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Abstract

Finetuning pretrained models on downstream
generation tasks often leads to catastrophic for-
getting in zero-shot conditions. In this work,
we focus on summarization and tackle the prob-
lem through the lens of language-independent
representations. After training on monolingual
summarization, we perform zero-shot trans-
fer to new languages or language pairs. We
first show naively finetuned models are highly
language-specific in both output behavior and
internal representations, resulting in poor zero-
shot performance. Next, we propose query-
key (QK) finetuning to decouple task-specific
knowledge from the pretrained language gener-
ation abilities. Then, after showing downsides
of the standard adversarial language classifier,
we propose a balanced variant that more di-
rectly enforces language-agnostic representa-
tions. Moreover, our qualitative analyses show
removing source language identity correlates
to zero-shot summarization performance. Our
code is openly available1.

1 Introduction

Pretrained multilingual models (Conneau et al.,
2020; Liu et al., 2020; Xue et al., 2021; Lin et al.,
2022) have been established as promising sources
of transfer learning, where task-specific finetuning
benefits from the general knowledge learned on
diverse unsupervised data. However, due to data or
computational constraints, the task-specific data of-
ten only cover a limited subset of the languages in
pretraining. Therefore, during finetuning it is cru-
cial to retain the knowledge of the pretrained model
and to enable zero-shot transfer, i.e., performing the
task on more languages covered by the pretrained
model. While zero-shot crosslingual transfer has
shown very promising results on sequence clas-
sification or labeling problems (Pires et al., 2019;

∗Work done while at Karlsruhe Institute of Technology
1https://github.com/vladsolovyev/fairseq_
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Figure 1: We finetune a pretrained model (e.g. mBART)
on intralingual summarization data and test it on zero-
shot intralingual and crosslingual summarization.

Conneau and Lample, 2019; Wu and Dredze, 2019),
it remains challenging for generation tasks (Rön-
nqvist et al., 2019; Vu et al., 2022; Li and Murray,
2023) including summarization and translation. A
main obstacle is catastrophic forgetting (French
and Chater, 2002), where languages supported by
the pretrained model but not covered in the fine-
tuning data are forgotten. In this work, we use
summarization as a testbed for various types of
zero-shot generation. As shown in Figure 1, given
a pretrained model and intralingual summarization
training data in some languages (A→A, B→B),
we aim for zero-shot intralingual and crosslingual
summarization on new languages (C→C) and lan-
guage pairs (A→B, A→C) respectively.

To alleviate catastrophic forgetting, one line of
work trains on additional unsupervised data (Mau-
rya et al., 2021; Vu et al., 2022; Chronopoulou
et al., 2023). Besides the computational overhead,
this approach raises a theoretical question: As the
pretrained language model has already learned ex-
tensively on unsupervised data, is it necessary to
re-learn language modeling in task-specific finetun-
ing? We therefore explore a more challenging case
of only using paired summarization data without
relying on any unsupervised data.

We identify two challenges when generalizing
summarization abilities to new languages. First,
decoupling the task-specific knowledge from the
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train on en train on en+es+ru

es-es ru-ru gu-gu gu-gu es-en ru-en es-ru tr-en
0.2 2.3 13.4 99.6 0.0 0.0 0.0 1.3

Table 1: Proportion of generated summaries in the
correct language (%) under zero-shot conditions. Codes:
es (Spanish), ru (Russian), gu (Gujarati), tr (Turkish).
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Figure 2: Accuracy of a probing classifier. Higher accu-
racy indicates more language-specific representations.

language generation abilities is essential. In re-
sponse, we propose a new finetuning method based
on query and keys, which is shown effective for
both intralingual and crosslingual zero-shot setting.
For crosslingual zero-shot settings, it is also crucial
to decouple language from content, i.e., creating
language-agnostic representations. This has been
shown to facilitate zero-shot crosslingual genera-
tion in general (Pham et al., 2019; Wu et al., 2022;
Duquenne et al., 2023). There a prominent ap-
proach is adversarial training (Ganin et al., 2016;
Chen et al., 2018), where the model is trained to
deceive a language classifier. We show the existing
formulation fails to fully achieve language-agnostic
representations, and improves it by explicitly in-
centivizing the model to deceive the classifier into
a uniform class distribution.

