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Abstract

LegalLens is a competition organized to en-
courage advancements in automatically detect-
ing legal violations. This paper presents our
solutions for two tasks Legal Named Entity
Recognition (L-NER) and Legal Natural Lan-
guage Inference (L-NLI). Our approach in-
volves fine-tuning BERT-based models, de-
signing methods based on data characteristics,
and a novel prompting template for data aug-
mentation using LLMs. As a result, we se-
cured first place in L-NER and third place
in L-NLI among thirty-six participants. We
also perform error analysis to provide valu-
able insights and pave the way for future
enhancements in legal NLP. Our implemen-
tation is available at https://github.com/
lxbach10012004/legal-lens/tree/main.

1 Introduction

A violation of law refers to the actions of break-
ing rules or regulations set by the legal system and
authority. These violations harm individuals, orga-
nizations, and the principles of fairness and justice,
particularly in the digital age. Therefore, devel-
oping intelligent systems to detect violations and
assist legal experts is essential. Thanks to the explo-
ration of advanced techniques in NLP, prior studies
developed specialized models to address the prob-
lems of detecting violations automatically (Silva
et al., 2020; Yu et al., 2020; Breve et al., 2023).
This year, LegalLens (Hagag et al., 2024) is first
held with the aim of detecting and monitoring vio-
lations in various domains including commercial,
privacy, environmental law, and consumer protec-
tion. The competition contains two tasks: violation
detection via named entity recognition (L-NER)
and predicting potential victims of the violation
using natural language inference (L-NLI). The L-
NER task requires a model to determine four types
of entities (law, violation, violated by, violated on)
given a passage. The L-NLI task identifies whether

the relationship between a complaint (premise) and
a review (hypothesis) is entailed, contradicted, or
neutral.

The paper reports the work of NOWJ team in
both tasks. For the first task, L-NER, indepen-
dent classification is limited because there are
strong dependencies in the output sequence (e.g. B-
LAW cannot follow I-LAW, details in Section 3.1).
Therefore, we address the problem by following
sequence labeling with an architecture of BERT
and conditional random field (CRF) to compute
output probability jointly. Regarding the second
task, one of the main challenges is the lack of a
high-quality labeled dataset, whereas general NLI
data has been highly developed on large datasets.
Thus, we propose a novel prompt for data augmen-
tation using recent LLMs to overcome the shortage
of labeled data. State-of-the-art language models
are then fine-tuned on augmented training data to
develop consistent models for the legal domain.

The following sections of the paper are orga-
nized as follows: Section 2 presents prior studies
addressing named entity recognition and natural
language inference tasks, especially in the legal do-
main. We describe details of our methodology for
two tasks in Sections 3 and 4. Section 5 concludes
the paper and points out some future work.

2 Related Work

Legal Named Entity Recognition: NER has been
one of the most important tasks in NLP, with
various applications in special domains such as
biomedicine (Kundeti et al., 2016; Hofer et al.,
2018), law (Leitner et al., 2019a; Kalamkar et al.,
2022; Au et al., 2022) or cross-domain (Jia et al.,
2019). Previously, various classical machine learn-
ing methods have been developed to address NER
in legal texts such as logistic regression, Support
Vector Machines, Naive Bayes, and heuristic-based
approaches to extract elements or entities from le-
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gal documents (Chalkidis et al., 2017; Cardellino
et al., 2017; Glaser et al., 2018). Another approach
addresses NER as a sequence-to-sequence prob-
lem and trains a pointer generator network to over-
come the absence of noisy training data (Skylaki
et al., 2021). Many studies have investigated the
performance of transformer-based models, domain-
specific embeddings, and neural components (i.e.,
LSTM, BiLSTM, CNN) combined with CRF (Leit-
ner et al., 2019b; Kalamkar et al., 2022; Keshavarz
et al., 2022; Çetindağ et al., 2023), inspired by
(Lample et al., 2016). The impacts of CRF, word
embeddings, and domain-specific knowledge have
proven effective in NER.

