a label for that adjective.

C.3 Cross-Correlation

We also perform a cross-correlation analysis between the clips and adjective labels (the most correlated
adjectives are shown in the heatmap in Figure 3). We again observe the most frequent annotations
pertaining to heavy or distorted sounds, but we can also observe the extent to which some adjectives may
function as synonyms or are otherwise highly correlated. For instance, perhaps unsurprisingly, “distorted”
and “dirty” apply to the same clips. But a “full” clip is one that is also “distorted” and “dirty”, but also
“thick” and often “dark”. In the absence of additional evidence, this method of defining less understood
adjectives in terms of more understood adjectives can help find a more general consensus of meaning for
new or unknown words. However, the data can also be used for a more focused study of the audio features
based on contrastive examples (for instance, where a recording is labeled as “thick” but not “full’’) which
can help identify which acoustic properties are most associated with the adjective, and to what extent
adjectives are true synonyms.



D Limitations

The constructed dataset provides a unique resource
for researchers seeking to study the relationship
between timbral descriptions and guitar sounds.
However, there are limitations to note. Among
them, in the era of big data, the number of anno-
tations is relatively small. This is a consequence
of the necessity that annotators be experienced in
guitar playing and participants in online discussion
forums. We present ways of smoothing these statis-
tics to help enable their use in future research, but
some estimates may be better represented than oth-
ers. As there is no objective grounding of these
terms, it is difficult to assess the extent to which
this is true.

A second concern is that our online approach to
data collection allowed users to listen to the clips in
their own environments, which may differ signifi-
cantly from one user to another. However, previous
crowdsourcing of timbre descriptions from audio
clips have made similar assumptions (Seetharaman
and Pardo, 2016). Our addition of pairwise com-
parison is designed to further mitigate the effect
of the environment on labeling, as it establishes a
relationship between two recordings.
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