2 Current Models are Highly
Language-Specific

We first show that naive finetuning makes the mod-
els highly language-specific in their output behav-
ior and internal representations. Table 1 shows
the proportion of outputs in the correct language
after finetuning mBART on intralingual summa-
rization data. Finetuning on English only leads the
model to forget its generation ability for other lan-
guages, resulting in off-target generation (Zhang
et al., 2020a; Pfeiffer et al., 2023), where a wrong
target language, often one with supervised data, is
generated. Although multilingual training largely
resolves off-target generation in intralingual set-
tings2, the problem persists for crosslingual gen-

2This is consistent with recent or concurrent findings
(Chirkova et al., 2023; Pfeiffer et al., 2023).

eration. As zero-shot crosslingual generation re-
lies on language-agnostic representations, we test
for this with a probing analysis (Adi et al., 2017).
Specifically, we assess the difficulty of recovering
the source language identity on the encoder out-
put. Given a trained model, we train a token-level
classifier for the input languages on the encoder
outputs.3 As shown in Figure 2, the classifier can
almost perfectly recover the source language. Even
after explicitly encouraging language-agnostic rep-
resentations with an adversarial language classifier
(Arivazhagan et al., 2019), recovering the source
language identity remains easy.

3 Approaches

3.1 Decoupling Language from Task
Query-Key (QK) Finetuning Prior works on
zero-shot generation (Chi et al., 2020; Maurya
et al., 2021; Li et al., 2021) have highlighted the
need for selective finetuning to mitigate forgetting,
where the consensus is updating the encoder and
cross-attention weights only. However, existing
methods treat attention weights as a whole. A
closer look at the attention module reveals that,
only the value projections determine the basis of
the upcoming transformations, whereas the query
and key control how the inputs are aggregated. We
hypothesize that the value projections should be
kept unchanged to prevent losing pretrained gen-
eration capabilities during finetuning. In contrast,
query and key are updated as adaptation to specific
tasks. Therefore, we propose a selective finetuning
approach, which only updates the query and key
projection weights of encoder self-attention and
cross-attention.4

Two-Step Finetuning For the more challenging
case of crosslingual zero-shot summarization, our
approach is motivated by the fact that the task con-
sists of two subtasks: translation and summariza-
tion. We first finetune the pretrained model for
translation5. Then we finetune again on intralin-
gual summarization using our proposed query-key

3Details on the probing analysis are in Appendix A.
4It is extendable to the parameter-efficient finetuning

(PEFT) approach LoRA (Hu et al., 2022) by placing the
adapters on the query and key weights only. In the exper-
iments we do not compare to prominent PEFT approaches like
prompt tuning (Lester et al., 2021) and LoRA, as prior works
have shown they in their standard forms still suffer from catas-
trophic forgetting in finetuning (Vu et al., 2022) or continual
pretraining (Li and Lee, 2024).

5We do not use the finetuned mBART on translation (Tang
et al., 2020) as it can only translate from or into English.
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finetuning to retain its crosslingual capabilities ac-
quired from translation in the first step.

3.2 Decoupling Language from Content

An adversarial language classifier is often used to
decouple language from the semantic representa-
tions of input contents. Most existing works use
the cross-entropy loss (Arivazhagan et al., 2019;
Mallinson et al., 2020) and a gradient reversal layer
(Ganin et al., 2016) to update the encoder weights
in the opposite direction of the classifier accuracy.6

A problem with the cross-entropy-based formula-
tion is that it operates on single classes and does
not incentivize language-agnostic representations
on the output distribution level. The adversarial
classifier could potentially be shift all its predicted
probability mass to another language, achieving a
low classification accuracy but leaving the repre-
sentations still language-specific. Indeed as shown
in Figure 2, even after training with this objective,
a probing classifier can still easily learn to recover
the source language identity.

Balanced Adversarial Language Classifier
Given the drawback above, we propose a balanced
adversarial objective. Specifically, we train the en-
coder such that a language classifier is only able
to predict an uniform distribution. We achieve this
by a modified adversarial loss based on the KL-
divergence between the classifier output distribu-
tion and a uniform distribution:

Lbalanced_adversarial = DKL(Pθclassifier ∥ U), (1)

where P is the classifier output distribution on to-
ken level and U = ( 1

N , . . . , 1
N ) with N being the

number of languages to classify.