Legal Natural Language Inference: NLI, also
known as textual entailment recognition has gained
interest from researchers in recent years. There
are a few law-related resources in NLI, includ-
ing ContractNLI (Koreeda and Manning, 2021),
LawngNLI (Bruno and Roth, 2022), LegalNLI
(Yang, 2022), and an annual competition COLIEE
(Goebel et al., 2024). However, the cost of con-
structing high-quality datasets in the legal domain
is expensive due to expert-effort requirements in
data annotation. Thus, prior studies (Aoki et al.,
2022) focused on data augmentation to overcome
the limited dataset. Aoki et al. (2022) proposed a
data augmentation process based on logical struc-
tures of original statutory articles to enrich the train-
ing set automatically. Recently, LLMs have shown
their state-of-the-art in various NLP tasks, includ-
ing legal NLP. Nguyen et al. (2024), the winner of
the legal statute entailment task in COLIEE 2024,
leveraged the powers of LLMs for data augmenta-
tion and explore the hidden relations between the
premise and hypothesis. Particularly, they summa-
rized the legal article (premise) as complementary
information and experimented with various prompt-
ing techniques on FlanT5-XXL, an open-source
model.

3 Legal Named Entity Recognition

3.1 Problem statement

Given a sequence of tokens x = {x1, x2, ..., xn},
the task is to assign a corresponding sequence of
labels y = {y1, y2, ..., yn} from a predefined label
set C. Our objective is to determine the most likely
sequence of labels by maximizing the conditional
probability:

ŷ = argmax
y

P (y | x)

where P (y | x) represents the probability of each
label yi given the token xi. For the L-NER task,
the label set C utilizes the B-I-O (begin, inside, and
outside) tagging scheme and includes 4 entities:
law, violation, violated by, and violated on.

3.2 Data Analysis

We identified two versions of the L-NER datasets.
The older version1 consists of 1327 samples, in-
cluding a training set with 710 samples and a test
set with 617 samples. The newer version2 contains
only a training set with 975 samples. However, we
found that the new training set appears in the old
data. Therefore, we employ 352 samples of the
old data that do not intersect the new data as the
validation set. Figure 1 depicts the data sets used
for this task.

New Train

Private 
Test 

Dev
(975) (352)

O
ld D

ataset

Figure 1: An illustration of our training and validation
sets in L-NER.

Table 1 presents the statistics of the training and
validation sets in the L-NER task. Further analysis
reveals that only 20% samples contain four entities
within the sequence. The others include only the
violation entity type. Additionally, no entity type
appears more than once per input sequence. Thus,
there is a great imbalance between entities in the
dataset. Table 2 shows the statistics of the private
test set. The test set contains 380 samples, which is
approximately equal to our validation set. Further
analysis reveals that the distribution of the private
test is quite different from the public data. Firstly,
compared to the training and validation sets, the
entity distribution is more balanced in the test set.
Secondly, the number of violation entities in the
private test is greater than the number of samples
in the test set. While one sequence in the public
data only contains as much one time of an entity, a
sample in the test set could contain multiple appear-

1https://huggingface.co/datasets/darrow-ai/
LegalLensNER

2https://huggingface.co/datasets/darrow-ai/
LegalLensNER-SharedTask
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ances of each entity. Finally, the average lengths of
entities in the private test set are longer than those
in the public set. These differences could pose
challenges for models in handling unseen data.

Training Validation

# Samples Mean
# tokens # Samples Mean

# tokens
Law 210 3.98 82 4.52

Violation 975 12.30 352 12.57
Violated By 210 2.91 82 3.10
Violated On 210 3.25 82 3.18

Table 1: Statistics of the training and validation sets in
L-NER.

Private Test
# Samples Mean # tokens

Law 246 4.30
Violation 446 16.59

Violated By 399 3.21
Violated On 342 3.66

Table 2: Statistics of the L-NER private test set.

