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Abstract
Estimating causal effects from non-randomized
data requires assumptions about the underlying
data-generating process. To achieve unbiased
estimates of the causal effect of a treatment
on an outcome, we typically adjust for any
confounding variables that influence both treat-
ment and outcome. When such confounders in-
clude text data, existing causal inference meth-
ods struggle due to the high dimensionality of
the text. The simple statistical models which
have sufficient convergence criteria for causal
estimation are not well-equipped to handle
noisy unstructured text, but flexible large lan-
guage models that excel at predictive tasks with
text data do not meet the statistical assumptions
necessary for causal estimation. Our method
enables theoretically consistent estimation of
causal effects using LLM-based nuisance mod-
els by incorporating them within the framework
of Double Machine Learning. On the best avail-
able dataset for evaluating such methods, we
obtain a 10.4% reduction in the relative abso-
lute error for the estimated causal effect over
existing methods.

1 Introduction

A common goal of scientific research is the analy-
sis of causal relationships (Triantafillou et al., 2017;
Sanna et al., 2019; Chang et al., 2022). Consider
the following motivating example, where a phar-
maceutical company wants to estimate the causal
effect of the prescription of antibiotics (treatment)
on the patient’s disease progression (outcome). The
causal effect is defined as the expected change
in disease progression across two counterfactual
worlds which only differ in whether the patient
is given antibiotics (Hernán, 2004). When ran-
domization is impossible or unethical, we estimate
causal effects from observational data using as-
sumptions about the underlying data distribution.
Confounders – variables affecting both the treat-
ment and outcome – introduce potential bias that
must be addressed.

When data is low-dimensional, confounding can
be controlled for using various methods from the
literature (Pearl, 2009). However, several chal-
lenges arise in the case of high-dimensional con-
founders. Suppose the pharmaceutical company
has free-text clinical notes that may include in-
formation about patients’ histories, diagnoses, or
relationships with their doctors (Rajkomar et al.,
2018). If these variables appear nowhere else in
the patients’ records, then account for potential
confounding should use text-based causal methods
(Rosenbloom et al., 2011; Wu et al., 2013). Since
text is high-dimensional, it requires sophisticated
modeling that captures semantic meaning.

Existing models often utilize overly simplified
representations of the text (Wood-Doughty et al.,
2018; Keith et al., 2020), such as a bag-of-words
(BoW) representation. While such representations
combined with simple estimation models allow for
consistent1 estimation, they may fail to capture the
true complexity of the text’s underlying relation-
ships. The use of large language models (LLMs)
in causal estimation has only recently been stud-
ied (Veitch et al., 2020), and many researchers
suggest the need for more sophisticated natural
language processing (NLP) techniques (Wood-
Doughty et al., 2021; Feder et al., 2022; Keith et al.,
2023). However, while LLMs excel at predictive
tasks, they do not meet the necessary statistical
assumptions for a consistent causal estimation.

We present DoubleLingo, combining Double
Machine Learning with LLM-based nuisance mod-
els to enable a theoretically consistent estimation of
causal effects with text-based confounding. We test
our model on a novel dataset (Keith et al., 2023),
obtaining the best causal effect estimates reported
thus far. In particular, our relative absolute error is
over 10% lower than the best current models.

1Defined in more detail in §3.
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2 Causal Inference Background

While causal inference is a broad and diverse field
(Robins et al., 2000; Pearl, 2009), we provide
a brief introduction here. For recent surveys of
causal inference and natural language processing,
see Keith et al. (2020) or Feder et al. (2022).

2.1 DAGs & Counterfactuals
The motivating example described above is illus-
trated by the directed acyclic graph (DAG) in Fig-
ure 1, where we use a binary random variable A
to indicate whether the patient receives (A = 1)
antibiotics or not (A = 0). We similarly use a
binary Y to denote whether the disease progresses
(Y = 1) or not (Y = 0). An arrow in the DAG
such as A → Y indicates that A has a potential
causal effect on Y . Finally, we denote T as the
patient medical records, and C as the set of all con-
founding variables contained in the records. For
example, such variables could include income sta-
tus or family disease history (Acharya et al., 2021).
Most importantly, C is unobserved — we don’t
know the exact confounding variables, but we have
access to the text T containing them. In particular,
T is related to A and Y through C. The counter-
factual outcome Y a=1 represents the hypothetical
disease progression had we intervened to assign
A = 1 (prescribe antibiotics), and Y a=0 is defined
analogously. In causal inference, the most common
estimand is the average treatment effect (ATE) of
A on Y , computed as:

ATE = E[Y a=1 − Y a=0] (1)

A fundamental problem is that we can never
simultaneously observe both counterfactuals
Y a=1, Y a=0 (Holland, 1986), thus we need a way
to compute the ATE only utilizing observed data.