Residual Drop We further combine our approach
with residual drop (Liu et al., 2021), a method pro-
posed for machine translation that drops the resid-
ual connection of a middle encoder layer to reduce
source language signals in the encoder output.

4 Experiments and Results
4.1 Experimental Setup

Datasets We train on intralingual summarization
data in English or {English, Spanish, Russian}. We
use XL-Sum (Hasan et al., 2021) and WikiLingua
(Ladhak et al., 2020) for experiments in Table 2
and Table 3 and respectively. The dataset details

6More details in Appendix B

are in Appendix C.1. For the two-step finetuning,
the translation data details are in Appendix C.2.

Data Conditions Besides the direct zero-shot
condition, we compare to the following two data
conditions:
• Pipeline approach translating into and from En-

glish: learn summarization on English only and
translate with NLLB-200 (NLLB Team et al.,
2022), a recent open multilingual translation
model. Here we rely on English-only summa-
rization as English has the most training data in
both datasets, which presumably yields the high-
est summarization quality. While this approach
ensures that the outputs are in the right language,
the downsides are inference latency and transla-
tion error propagation.

• Supervised: train on supervised data for the zero-
shot directions as performance upper-bounds.

Baselines We compare our QK finetuning to:
• Encoder finetuning (Chi et al., 2020): It only up-

dates the encoder weights to retain the pretrained
generation capability, as the decoder is expected
to be more responsible for generation.

• Layernorm and attention (LNA) finetuning (Li
et al., 2021): It only finetunes: 1) layernorm, 2)
encoder self-attention, and 3) cross-attention.
We also compare to the standard formulation

of the adversarial language classifier (Arivazhagan
et al., 2019) based on the cross-entropy loss.

Training and Evaluation We initialize from the
mBART (Liu et al., 2020) model, which was pre-
trained on monolingual data of 25 languages. Fur-
ther training details are in Appendix D. To assess
summarization quality, we use ROUGE (Lin, 2004)
and BERTScore (Zhang et al., 2020b). We report
ROUGE-L in the main text supply ROUGE-1/2
in Appendix E. We use BERTScore F1 (FBERT)
following the authors’ suggestions (Zhang et al.,
2020b). To measure the percentage of outputs in
the correct languages, we use a language identifier
(Lui and Baldwin, 2012) and report accuracy (%).

4.2 Impact of Query-Key Finetuning

The intralingual zero-shot results are in Table 2
with detailed scores in Appendix E. Full finetuning
(row (1)) on English-only data causes severe forget-
ting, where most of the output are in the wrong lan-
guage, which further harms summarization scores.
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ID Model es ru gu gu
(train on en) (train on en) (train on en) (train on en+es+ru)

RG-L FBERT RG-L FBERT RG-L FBERT RG-L FBERT

(1) Full ft. 5.4 66.0 1.0 64.3 1.2 59.1 15.1 71.8
(2) Encoder ft. (Chi et al., 2020) 18.4 70.8 22.7 73.2 14.5 71.7 15.3 72.2
(3) “LNA” ft. (Li et al., 2021) 20.9 71.9 21.6 72.7 10.5 68.6 16.0 72.6
(4) Query-key ft. (ours) 21.3 72.3 23.4 73.6 16.6 73.2 16.5 73.1

(5) Pipeline (translate to/from en) 20.7 72.1 20.2 72.4 13.6 72.1 13.6 72.1
(6) Supervised 25.0 74.0 27.5 75.1 19.3 74.2 19.3 74.2

Table 2: Zero-shot intralingual summarization results on XL-Sum.