3.3 Methodology

For the L-NER task, we use pre-trained language
models combined with a Linear-Chain CRF on top
to leverage contextual word embeddings and jointly
compute the output probabilities. The architecture
is designed to identify and classify named entities
within input sequences, as depicted in Figure 2.
The vector representation of the input sequence
produced by encoders is fed into a linear trans-
formation to map these vectors into a label space.
After that, the CRF layer is employed to model the
dependencies using these vectors as inputs.
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Figure 2: The architecture of BERT-CRF for L-NER
task.

3.3.1 Pre-processing

We employ WordPiece (Wu et al., 2016), a sub-
word tokenization technique specifically designed
for BERT-based language models. This technique
breaks down complex or uncommon words into
smaller subword units, enhancing the model’s abil-
ity to generalize across various word forms. For
example, the word “misrepresent” is tokenized into
<mis>, <##re>, <##pres>, and <##ent>. After to-
kenization, the original word labels are realigned
with the subword tokens. The first subword re-
tains the original label, while subsequent tokens
are assigned a placeholder label (X) to ensure label
consistency.

3.3.2 Language Model Backbone

Pre-trained language models are utilized to pro-
duce contextual embeddings for given input to-
kens, effectively capturing dependency within the
sequence. A linear transformation is then applied
to map these embeddings into a label space, with
each dimension representing a potential NER tag.
This transformation can be represented as follows:

H = Enc(x) (1)

P = H ∗W⊤ + b (2)

where H ∈ Rn×d is the matrix of hidden states
for the token sequence produced by language mod-
els, with n being the sequence length and d is the
encoder’s dimension. W ∈ Rk×d is the weight ma-
trix mapping the hidden dimension d to the number
of labels k. b ∈ Rk is the bias vector for each
label. Finally, P ∈ Rn×k is the emission score
matrix, where each row represents a token, and
each column represents a label. This sequence of
token-level score matrix is then passed to the CRF
layer to capture dependencies between labels.

3.3.3 Conditional Random Field

The Linear-Chain CRF is used to model the de-
pendencies between labels in the output sequence.
Particularly, CRF assigns a score to each sequence
of labels, ensuring that the predicted sequence is
globally optimal.

Scoring Algorithm: The score for a sequence
of labels y = {y1, y2, . . . , yn} given a sequence of
input tokens x = {x1, x2, . . . , xn} is computed as
follows:
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Score(x,y) =
n∑

t=1

(
Pt,yt +Ayt,yt−1

)
(3)

where Pt,yt is the emission score for the label
yt at position t, and Ayt,yt−1 is the transition score
from label yt−1 to yt.

3.3.4 Model Training and Inference
During training, the model parameters are opti-
mized by minimizing the negative log-likelihood
loss through backpropagation. Both the LM and
CRF layers are trained jointly to maximize the like-
lihood of the correct label sequences.

Alpha Recursion: The model computes the par-
tition function (normalizing factor) over all possi-
ble label sequences. This is expressed as follows:

Z(x) =
∑

y′
exp(Score(x,y′)) (4)

where the sum is taken over all possible label se-
quences y′.

Training Objective: The model is trained using
the negative log-likelihood (NLL) of the correct
label sequence. The NLL loss is given by:

L(x,y) = − log
exp(Score(x,y))

Z(x)
(5)

The objective is to minimize this loss, which drives
the model to assign higher scores to the correct
label sequences.

Viterbi Decoding: During inference, the Viterbi
algorithm is applied to decode the most probable
sequence of labels for a given input sequence. The
decoded labels are then output as the predicted
NER tags:

ŷ = argmax
y′

Score(x,y′) (6)

3.3.5 Post-processing
For pre-existing subwords in the data, which are
predicted as X, we align them with the label of the
preceding token. Only if the preceding token is
predicted with a beginning tag (B-. . . ), the X label
is converted into an inside tag (I-. . . ) of the same
entity type.

For example, consider the following tokenized
sequence and its predicted tags: [<committed>
/ O, <against> / O, <mr> / B-VIOLATED ON,
< . > /X, <ciesniewski,> / I-VIOLATED ON].
During post-processing, the X tag for the token

< . > is aligned with the preceding B-VIOLATED
ON tag for < mr > and converted to I-VIOLATED
ON. This ensures that punctuation or subwords with
X tags are correctly aligned with the preceding en-
tity labels.