2.2 Identification Assumptions
We proceed by assuming consistency, requiring that
the outcome we observe for any possible treatment
a is equal to the counterfactual outcome we would
have observed had we intervened to assign A = a.
Formally:

A = a ⇒ Y a = Y (2)

We then assume conditional exchangeability, re-
quiring the independence between our counterfac-
tual Y a and the observed treatment A conditioned
on all confounders C, formalized as:

Y a ⊥ A | C ∀a ∈ {0, 1} (3)

C T

A Y

Figure 1: Textual Confounding DAG with Treatment A,
Outcome Y , Confounders C, and Text T . We assume
the C → T edge is such that adjusting for T can control
C’s confounding of the A → Y relationship.

Using these assumptions, we may compute the
counterfactual E[Y a] as follows:

E[Y a] =
∑

C

E[Y a | C]P(C) (4)

(3)
=
∑

C

E[Y a | A = a,C]P(C) (5)

(2)
=
∑

C

E[Y | A = a,C]P(C) (6)

Equation (6) expresses our counterfactual as a func-
tion of observed data. However, we are interested
in the case where the low-dimensional C is unob-
served but encoded inside the high-dimensional T .
Thus, if we could adequately model T , we would
be able to adjust for C’s confounding effect.

2.3 Causal Effect Estimation

To estimate (1) using (6), we thus require (a) a
representation of the text and (b) an appropriate
causal estimation method. As mentioned in §1,
a BoW text representation is commonly used by
existing text-based causal estimators. For (b), there
are countless estimation methods, and we refer the
reader to a much more exhaustive guide by Peters
et al. (2017). One such commonly used method
is the Inverse Propensity of Treatment Weighting
(IPTW), where E[Y a] is calculated as follows for a
dataset of size N :

E[Y a] =
1

N

∑

i∈[N ]

Yi
1(Ai = a)

P(Ai = a | T ) (7)

A simple way to combine (a) and (b) is to use IPTW
and train a Logistic Regression model P(A | T ) for
the propensity of the treatment A given a BoW text
representation T . However, BoW will fail to model
the complexities of real-world text, introducing
bias into our estimates.
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3 Model

We now introduce notation to formalize our pro-
posed method to use LLMs to replace a simplistic
BoW text representation. Consider this partially
linear model corresponding to Figure 1:

Y = Aθ0 + g0(T ) + U, E[U | T,A] = 0 (8)

A = m0(T ) + V, E[V | T ] = 0 (9)

Here θ0 is the true ATE we hope to estimate, η0 =
(m0, g0) are nuisance parameters, and U, V are our
error terms. Following Keith et al. (2023),2 we
similarly assume the causal effect A → Y is linear.
Any estimator θ̂0 of θ0 must be both unbiased and
consistent such that:3

E[θ̂0] = θ0 and θ̂0
p→ θ0 (10)

While LLMs have drastically changed the field
of NLP (Vaswani et al., 2017; Min et al., 2023),
they are not consistent estimators of causal param-
eters due to both explicit and implicit regulariza-
tion (Neyshabur, 2017; Chernozhukov et al., 2018).
Thus, a naive approach of using an LLM such as
BERT (Devlin et al., 2019) to learn the propensity
P(A | T ) in Equation (7) would be biased.

3.1 Double Machine Learning
To overcome this challenge, we turn to Double Ma-
chine Learning (DML), which has never previously
been used in the context of LLMs. As introduced
by Chernozhukov et al. (2018), DML is an esti-
mation procedure which removes regularization
bias and overfitting on estimation by combining
(a) Neyman-orthogonal moments with (b) sample-
splitting. Let m̂0 and ĝ0 be ML estimators of η0.
For (a), we partial out the effect of T from A to ob-
tain the orthogonalized regressor V̂ = A− m̂0(T ).
For (b), we randomly split our dataset of size N
into a main and auxiliary sample with their indices
denoted respectively by I and IC , both of size
n = N/2. We first train m̂0 and ĝ0 on IC , and
then subsequently estimate θ0 from I as follows:

θ̂0 =

(
1

n

∑

i∈I
V̂iAi

)−1
1

n

∑

i∈I
V̂i(Yi − ĝ0(Ti))

(11)
Now, as shown by Chernozhukov et al. (2018), the
scaled estimation error can be decomposed as:

√
n(θ̂0 − θ0) = A+B + C (12)

2See §4.1 for more detail.
3 p→ denotes convergence in probability.