ID Model es-en ru-en es-ru avg. seen tr-en en-tr tr-tr avg. unseen

RG-LFBERT RG-LFBERT RG-LFBERT RG-LFBERT RG-LFBERT RG-LFBERT RG-LFBERT RG-L FBERT

(1)Baseline zero-shot 2.2 67.8 0.7 63.3 0.6 64.6 1.2 65.2 4.6 62.9 2.5 60.9 18.0 71.5 8.4 65.1
(2)Adv. classifier 26.7 76.1 25.3 75.7 14.1 72.5 22.0 74.8 26.1 75.2 2.5 60.9 5.2 62.8 11.3 66.3
(3)Balanced adv. (ours) 27.2 76.4 25.6 75.8 14.3 72.8 22.4 75.0 26.6 75.5 2.6 60.9 3.2 61.1 10.8 65.8
(4)(3)+ residual drop 27.6 76.6 26.3 76.1 14.8 73.1 22.9 75.3 25.7 75.2 2.5 61.0 2.3 60.8 10.2 65.7
(5)Two-step + QK ft. (ours) 27.7 76.5 26.3 76.1 14.8 73.4 22.9 75.3 30.7 77.4 16.7 71.3 18.4 72.0 21.9 73.6

(6)Pipeline 31.1 78.1 28.5 77.3 14.4 73.8 24.7 76.4 34.1 78.7 18.7 73.1 18.5 73.2 26.3 75.0
(7)Supervised 31.4 78.1 29.4 77.5 18.0 75.2 26.3 76.9 34.5 78.8 20.7 73.2 26.2 75.4 27.1 75.8

Table 3: Zero-shot crosslingual summarization results on WikiLingua after training on {en, es, ru} intralingual data,
grouped by seen (new combinations of languages seen in finetuning) and unseen (languages not in finetuning).

QK finetuning outperforms previous methods
and pipeline approach: The proposed QK fine-
tuning in row (4) surpasses the two previous meth-
ods in row (2) and (3) by 0.4-2.1 ROUGE. It is
also the only approach consistently outperforming
the translation-based pipeline in row (5). More-
over, the gap to the pipeline approach magnifies
from high- to low-resource languages: For es, ru,
gu, our QK finetuning leads by 2.9%, 15.8%, and
22.1% ROUGE respectively. This suggests that the
two translation steps in the pipeline accumulates
error that harms summarization quality, especially
on lower-resource languages. Compared to the or-
acle condition with full supervised data (row (6)),
the strongest zero-shot scores with our approach
lies 2.7-4.1 ROUGE behind. Given the difficulty of
creating summarization data, this relatively small
gap shows the potential of the zero-shot approach.

Comparison to multilingual training: Compar-
ing the zero-shot results on Gujarati (gu), train-
ing multilingually on en+es+ru instead of English
alone clearly prevents forgetting. Even full finetun-
ing in row (1) almost always generates the correct
target language. Yet, QK finetuning still surpasses
rows (1)-(3). Moreover, its scores on gu when
training on English only match those with multilin-
gual training, suggesting it is a more data-efficient
approach that does not rely on multilingual data.
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Figure 3: The models from rows (3) and (4) of Ta-
ble 3 have more language-agnostic representations and
stronger zero-shot performance than those in Figure 2.

4.3 Impact of Removing Language Signals

Despite its effectiveness so far, QK finetuning alone
is not sufficient in crosslingual zero-shot settings.
The summarization scores7 are very low in general
as a result of off-target generation. This leads to
our next improvements on language-agnostic rep-
resentations with results in Table 3 with detailed
scores in Appendix E.

Removing language signals improves zero-shot
performance for languages seen in finetuning:
On language pairs where both the source and tar-
get are seen in finetuning (es-en, ru-en, es-ru), our
balanced adversarial classifier in row (3) surpasses
row (2) by 0.4 ROUGE on average. Combining it
with the residual drop brings a further gain of 0.5
ROUGE. However, these approaches are less ef-

7details in Appendix E
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fective on languages absent in the finetuning stage,
particularly on new target languages, as shown by
the poor scores on en-tr and tr-tr. Particularly, the
intralingual summarization (tr-tr) quality degrades
below the baseline. This shows that, to work on un-
seen languages, language-agnostic representations
must be strengthened in target language generation.

Balanced adversarial classifier creates more lan-
guage-agnostic representations: We probe the
source language identity on the models trained with
our balanced adversarial classifier and its combi-
nation with residual drop in Figure 3. Compare
to Figure 2, these two models’ representations are
clearly are language-agnostic. The results show
that language-agnostic representations are corre-
lated to zero-shot cross-lingual summarization qual-
ity for languages seen in finetuning.