3.4 Experiments and Results

To address the L-NER task, we implement our pro-
posed architecture with different backbone mod-
els. This design enables the model to capture both
contextual word embeddings from language mod-
els and sequential dependencies from the CRF ef-
fectively. Following the architecture design, we
fine-tune several BERT-based models, including
BERT (Devlin et al., 2018), RoBERTa (Liu et al.,
2019), and Longformer (Beltagy et al., 2020), and
compared the performance with their legal-domain
counterparts such as LegalBERT (Chalkidis et al.,
2020), LegalRoBERTa (Chalkidis* et al., 2023),
and LegalLongformer (Chalkidis* et al., 2023).
Additionally, we evaluate the BERT-NER3 model
which is a fine-tuned version of BERT for NER
tasks. Each model is trained for 30 epochs using
the Adam optimizer (Kingma and Ba, 2017), with
an initial learning rate of 5e− 5 for the backbone
model and 8e− 5 for the CRF layer. All the exper-
iments are carried out on P100 GPU 16GB via the
Kaggle platform. We select the best checkpoint on
the validation set for each model based on perfor-
mance metrics. The official evaluation metric for
the L-NER task in LegalLens 2024 is the Macro-F1
score, and the results obtained for these models are
presented below:

Model Precision Recall F1
BERT-base 0.8675 0.8904 0.8780
Longformer-base 0.8938 0.8861 0.8891
BERT-base-NER 0.8876 0.8925 0.8895
LegalBERT-base 0.8946 0.8907 0.8920
RoBERTa-base 0.8943 0.9002 0.8968
LegalRoBERTa-base 0.9254 0.8939 0.9089
LegalLongformer-base 0.9264 0.9217 0.9238

Table 3: Performances of different backbone models on
the validation set.

Table 3 presents the performances of backbone
models on the validation set. The model that uses
LegalLongformer as the backbone achieves the best
scores in all three metrics. There is a slight dif-
ference in the performances of the three models
BERT, Longformer, RoBERTa. Notably, domain-
specific models consistently surpass the general

3https://huggingface.co/dslim/bert-base-NER
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models by 3.1%pt (i.e. percentage point) to 3.6%pt
in precision. This leads to superior performances
of three models LegalBERT, LegalRoBERTa, and
LegalLongformer in the leaderboard. Our exper-
iments prove the contribution of pre-training lan-
guage models in specific domains, especially when
high-quality data is limited.

According to reports on the validation set, we
use the best checkpoint of LegalLongformer-CRF
as the submission. The final results of the private
test set are presented in Table 4.

Team F1 Score
NOWJ 0.416
Flawless Lawgic 0.402
UOttawa 0.402
Baseline 0.381
Masala-chai 0.380
UMLaw & TechLab 0.321
Bonafide 0.305

Table 4: Final leaderboard of L-NER. The top-six teams
among thirty-six participants are reported.

Table 4 presents the ranking of the top-six teams
on the private test of L-NER. We secured first place
in the L-NER task with an F1 score of 0.416, which
increases the baseline by 9.1% pt. This result shows
the effectiveness of combining CRF and pre-trained
language models on the specific-domain NER task.
A noteworthy point is the final result is significantly
different from the validation result. The baseline
method also achieves fourth place in the leader-
board. Indeed, these indicate the challenges of
NER in the legal domain. There is room for im-
proving our models’ performance and robustness
to handle real-world scenarios.

3.5 Error Analysis

Tag Precision Recall F1
B-LAW 0.8870 0.6707 0.7639
I-LAW 0.9299 0.6868 0.7901
B-VIOLATION 0.8138 0.7152 0.7613
I-VIOLATION 0.9021 0.7520 0.8202
B-VIOLATED BY 0.0894 0.0401 0.0553
I-VIOLATED BY 0.1145 0.0572 0.0763
B-VIOLATED ON 0.5106 0.2807 0.3623
I-VIOLATED ON 0.6206 0.2855 0.3911
Macro Average 0.6085 0.4360 0.5027

Table 5: Performance of our model on distinct tags in
the L-NER Test Set.

