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Abstract

This study analyzes the use of multi-word ex-
pressions (MWESs), prefabricated sequences of
words (e.g. in this case, this means that, health-
care service, follow up) in biomedical abstracts
and their plain language adaptations. While
English academic writing became highly spe-
cialized and complex from the late 19th cen-
tury onwards, recent decades have seen a rising
demand for a lay-friendly language in scien-
tific content, especially in the health domain, to
bridge a communication gap between experts
and laypersons. Based on previous research
showing that MWE:s are easier to process than
non-formulaic word sequences of comparable
length, we hypothesize that they can potentially
be used to create a more reader-friendly lan-
guage. Our preliminary results suggest some
significant differences between complex and
plain abstracts when it comes to the usage pat-
terns and informational load of MWEs.

1 Introduction

Previous diachronic research has shown that En-
glish scientific writing developed a compressed
code of communication that is efficient for its
primary users (i.e. scientists) (Halliday, 1988;
Biber and Gray, 2016; Degaetano-Ortlieb and Te-
ich, 2016, 2022). However, the consequence of this
process was that academic papers became almost
incomprehensible for a general audience, which
poses a considerable problem as the need to draw
knowledge directly from scientific publications
is growing among laypersons, particularly in the
health domain.

To address this issue, many scholars and jour-
nals encourage scientists to use plain language in
their papers or at least include plain language sum-
maries of their work (Hauck, 2019; Sedgwick et al.,
2021). While writing recommendations on plain
language abound, they seem to pay little attention
to multi-word expressions (MWESs), i.e. prefabri-
cated sequences of several words that are argued to
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foster the fluency of language use (Sinclair, 1991;
Pawley and Syder, 1983).

Our goal is to investigate whether, and if so to
what extent MWEs can ease the processing of plain
language texts. To this end, we analyze the use of
MWE:s in abstracts from biomedical papers ("com-
plex abstracts") and their plain language adapta-
tions ("plain abstracts"). We pose the following
questions: (i) Does the use of MWEs differ in com-
plex and plain abstracts and, more specifically, do
plain abstracts use more MWEs? (ii)) Are MWEs
in plain abstracts easier to process?

In general, we expect to see more MWE:s in plain
abstracts. In terms of MWE types, we anticipate
that nominal MWE:s (e.g. compound nouns used
as terms), typically associated with technical sci-
entific writing, will be less characteristic of plain
abstracts. Moreover, we expect MWEs in plain ab-
stracts to be less informationally loaded on average
(and therefore easier to process).

The remainder of the paper is structured as fol-
lows. Section 2 is dedicated to MWE processing.
Section 3 describes our data and methodology. In
Section 4, we present our analysis results. In Sec-
tion 5, we provide a summary and prospects of
future work.

2 Background and Related Work

Linguistic studies in recent decades have revealed
that MWEs make up a large proportion of lan-
guage use and that they are less costly in processing
than other sequences of words (Erman and War-
ren, 2000; Foster, 2001). For instance, Conklin
and Schmitt (2008) prove that MWESs have shorter
reading times in comparison to non-formulaic ex-
pressions. Li et al. (2021) and Siyanova-Chanturia
et al. (2011) arrive at similar conclusions using
eye-tracking. The assumption about a processing
advantage of MWE:s has also been corroborated by
EEG studies (cf. Tremblay et al. (2011); Siyanova-
Chanturia et al. (2017)). Further evidence is pro-
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vided from speech processing: formulaic expres-
sions are produced faster and more fluently than
comparable, non-formulaic expressions and rec-
ognized better (e.g. under acoustic degradation;
(Rammell et al., 2017)).

While it now seems increasingly clear that
MWEs are faster and easier to process than non-
formulaic language, what still remains open is
whether the use of MWEs is influenced by other
factors. In register theory, it is widely assumed that
speakers adjust their language according to the par-
ticular communicative situation (Biber, 2012; Biber
and Conrad, 2019; Conrad and Biber, 2005). One
of the parameters describing the communicative
situation is the relationship between the speaker
and the recipient. For instance, in case of complex
abstracts both speaker and recipient have profes-
sional knowledge of the subject. In contrast, plain
abstracts are written by well-versed speakers for
lay recipients. Hence, it is plausible to suppose
that this shift in the level of expertise should be
reflected in the use of MWEs, 1.e. MWEsSs should
be employed in plain abstracts in such a way that
reduces the processing cost for the recipient.

3 Methodology

3.1 Data

We use the Plain Language Adaptation of Biomedi-
cal Abstracts dataset (PLABA) (Attal et al., 2023).
The biomedical abstracts come from PubMed and
were transformed into plain language by human
writers on a sentence basis, with sometimes mul-
tiple plain language adaptations being written for
one complex abstract. Some relevant corpus statis-
tics is summarized in Table 1.!