4.4 Impact of Two-Step Finetuning

Row (5) of Table 3 shows our two-step finetun-
ing achieves strong zero-shot results for languages
unseen in summarization finetuning. As QK fine-
tuning without the translation step was not capable
of cross-lingual zero-shot generation, we have evi-
dence that the model retained knowledge from the
crosslingual (translation) training. Also, the two-
step finetuning surpasses the pipeline approach on
es-ru and tr-tr, where neither the source nor target
is English, thereby needing translation twice. This
confirms the previous finding on translation error
propagation harming summarization quality.

5 Conclusion

In this work, we proposed two methods: 1) QK
finetuning and 2) balanced adversarial language
classifier to improve intralingual and crosslingual
zero-shot summarization. We presented evidence
that language-independent representations facili-
tate zero-shot summarization, in both intralingual
and crosslingual forms.

We are curious to see the applicability of our
methods to other generation tasks. We are also cu-
rious about additional qualitative comparisons of
language-specific and -independent representations.
In the current study, we only used probing analy-
ses to assess language-specific versus language-
independent representations. One way to supple-
ment these analyses is to directly analyze the model
hidden representations, e.g., compare the similarity
between model hidden representations of different
languages before and after applying the proposed

approaches. This could for instance be achieved by
Singular Vector Canonical Correlation (SVCCA)
(Raghu et al., 2017), which has been used to an-
alyze multilingual representations for translation
(Kudugunta et al., 2019; Liu et al., 2021; Sun et al.,
2023).

Limitations

This works has the following limitations:

Single Underlying Model All out experiments
are based on mBART (Liu et al., 2020), specifically
the variant pretrained on 25 languages. Extending
the current setup to mBART-50 which covers 50
languages can already provide wider language cov-
erage for testing zero-shot inference. Moreover, a
further exploration with other pretrained models
such as mT5 (Xue et al., 2021) or recent decoder-
only large languages models (Scao et al., 2022;
Touvron et al., 2023) could further validate the re-
sults.

Reliance on Translation Data Our two-step fine-
tuning approach requires many-to-many translation
data for the languages of interest. In extremely low-
resource cases, we would need to create synthetic
data by backtranslation (Sennrich et al., 2016),
which requires more computational resources.

Lack of Multiple Experiment Runs Due to
computational constraints, the scores in our exper-
iments are reported from single experiment runs.
As a partial remedy, we use bootstrap resampling
to derive confidence intervals of the reported scores
and report the results in Appendix E.
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A Details on Probing Analysis

The probing experiment aims to analyze the model
hidden representations regarding the information
they contain. Here we are interested in the source
language signals in the encoder outputs. We freeze
a trained model on the WikiLingua dataset (Lad-
hak et al., 2020), and train a token-level classifier
on the encoder outputs to recover the source lan-
guage identity, where higher accuracy indicates
more language-specific representations. Specifi-
cally, we use a linear projection from the hidden di-
mension to the number of output classes, followed
by a softmax activation. For the output classes,
we consider the four languages in the crosslingual
experiments: English, Spanish, Russian, Turkish.
The classifier is trained on the same data as in the
summarization task.
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B Details on Adversarial Loss

With the standard cross-entropy-based adversarial
classifier (Arivazhagan et al., 2019; Mallinson et al.,
2020), the classifier itself is trained to optimize

Lclassification = −
L∑

c=1

yclog(pc), (2)

where L is the number of languages, yc is a bi-
nary indicator based on whether the true language
label is c, and pc is the predicted probability for
language c. To train the model to deceive the clas-
sifier, the adversarial loss is therefore the inverse
of Equation 2:

Ladversarial = −
L∑

c=1

yclog(1− pc). (3)

However, the term will only be activated when yc
is true, i.e., when the true label is c. This means
when the classifier places all its probability mass
on another language that is not c (hence still highly
language-specific), the adversarial loss will not up-
date the model to change its representations. This
leaves the resulting language-specific representa-
tions unresolved.

C Dataset Statistics

C.1 Dataset Splits
For the intralingual experiments, we train on XL-
Sum (Hasan et al., 2021). Table 4 shows the dataset
statistics. For the crosslingual experiments, we

Split # Samples Avg. input leng. Avg. output leng.