The A term from (12) converges in distribution to
a mean-zero Gaussian with variance Σ:

1

E[V 2]
√
n

∑

i∈I
ViUi

d→ N (0,Σ) (13)

Sample-splitting guarantees that the C term is
Op(1), as it contains terms of form:

1√
n

∑

i∈I
Vi(ĝ0(Ti)− g0(Ti)) (14)

Finally, the regularization bias from training our
two ML estimators m̂0 and ĝ0 is captured by the B
term, which equals:

1

E[V 2]
√
n

∑

i∈I
(m̂0(Ti)−m0(Ti))(ĝ0(Ti)−g0(Ti))

(15)
Observe that due to orthogonalization via (a), term
B contains the product of the estimation errors,
which Chernozhukov et al. (2018) show to be
upper-bounded by

√
nn−(φm+φg), where n−φm

and n−φg denote the respective convergence rates
of m̂0 and ĝ0. Hence, this term vanishes even
in cases where m̂0 and ĝ0 converge at relatively
slower rates. In particular, if these two ML estima-
tors converge at n−1/4, the estimation of the ATE
is
√
n-consistent, where:

θ̂0 − θ0 = Op(n
−1/2) (16)

For proofs of the above claims, and more general
cases covering unequal split-sizes, please see Cher-
nozhukov et al. (2018). Finally, as we train both m̂0

and ĝ0, the estimation is doubly robust such that
only one of the two need to be correctly specified
to obtain an unbiased ATE (Funk et al., 2011).

3.2 Faster Converging Model Variations

A potential concern is that our two ML estima-
tors must converge at n−1/4 to obtain the desired√
n-consistent estimation of θ0. While there is re-

search on the rate of convergence of misclassifica-
tion probability (Gurevych et al., 2022) for encoder-
based transformer classifiers such as BERT, its con-
vergence rate for semiparametric inference is un-
known. Since fully fine-tuning BERT classifiers
within the DML framework may not be appropri-
ate, we present DoubleLingo, utilizing two faster
converging model variations.
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BERT+Adapter. Our first configuration utilizes
parameter efficient transfer learning in the form
of adapters (Houlsby et al., 2019). Thus, instead
of fine-tuning all of BERT, we only fine-tune the
adapter layers. Here, it’s crucial to note that there
are no theoretical bounds for the convergence of
adapters. While a proof that BERT+Adapter con-
verges at n−1/4 would be desirable, it is outside
the scope of this paper. However, see §5.2 for an
empirical justification.

Embedding+FFN. Fully-connected feedforward
neural networks (FFNs) with the ReLU activation
function have been proven to converge at n−1/4

rates for their use in semiparametric inference (Far-
rell et al., 2021). Thus, instead of fine-tuning BERT
at all, a potential approach is to fine-tune a feed-
forward layer on top of BERT’s pre-trained [CLS]
encoding. However, this encoding is pre-trained
on next sentence prediction which may not neces-
sarily result in a semantically meaningful represen-
tation of the sentence. Consequently, we utilize
embeddings from pre-trained sentence transform-
ers (Reimers and Gurevych, 2019), which are much
more semantically meaningful. While transformer
embeddings have been widely influential in many
NLP tasks (Ethayarajh, 2019), to our knowledge
we are the first to compare their potential for causal
estimation against simpler text representations.

4 Causal Dataset & Experiment

Unlike supervised learning models, which can be
evaluated on held-out test sets with ground-truth la-
bels, causal estimation methods require evaluations
with counterfactual ground-truth, which is impossi-
ble to measure from observed data (Holland, 1986).
Researchers often turn to (semi-)synthetic data, for
which there is a tension between generating real-
istic text and maintaining full knowledge of the
underlying data-generating process (DGP) (Wood-
Doughty et al., 2021). Most current datasets fail to
accomplish both, either fully specifying the DGP
but with unrealistic text (Johansson et al., 2016;
Yao et al., 2019), or using real-world text inside a
semi-synthetic DGP (Veitch et al., 2020).