#Abstracts | #Tokens | #Types
Complex 749 199,851 | 17,425
Plain 919 249,301 | 13,117

Table 1: PLABA corpus data

We performed tokenization and sentence seg-
mentation with TreeTagger (Schmid, 1994, 1995).
The pretokenized abstracts were then parsed with
the state-of-the-art Stanza parser (Qi et al., 2020).

!"The number of abstracts available in PLABA at the time
of our study differs from the number of abstracts stated in the
original publication by Attal et al. (2023). Table 1 contains
statistics on the actual data employed in our study.

3.2 MWE Identification

Following Alves et al. (2024a,b), we use Universal
Dependencies (UD) and the Academic Formulas
List (AFL) to identify MWEs in our corpus.

The UD framework (de Marneffe et al., 2021)
contains five MWE-related labels: 1. compound
— combinations of tokens that morphosyntacti-
cally behave as single words; in English this label
refers mostly to nominal compounds (e.g. muscle
cramps), 2. compound:prt — phrasal verbs (e.g
follow up), 3. fixed — certain grammaticized ex-
pressions normally acting as function words (e.g.
according to), 4. flat — sequences where none
of the words can be identified as the head, in our
case these are mostly proper names (e.g. Moderna
mRNA-1273), 5. flat:foreign — sequences of for-
eign words?.

The identification of MWEs according to the UD
method was performed using a Python script that
extracted all words labelled with the above men-
tioned tags and their corresponding heads (if any).
For instance, some occurrences of the word muscle
were labelled with the compound tag during pars-
ing, with the word cramps being identified as their
head. So, the resulting MWE is muscle cramps.

The AFL (Simpson-Vlach and Ellis, 2010) in-
cludes 207 core formulaic expressions common for
both written and spoken academic English, 200
expressions common for written academic English
and 200 expressions common for spoken academic
English. The authors selected the MWESs based
on a measure called "formula teaching worth",
which combines frequency and mutual information.
For this study, we relied only on core and written
MWEs. Using a Python script, we iterated through
both lists and extracted all MWEs that appear at
least once in our data.

After applying the UD and AFL methods, we
merged all extracted MWEs into one final list. No
frequency thresholds were used since the UD labels
are grammatically motivated and the AFL. MWEs
had already been predefined based on specific mea-
sures.

3.3 Relative Entropy

We use the asymmetric variant of relative entropy,
known as Kullback-Leibler Divergence (KLD)
(Kullback and Leibler, 1951), to investigate the
use of MWEs in complex and plain abstracts. KLD
allows us to compare two probability distributions

This category is not attested in our data.
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A and B (here, MWEs in complex and plain ab-
stracts) by showing the number of additional bits
of information needed to encode one distribution
using the other one. The formal representation of
KLD is shown in equation 1:

p(feature,|A)

p(feature,;|B) M

D(A|IB) = " p(feature,|A) log,

7

A KLD value of 0 would mean that the usage
patterns of MWEs are exactly the same in com-
plex and plain abstracts, while a value greater than
0 would indicate a divergence. Moreover, KLD
shows the contributions of individual features to
the overall divergence, allowing us to generate a
list of the most relevant features (i.e. MWEs).

3.4 Surprisal

To quantify the informativity of MWEs, we use sur-
prisal, a measure that shows how much information
(in bits) a word carries in a given context (Shannon,
1948):

S(word) = — log, p(word|context) 2)

As shown by reading time or specific EEG sig-
nals, surprisal is proportional to cognitive effort.
Hence, a high surprisal of a MWE would be indica-
tive of its high processing cost and vice versa.

In this study, we estimated surprisal of a given
word n based on the four-gram model where words
n-1, n-2 and n-3 are taken as context (cf. Genzel
and Charniak (2002)). Additionally, we computed
average surprisal for each MWE. For this, we first
estimated average surprisal of each individual in-
stance of a MWE, then summed all values and
divided them by the number of occurrences of a
MWE in the corpus.

4 Results

Contrary to what we expected, plain abstracts em-
ploy fewer MWEs, both in terms of unique oc-
currences (6,155 vs 6,700) and total frequency
(62,976.08 vs 63,802.53 occurrences per million
words). Compounds are the most common MWE
type in both abstract categories as reflected in Ta-
ble 2 and Figure 1. The most notorious differences
in frequencies were observed for the proper nouns
(flat) and phrasal verbs (compound:prt).

However, going beyond mere frequency estima-
tions, our KLLD analysis revealed a considerable
difference in the use of MWE:s in both directions

Type Description Complex | Plain
compound compounds 6,309 5,702
compound:prt | phrasal verbs 26 114
fixed fixed expressions 30 35
flat proper names 67 29
afl academic formulas 268 275

Table 2: Unique MWEs identified in complex and plain
abstracts

MWEs

EEE plain
N complex

Log Frequency per Million

Figure 1: MWE frequency in complex and plain ab-
stracts.

of comparison: 3.35 bits and 3.18 bits for complex
VS plain and plain VS complex, respectively. A
look at the most distinctive features (see Figures 2
and 3) also offers interesting insights. While both
types of abstracts are characterized by compound
MWEs to a great extent, we see, for instance, that
complex abstracts have more statistical terminol-
ogy (e.g. confidence interval, mean age, odds ratio
etc.) and different research design terms (e.g. co-
hort study, crossover study, control group etc.).