English Train 302,627 459.9 22.3
Dev 11,535 440.4 21.2
Test 11,535 437.3 21.2

Spanish Train 35,633 723.5 29.4
Dev 4,763 766.5 27.4
Test 4,763 764.8 27.4

Russian Train 60,044 564.0 26.1
Dev 7,780 466.3 24.2
Test 7,780 465.3 24.2

Gujarati Train 8,790 769.1 24.0
Dev 1,139 542.6 21.2
Test 1,139 529.9 21.7

Table 4: Dataset statistics on XL-Sum. Training is done
on English or {English, Spanish, Russian}.

train on WikiLingua (Ladhak et al., 2020). Table 5
shows the dataset statistics. For both datasets, in
training we exclude samples that have very short in-
puts (no more than 20 words or punctuation marks)
or summaries (no more than 10 words or punctua-
tion marks), as they likely have data quality issues.

Lang. Split # Samples Lang. pair Split # Samples

Intralingual Crosslingual
en-en Train 95,517 es-en Train 76,295

Dev 3,000 Dev 3,000
Test 27,489 Test 21,726

es-es Train 76,295 ru-en Train 35,313
Dev 3,000 Dev 3,000
Test 21,726 Test 9,962

ru-ru Train 35,313 es-ru Train 32,458
Dev 3,000 Dev 3,000
Test 7,780 Test 8,737

tr-tr Train 8,790 tr-en Train 3,052
Dev 1,139 Dev 438
Test 1,139 Test 874

en-tr Train 3,052
Dev 438
Test 874

Table 5: Dataset statistics on WikiLingua. Training is
done on intralinuga data in English or {English, Spanish,
Russian}.

C.2 Details on Translation Data

We use many-to-many data in all four languages
evaluated in the crosslingual experiments: English,
Spanish, Russian, and Turkish. To prepare the
translation data, we parse the WikiLingua dataset
by matching common intputs or outputs of different
language pairs. We iterate over samples in differ-
ent language pairs and match samples that have
the same input text or output summary in the same
language, but the corresponding output summary
or input text is presented in different languages. By
performing such matching, we generate translation
data in the same domain as used for summarization.
A translation model trained with such data is capa-
ble of translating both short and long sequences.

D Training and Inference Details

We implement our approaches in the FAIRSEQ (Ott
et al., 2019) toolkit.

Training We initialized from the pretrained
mBART model8 (Liu et al., 2020). The word em-
beddings are frozen due to initial favourable results
in zero-shot settings. We use the Adam optimizer
(Kingma and Ba, 2015) with betas (0.9, 0.999) and
eps 1e-8. We use weight decay of 0.01, start learn-
ing rate of 2e-5 and end end learning rate of 5e-9.
Dropout is set to 0.1. We use the development set
of the same languages as in training for early stop-
ping. All models are trained on an Nvidia Titan

8We use the 610M mbart.CC25 model from https:
//github.com/facebookresearch/fairseq/blob/main/
examples/mbart/README.md#pre-trained-models.
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ID Model / Language RG-1 RG-2 RG-L FBERT L-Acc.

es-es (en-only train)
(1) Full ft. 6.7/6.8/6.9 1.0/1.0/1.1 5.3/5.4/5.5 65.9/66.0/66.1 0.2
(2) Encoder ft. 24.4/24.8/25.1 6.6/6.9/7.1 18.1/18.4/18.6 70.6/70.8/70.9 85.2
(3) “LNA” ft. 28.1/28.4/28.8 8.0/8.2/8.5 20.6/20.9/21.1 71.8/71.9/72.1 99.5
(4) Query-key ft. 28.3/28.6/29.0 8.6/8.8/9.1 21.1/21.3/21.7 72.1/72.3/72.4 99.9

(5) Pipeline 27.8/28.1/28.5 8.0/8.2/8.5 20.4/20.7/21.0 72.0/72.1/72.3 100.0
(6) Supervised 32.4/32.8/33.3 12.1/12.5/12.9 24.6/25.0/25.4 73.8/74.0/74.2 100.0

ru-ru (en-only train)
(1) Full ft. 1.0/1.0/1.1 0.2/0.2/0.3 0.9/1.0/1.0 64.2/64.3/64.4 2.3
(2) Encoder ft. 28.0/28.3/28.6 10.2/10.4/10.6 22.4/22.7/22.9 73.1/73.2/73.3 100.0
(3) “LNA” ft. 26.9/27.3/27.6 9.4/9.6/9.8 21.3/21.6/21.8 72.5/72.7/72.8 100.0
(4) Query-key ft. 28.8/29.2/29.5 10.9/11.1/11.4 23.1/23.4/23.6 73.4/73.6/73.7 100.0