4.1 Dataset and Baselines
A recent novel dataset employs a randomized con-
trolled trial (RCT) rejection sampling algorithm to
create datasets with real text that build on a real-
world DGP (Keith et al., 2023). In particular, the
authors fix C to be a single binary confounding

variable contained in the text and choose RCT’s
with an existing C → Y relationship. They then
sample the dataset to artificially create a C → A
relationship and evaluate 8 different models over
100 sampled dataset subsets. They train Logistic
Regression and CatBoost nuisance models based
on a BoW representation for the text, combining
both with 4 different causal estimation techniques,
including IPTW, Augmented-IPTW (AIPTW), Out-
come Regression, and DML. They finally evaluate
an Oracle with full access to the (otherwise un-
observed) C variable. We include their empirical
results in our Table 1.

4.2 DoubleLingo Experiments
We now describe our methods that use LLMs in-
side the DML framework. Our BERT+Adapter
method fine-tunes adapters within BERT classifiers
for both m̂0 and ĝ0 (Houlsby et al., 2019). Our
Embedding+FFN configuration uses embeddings
from two transformers. First, all-mpnet-base-v2,4

based on MPNet (Song et al., 2020) and fine-tuned
on over 1 billion sentence pairs including paper
abstracts from S2ORC (Lo et al., 2020). Second,
SPECTER (Cohan et al., 2020), pre-trained on a
dataset of scientific paper titles and abstracts which
matches the exact format of Keith et al. (2023). For
both Embedding+FFN methods, we use a single
hidden layer, ReLU activation functions, and the
AdamW optimizer (Loshchilov and Hutter, 2018).
Finally, we implement a TF-IDF+FFN baseline,
following Manzoor et al. (2023), which uses DML
with FFNs with batch normalization (Ioffe and
Szegedy, 2015) and a TF-IDF text representation.
A more detailed implementation, including spe-
cific hyper-parameters and RCT parameterization
choices are provided in Appendix A.

5 Results and Conclusions

5.1 Main Findings
Table 1 shows that our three DoubleLingo esti-
mators obtain the lowest ATE relative absolute
error (0.103), a 10.4% decrease from the prior best
(0.115). These results provide strong empirical
evidence that the DML framework successfully
enables the use of LLMs in causal estimation. No-
tably, the prior best was achieved by both a BoW
model (CBAIPTW) and the Oracle estimator which
calculates the estimates using the unobserved C val-
ues. If C contained all causes of A and Y , it would

4https://hf.co/sentence-transformers/all-mpnet-base-v2
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LR CB

Outcome 1.408 (1.00) 0.237 (0.10)
IPTW 0.470 (0.16) 0.141 (0.11)
AIPTW 1.579 (0.66) 0.115 (0.10)
DML 1.899 (0.91) 0.128 (0.10)

BERT+Adapter 0.104 (0.08)
MPNetV2+FFN 0.103 (0.08)
SPECTER+FFN 0.104 (0.08)
TF-IDF+FFN 0.118 (0.09)

Unadjusted 0.214 (0.08)
Oracle (C) 0.115 (0.09)

Table 1: Relative Absolute Error mean (variance) for all
methods over 100 subsets. Oracle, Unadjusted, Logistic
Regression (LR), and CatBoost (CB) baselines are from
Keith et al. (2023). Oracle and Unadjusted models use
Outcome regressions. Our DoubleLingo methods and
TF-IDF baseline use DML, as described in §4.2. Our
methods achieve the best (lowest) error and variance.

be the theoretically-optimal efficient adjustment
set (Rotnitzky and Smucler, 2020) and the Oracle
should – asymptotically – be impossible to outper-
form. However, while the C → A relationship is
artificially induced by the sampling procedure of
Keith et al. (2023), the authors verified that C ̸⊥ Y
using an odds-ratio test. We hypothesize that the
underlying complexity of the T → Y relationship
is not fully captured by the binary topic C, and
there exists some T 99K Y relationship. If true,
then modeling T allows for more efficient estima-
tion reflected in DoubleLingo’s outperformance of
the Oracle.