Table 5 shows the performance of our model on
different tags in the test set. Overall, our model
shows promising results on the LAW and VIOLA-
TION tags, which capture the violated actions and
related law’s content. In contrast, identifying two
remaining tags is limited, especially with tag VIO-
LATED BY. These two tags capture the entities or
organizations in the sequence, one causes the viola-
tion, and one is the patient. Further analysis reveals
that our model often mistakes the preposition in the
tag label. The model also tends to recognize the
second occurrence of these entities (person or orga-
nizer), while the ground truth labels often pertain
to the first occurrence. Furthermore, the length of
VIOLATED ON tag is relatively short (averaging
3.66 tokens), this pattern negatively impacts the
overall performance.

4 Legal Natural Language Inference

4.1 Problem statement
Given an input text pair (premise, hypothesis), the
NLI task is to determine the relationship between
these texts, whether they are entailed, contradicted,
or neutral. This can be framed as a multi-class
classification problem, where the goal is to predict
the correct category by maximizing the conditional
probability of the following:

ŷ = argmax
y

P (y | p, h)

Here, p and h denote the premise and hy-
pothesis, respectively. ŷ denotes the predicted
class, obtained by choosing the class y ∈
{Entailed, Contradict,Neutral} with the high-
est conditional probability.

4.2 Data Analysis
There are two versions of datasets provided. The
older version4 and newer version5 both contain
312 samples. After some pre-processing steps, we
found that there are 152 samples that both appear
in two sets. Therefore, we construct new data con-
sisting of 472 samples, including two public sets,
except the intersection part. The train/validation
sets are divided with a ratio of 6/4. The statistics
of our dataset for the L-NLI are shown in Table 6.
The distribution of labels is uniform, whereas there
is no dominant label in the public dataset.

4https://huggingface.co/datasets/darrow-ai/
LegalLensNLI

5https://huggingface.co/datasets/darrow-ai/
LegalLensNLI-SharedTask
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Label Samples Mean
# Hypo tokens

Mean
# Premise tokens

Contradict 154 71.93 162.14
Entailed 160 75.11 159.87
Neutral 158 62.46 160.99

Table 6: Statistics of the L-NLI public set.

Table 7 presents the statistics of the L-NLI pri-
vate test set. This test set contains only 84 sam-
ples, which is less than five times the size of the
public dataset. The private test set exhibits an im-
balance, with the Entailed label accounting for ap-
proximately 50% of the dataset. These differences
in the data distribution between the private test and
the public sets could negatively impact the model’s
generalization and consistency.

Label Samples Mean
# Hypo tokens

Mean
# Premise tokens

Contradict 15 43.80 169.46
Entailed 40 59.27 171.05
Neutral 29 40.96 164.62

Table 7: Statistics of L-NLI private test set.

4.3 Methodology
The main difficulty of the L-NLI task is the limited
dataset, which consists of 472 samples. Indeed,
this would lead to poor generalization and poten-
tially biased outcomes, as the models reflect the
narrow perspectives in the datasets. Therefore, we
introduce a novel prompt for data augmentation
using LLMs. We then fine-tune pre-trained lan-
guage models on the enriched data to secure stable
performances across multiple iterations.

4.3.1 Data Augmentation
To improve the performance and robustness of our
models, we employ data augmentation to improve
the diversity and variability of the training set. GPT-
4o-mini is utilized via the API of OpenAI to gener-
ate new data using a novel prompt.

Particularly, we instruct LLMs to paraphrase a
hypothesis-premise pair following two styles: one
reflecting an IELTS score of 6.5 and the other an
8.5. This approach introduces linguistic diversity in
sentence structures, vocabulary, and phrasing while
maintaining the core semantic meaning. Figure
3 presents the prompt we used to generate new
data. Special symbols {hypothesis} and {premise}
are replaced with the content of two paragraphs
accordingly. The new training set contains 665
samples including original and augmented data,
while the validation set remains the same. New

data generated by two levels of IELTS is illustrated
in Table 8. Table 9 reports the statistics of the new
training set for the L-NLI task.