In contrast, such MWEs are not encountered
among the features distinctive of plain abstracts.
This is probably due to the fact that such statisti-
cal and methodological information is not relevant
for a lay person and, therefore, can be left out to
enhance readability.

Moreover, we see numerous examples of spe-
cialized terminology denoting biological and med-
ical phenomena (e.g. dopamine receptor, plasma
concentration etc.). Since it is impossible to just
delete such terms without loosing information rel-
evant to the reader, plain abstracts try to use more
common equivalents (e.g. blood sugar levels in-
stead of blood glucose levels). Sometimes such
transformations lead to the creation of MWEs in
cases where no MWE is used in complex abstracts.
For instance, a one-word term placebo turns into a
compound dummy treatment. Or an adjective-noun
term neurodegenerative disease is replaced with a
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Figure 2: 70 most distinctive MWESs in complex
abstracts.

noun compound brain disorder.

Other MWE types are also attested among the
most characteristic features, albeit marginally. For
instance, phrasal verbs seem to be more distinctive
of plain abstracts (e.g. find out, make up). Fixed
and AFL MWE:s are present in both lists, however
complex abstracts seem to employ more sophisti-
cated expressions typical of elaborated writing (e.g.
as well as, in terms of, according to the etc.). Flat
MWE:s are not attested among the most distinctive
features.

In terms of informativity, as measured by sur-
prisal, we observed significant differences between
complex and plain abstracts for compound and
AFL categories, while phrasal verbs showed a
marginally significant difference.’> All of these
three MWE types have lower surprisal for plain
abstracts (see Figure 4), which is, in principle, in
line with our expectations although we anticipated
a more pronounced trend.

Lower surprisal values in plain compound
MWESs might be indicative of MWEs being used
to effectively reduce processing effort. Consider,
for instance, the MWE blood glucose levels which
is typically used in complex abstracts and has a
surprisal of 4.73 bits. Its plain language equiva-
lent blood sugar levels, however, transmits 3.24
bits of information on average, thus being easier to
process.

The same seems to hold for cases where plain
abstracts use an MWE instead of a noun with an
adjective premodifier, which is a very common
terminology formation pattern in scientific texts.
Compare, for example, the following terms from
complex abstracts and their plain language equiv-

3For determining statistical significance we used the
Wilcoxon rank sum test available in R (R Development Core
Team).
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Figure 3: 70 most distinctive MWEs in plain ab-
stracts.
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Figure 4: Comparison of average MWE surprisal in
complex and plain abstracts across different MWE

types.

alents: renal cancer (7.41 bits) vs kidney cancer
(5.91 bits) and neurodegenerative disease (12.20
bits) vs brain disorder (3.65 bits).

A similar mechanism seems to apply to phrasal
verb MWEs that can be used as an alternative to
more complex verbs. Consider, for instance, Ex-
ample (1) extracted from a complex abstract and
its plain language adaptation shown in Example (2)
(values in parenthesis indicate surprisal in the cor-
responding sentence)

(D) ... as the risk of detrimental outcomes in-
creases (12.46) with delayed surgical inter-
vention.

2) ...since the risk of harmful effects goes up
(8.69) with delayed surgery.

While in general our findings do suggest that
some types of MWESs per se seem to be easier
to process in plain language abstracts, a more in-
depth analysis is needed to investigate how rewrit-
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ing strategies like those described above affect pro-
cessing complexity on the sentence and text level.

5 Conclusion and Future Work

In this study, we investigated MWESs in biomedical
abstracts and their plain language adaptations. We
were able to establish some differences in the use of
MWE:s (e.g. more prominent use of statistical and
methodological terms in complex abstracts, greater
reliance on phrasal verbs in plain abstracts).

Furthermore, we found that the informational
load of compound, phrasal verb and AFL. MWEs
is lower in plain abstracts, suggesting that the use
of MWEs might play a role in decreasing process-
ing cost in the transition from complex to plain
language.

In future studies, we will focus on the MWE
types individually to investigate why plain MWEs
have lower surprisal. Additionally, we are planning
to expand our methodology to account for factors
that might be correlated with the MWE processing
cost (e.g. association strength among the compo-
nent parts of an MWE).

Limitations

Our study is based on a relatively small corpus:
roughly 200,000 words for complex abstracts and
250,000 words for plain abstracts. Moreover, we
are not aware which journals the abstracts come
from and whether the authors of abstracts are na-
tive speakers of English. These factors might also
influence the use of MWEs. The creation of a
larger dataset with detailed meta-information may
be addressed in future research.
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