Our results specifically support the hypothesis
that the text representation itself matters to causal
estimation. Among all DML methods with feed-
forward classifiers, our Embedding+FFN meth-
ods’ outperformance of our TF-IDF+FFN baseline
shows that better representations can enable lower
estimation error. Appendix B also shows our mod-
els’ slightly better classification accuracy than the
TF-IDF+FFN baseline during estimation.

Between our three proposed methods, we see
no large differences in performance. This sug-
gests that while the incorporation of LLMs into
the estimators is essential, the specific architec-
ture and training setup matters less. However,
BERT+Adapter trains two to three times slower
than Embedding+FFN. We also see little differ-
ence between the two pre-trained embeddings, de-

Figure 2: Empirical convergence comparison of
BERT+Adapter with FFN configurations. We plot
the ATE relative absolute error at 4 sample sizes.

spite the similarity of the SPECTER embedding’s
dataset to that of our evaluation data.

5.2 Convergence Experiment
The assumptions of DML require that m̂0 and
ĝ0 must converge at n−1/4 to enable a

√
n-

consistent estimation of θ0. Analysis and proof
of BERT+Adapter convergence is left for future
work. However, we empirically compare its con-
vergence rate to that of the three FFN configu-
rations which are proven to converge at n−1/4

(Farrell et al., 2021). Figure 5.2 plots the ATE
relative absolute error mean as we increase the
available data. Regressing the logarithms of the
means against the sample sizes, we obtain rough
estimates that BERT+Adapter, MPNetV2+FFN,
SPECTER+FFN, and TF-IDF+FFN converge re-
spectively at (n−0.57, n−0.64, n−0.67, n−0.56), all
faster than our desired n−0.25 rate.

5.3 Conclusion
This work proposes DoubleLingo, a theoretically
consistent causal estimator that uses LLM nuisance
models inside the DML framework. We show
that both adapters and sentence transformers can
achieve the lowest estimation error on the best avail-
able dataset for evaluating methods that account
for text confounding. We release our code which
reproduces our results to enable future research.5

5https://github.com/markov24/DoubleLingo
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Limitations

The main limitation of our estimation procedure
is compute time – training the BERT+Adapter
configuration on 100 sampled dataset subsets takes
10 hours parallelized across 2 RTX 8000’s, signifi-
cantly longer than the baseline Linear Regression
or CatBoost models. In particular, our model’s re-
liance on sample-splitting and double robustness to
obtain a consistent final estimate requires training
4 times as many models per each dataset subset.
However, it’s important to note that the Embed-
ding+FFN configurations only take a third of the
time, yet achieve identical results.

While DML provides solid theoretical ground-
ing for our methods, we have necessarily focused
on a specific DAG and dataset. We have assumed
that the relationship between C and T is such that
DML nuisance models fit to T can control for the
confounding effect of C. In the dataset released
by Keith et al. (2023), this is plausible given the
underlying connections between text and topic. In
other datasets (e.g., if T were only loosely predic-
tive of C), additional methods might be necessary
to account for measurement error, for example fol-
lowing Kuroki and Pearl (2014).

Additionally, our work only focuses on causal
estimation with text-based confounding. Dealing
with textual treatments or outcomes is still an open
problem in the field (Feder et al., 2022). Finally, we
only train on a single English-language dataset; we
encourage future work to expand on this by testing
other types of text-based RCTs.
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A Implementation

This section gives a more detailed overview of
our implementation, including specific hyper-
parameter values for both model configurations
and parameterization choices of P(A | C) required
by the RCT rejection sampling algorithm.

BERT+Adapters. For our BERT adapter config-
uration, we use a batch size of 128, the maximum
that can fit parallelized across two RTX 8000’s.
We use default values for beta and weight decay,
setting B1 = 0.9, B2 = 0.999, λ = 0. We manu-
ally optimize for the learning rate and number of
epochs based on validation accuracy on a small
subset of the 100 datasets, resulting in a learn-
ing rate of 3e-4 over 5 epochs. Our estimation
takes around 10 hours to complete. For the esti-
mation of a single dataset, we suggest practition-
ers perform a larger search over hyper-parameters,
however the use of sample-splitting and doubly-
robust estimation requires training 4 times the num-
ber of models. Thus, a simple grid-search over
just 10 hyper-parameter combinations with 4-fold
cross-validation over 100 dataset seeds would re-
quire the training of 16, 000 models. Finally, we

use BERTBASE which has 109, 482, 240 parame-
ters, however the use of adapters allows us to only
fine-tune 894, 528 parameters.