Figure 3: A novel prompt to generate new data follow-
ing two styles.

4.3.2 Pre-trained Language Models
We conduct experiments using various language
models, including encoder-only and encoder-
decoder models.

• BERT (Devlin et al., 2018), a widely re-
garded model, utilizes a multi-layer bidirec-
tional Transformer with an encoder-only ar-
chitecture. Rather than employing the origi-
nal base model released by Google, we opted
for a domain-specific variant, LEGAL-BERT
(Chalkidis et al., 2020), pre-trained on an ex-
tensive corpus tailored to the legal domain.

• T5 (Raffel et al., 2020), on the other hand,
employs a full encoder-decoder architecture.
This model generates predictions by out-
putting one of three textual labels: Entailed,
Neutral, or Contradict.

• DeBERTa (He et al., 2021), while belong-
ing to the BERT family, extends BERT’s ca-
pabilities by incorporating a novel attention
mechanism known as Disentangled Attention,
which introduces additional projection matri-
ces to capture relative positional information,
integrating them into the attention score com-
putation.

While T5 is fine-tuned following the text genera-
tion task, LegalBERT and DeBERTa are fine-tuned
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Original data Been punching in and out with
this hand scanner thingy at Su-
perior Health Linens for a while
now. You know, the usual 9 to 5
grind. Felt like something out
of a sci-fi movie every time I
clocked in, but hey, it’s the 21st
century, right? Technology and
all that jazz.

IELTS 6.5 I’ve been using this hand scan-
ner to clock in and out at Supe-
rior Health Linens for a while. It
feels like a scene from a sci-fi
movie every time I check in, but
I guess that’s just how things are
in the 21st century with all this
technology.

IELTS 8.5 I have been clocking in and out
with this hand scanner at Supe-
rior Health Linens for some time
now. Each time I log in, it feels
reminiscent of a futuristic film,
yet I suppose this is simply the
reality of the 21st century, given
the prevalence of technology.

Table 8: An example of paraphrasing a hypothesis fol-
lowing different styles.

Label Samples Mean
# Hypo tokens

Mean
# Premise tokens

Contradict 226 66.86 158.08
Entailed 231 72.91 155.81
Neutral 208 58.60 161.53

Table 9: Statistics of the new training set for task L-NLI.

following the sequence classification task. The vec-
tor representation of the special token [CLS] is fed
into a classification head as follows:

Hcls = Enc(p, h) (7)

y = softmax(Hcls ∗W⊤ + b) (8)

where Hcls ∈ Rd is the vector representation of
the token [CLS], produced by pre-trained language
models, d is the model’s hidden size, W ∈ Rk×d,
b ∈ Rk are trainable parameters. The output y
∈ Rk represents the predicted probabilities for each
class, where

∑
yi = 1, k is the number of labels.

4.4 Experiments and Results
Each model is trained for 10 epochs using Adam
optimizer (Kingma and Ba, 2017) with an initial

learning rate of 5e − 6. The training process is
repeated five times to compute the average scores.
All the experiments are carried out on P100 GPU
16GB via the Kaggle platform. The official metric
for the L-NLI task is the macro F1 score. We exper-
iment with five language models, with and without
data augmentation, presented in Table 10 and Ta-
ble 11. We find that DeBERTa-large outperforms
other models in both training cases. Furthermore,
DeBERTa models demonstrate stable performance
across multiple iterations. The number of param-
eters also contributes to the results, whereas large
models consistently surpass base models. Notably,
training models on augmented data could improve
the results in all metrics. Particularly, the F1 score
saw a rise of 2.9%pt to 5.5%pt on the validation
set. Indeed, these results highlight the contribution
of data augmentation in handling legal downstream
tasks. We select the DeBERTa-large checkpoint
with the highest performance on the validation set
as the final submission.