Embedding+FFN. For all of our FFN configu-
rations, we use the same batch size of 128 and the
same default beta and weight decay values. We
use a single hidden layer with the same number
of nodes as the input layer, equal to 768 for both
sentence transformers. Since these FFNs are much
quicker to train, we perform a search over the learn-
ing rates, {1e-5, 1e-4, 1e-3, 1e-2}, combined with
early-stopping for each one of the 100 dataset sub-
sets.

TF-IDF Tokenization For the TF-IDF+FFN
baseline, we follow the same tokenization and vo-
cabulary selection procedure as used for BoW by
Keith et al. (2023) to allow for a fair comparison. In
particular, the text is first preprocessed to remove
numbers. We then utilize the following parameters:

• max_features=2000: The maximum
number of features to consider based on term
frequency across the corpus.

• lowercase=True: Convert all characters
to lowercase before tokenizing.

• strip_accents="unicode": Remove
accents and perform other character normal-
ization during the preprocessing step.

• stop_words="english": Exclude com-
mon English stop words from the vocabulary.

• max_df=0.9: Ignore terms that appear in
more than 90% of the documents.

• min_df=5: Ignore terms that appear in
fewer than 5 documents.

• binary=True: All non-zero term counts
are set to 1.

For the remaining parameters unique to TF-IDF
(not present for BoW), we use the default sklearn
parameters:

• norm=’l2’: Sum of squares of vector ele-
ments is 1. The cosine similarity between two
vectors is their dot product when l2 norm has
been applied.

• use_idf=True: Enable inverse-document-
frequency reweighting.
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• smooth_idf=True: Smooth idf weights
by adding one to document frequencies, as if
an extra document was seen containing every
term in the collection exactly once. Prevents
zero divisions.

• sublinear_tf=False: Apply sublinear
tf scaling, i.e. replace tf with 1 + log(tf).

RCT parameterization. The RCT rejection sam-
pling algorithm requires practitioners to specify
P(A | C). In particular, the authors choose C to be
a binary random variable representing the specific
text topic. We accordingly utilize the default pro-
vided RCT using medicine (C = 0) and physics
(C = 1) articles. Authors then define P(A | C) as
follows:

P(A = 1 | C) =

{
ζ0 if C = 0

ζ1 if C = 1
(17)

which is used in sampling the RCT to create an
artificial C → A effect. We utilize the default
choices of ζ0 = 0.85 and ζ1 = 0.15 which induce
the highest amount of confounding. For a much
more thorough explanation, we direct readers to
Keith et al. (2023).

B Nuisance Model Predictive Accuracy

Model Accuracy

m̂0 ĝ0

Logistic Regression 75.5 82.8

CatBoost 80.3 95.5

TF-IDF+FFN 80.6 95.3

SPECTER+FFN 82.8 95.7

MPNetV2+FFN 83.2 95.7

BERT+Adapter 83.2 95.7

Table 2: Average Predictive Accuracy over 100 dataset
subsets

Specific values for the average predictive accu-
racy during estimation of all tested nuisance models
are provided in Table 2. A similar trend appears
compared to causal estimation results in Table 1,
where the largest improvement occurs from simply
switching to non-linear nuisance models (CatBoost
vs. LogisticRegression).

While our three DoubleLingo model config-
urations achieve the best predictive accuracies
(83.2%, 95.7%), the values are only slightly higher
than those for the TF-IDF+FFN implementation.

Here, it’s important to note that predictive accu-
racy alone does not directly contribute to a more
accurate estimation (Wood-Doughty et al., 2018).

C Use of Scientific Artifacts & Licensing

Our work uses the RCT rejection sampling dataset
by Keith et al. (2023). In particular, the dataset is
fully in English, containing publicly available pa-
per titles and abstracts. The authors remove any po-
tentially personally identifiable information from
the dataset (author names, user ids, user IP ad-
dresses, or session ids). The dataset is made publi-
cally available for research purposes (apache-2.0).

Finally, DoubleLingo uses the Hugging
Face implementations for bert-base-uncased, al-
lenai/specter, and all-mpnet-base-v2, all made pub-
lically available for research purposes (apache-2.0).
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