Model Precision Recall F1
LegalBERT-base 0.8378 0.8401 0.8342
T5-base 0.8421 0.8676 0.8502
T5-large 0.8685 0.8645 0.8717
DeBERTa-base 0.8943 0.8788 0.8831
DeBERTa-large 0.8895 0.8917 0.8848

Table 10: Average performances of models on the vali-
dation set. Before data augmentation.

Model Precision Recall F1
LegalBERT-base 0.8801 0.8813 0.8722
T5-base 0.8882 0.9016 0.8977
T5-large 0.9058 0.9063 0.9043
DeBERTa-base 0.9126 0.9052 0.9089
DeBERTa-large 0.9210 0.9220 0.9204

Table 11: Average performances of models on the vali-
dation set. After data augmentation.

Table 12 presents the results of the top six teams
in the competition. Our model achieves the F1-
macro score of 0.746 on the private test set, placing
third place among thirty-six participants. Even
though our model could achieve impressive per-
formance on the validation set, it is limited on the
private test set. In addition, only the winning team
could surpass the baseline in the L-NLI task. In-
deed, these results emphasize the challenge of legal
downstream tasks.
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Team F1 Score
1-800-Shared-Tasks 0.853
Baseline 0.807
Semantists 0.785
NOWJ 0.746
UOttawa 0.724
bonafide 0.653
masala-chai 0.525

Table 12: The final leaderboard of the L-NLI task.

4.5 Error Analysis
Table 13 presents the error analysis of our model on
the L-NLI test set. The proposed method achieves a
promising performance on the neutral label, where
the precision and recall scores are balanced. In
contrast, there is a trade of pattern between results
of labels contradict and entailed. While the recall
score of the contradict label is 1.0, the model gets
a 0.9615 precision score on the entailed label. This
result suggests that our model is heavily biased to-
ward the contradict label if there is a relationship
between two texts. Another noteworthy point is
that approximately 50% of the wrong predictions
belong to the Biometric Information Privacy Act
(BIPA) domain as shown in Figure 4. This could be
attributed to the lack of BIPA area in the training
set. Future work could focus on exploiting logi-
cal knowledge to reinforce the model’s reasoning
and inference abilities, which would help to better
distinguish the contradict and entailed relations.

Precision Recall F1-score
Contradict 0.5556 1.0000 0.7143
Entailed 0.9615 0.6250 0.7576
Neutral 0.7419 0.7931 0.7667
Macro Average 0.7530 0.8060 0.7462

Table 13: Error analysis of our model on L-NLI test set.

5 Conclusion

This paper presents our work in the LegalLens
competition. For the L-NER task, we leverage
the contextual embeddings of BERT-based models
and compute sequence dependency using a Linear-
Chain CRF layer. For the L-NLI tasks, we propose
a novel prompt to generate synthesis data using
LLMs. The experiments highlight the effectiveness
of data augmentation in improving language mod-
els’ performance. Consequently, we secured first
place in L-NER and third place in L-NLI. We also

Figure 4: Statistics of wrong prediction’s domain.

perform error analysis to offer valuable insights
and groundwork for future advancements in legal
NLP. Future work would focus on improving the ro-
bustness and performance of models by exploiting
the integration of logical knowledge and LLMs.

Limitations

We outline the following limitations in this work:
(1) one of the main challenges is the shortage of
datasets. Even though we employed data augmen-
tation with LLMs in task 2, the dataset remained
limited, affecting the diversity and generalization
of our model. Therefore, there is a decline in the
performance of our method on the private test set
compared to the validation set. Furthermore, the
data augmentation using LLMs should be further
discussed and studied, to ensure the quality of en-
riched data. (2) Although domain-specific models
are utilized in this work to address legal down-
stream tasks, the legal logic reasoning is not yet
considered explicitly. Indeed, this approach should
be studied throughout to enhance the reliability
and accuracy of deep learning models in the le-
gal domain. (3) The use of closed-source models
like GPT4 is limited by many constraints, which
may pose difficulty in reproducing our experiments.
Well acknowledging the problem, we would make
our code and implementation publicly accessible
in the future. Nonetheless, the discussions and
insights in this work demonstrate the promising
benefits of leveraging LLMs and deep learning
techniques for legal violation identification.
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