(5) Pipeline 25.0/25.3/25.6 7.9/8.1/8.3 20.0/20.2/20.5 72.3/72.4/72.5 100.0
(6) Supervised 33.8/34.1/34.5 14.5/14.7/15.0 27.2/27.5/27.8 74.9/75.1/75.2 100.0

gu-gu (en-only train)
(1) Full ft. 1.2/1.3/1.5 0.2/0.3/0.3 1.1/1.2/1.4 59.0/59.1/59.3 13.4
(2) Encoder ft. 15.1/15.8/16.6 4.3/4.8/5.3 13.8/14.5/15.2 71.4/71.7/72.0 100.0
(3) “LNA” ft. 11.2/11.7/12.4 2.8/3.2/3.6 9.9/10.5/11.1 68.3/68.6/68.9 99.8
(4) Query-key ft. 17.5/18.3/19.1 5.2/5.8/6.4 15.9/16.6/17.3 72.9/73.2/73.6 100.0

(5) Pipeline 14.6/15.2/15.7 2.8/3.2/3.5 13.0/13.6/14.1 71.9/72.1/72.4 100.0
(6) Supervised 20.8/21.5/22.4 7.1/7.7/8.4 18.5/19.3/20.1 73.9/74.2/74.5 100.0

gu-gu (multi. train)
(1) Full ft. 16.1/16.9/17.6 4.3/4.9/5.4 14.3/15.1/15.8 71.5/71.8/72.0 99.6
(2) Encoder ft. 16.0/16.8/17.5 4.4/4.9/5.4 14.6/15.3/15.9 71.9/72.2/72.5 100.0
(3) “LNA” ft. 17.1/17.8/18.5 5.1/5.6/6.1 15.3/16.0/16.8 72.3/72.6/72.8 100.0
(4) Query-key ft. 17.4/18.2/19.0 5.6/6.2/6.8 15.7/16.5/17.3 72.8/73.1/73.4 100.0

(5) Pipeline 14.6/15.2/15.7 2.8/3.2/3.5 13.0/13.6/14.1 71.9/72.1/72.4 100.0
(6) Supervised 20.8/21.5/22.4 7.1/7.7/8.4 18.5/19.3/20.1 73.9/74.2/74.5 100.0

Table 6: Full zero-shot intralingual summarization results on XL-Sum calculated using 95% bootstrap confidence
intervals (results are presented as 0.025/0.5/0.975 percentiles).

es-en ru-en es-ru tr-en en-tr

ROUGE-L 2.2 0.7 0.5 2.3 2.5
L-Acc. 0.0 0.0 0.0 0.0 0.0

Table 7: Results of QK finetuning alone (without two-
step finetuning) under the crosslingual zero-shot setup.

RTX GPU with 24GB memory.

Inference When decoding, we use a beam size of
5. The length penalty is 0.6 and 1.0 for intralingual
and crosslingual experiments respectively. For the
translation model in the pipeline approach, we use
the distilled NLLB-200 model (NLLB Team et al.,
2022) with 600M parameters.

E Detailed Experiment Scores

Detailed Intralingual Results The detailed re-
sults for Table 2 with ROUGE-1 and ROUGE-2 are
in Table 6 with RG standing for ROUGE.

Detailed Crosslingual Results The detailed re-
sults for Table 3 are in Table 8.

QK Finetuning in Crosslingual Settings QK
finetuning alone is not sufficient in crosslingual
zero-shot settings. The scores are in Table 7.
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ID Model / Language RG-1 RG-2 RG-L FBERT L-Acc.

es-en
(1) Baseline zero-shot 2.3/2.4/2.4 0.1/0.1/0.1 2.1/2.2/2.2 67.8/67.8/67.9 0.0
(2) Adv. classifier 33.2/33.4/33.6 10.4/10.5/10.6 26.5/26.7/26.8 76.1/76.1/76.2 98.5
(3) Balanced adv. classifier 33.9/34.1/34.3 10.8/11.0/11.1 27.1/27.2/27.4 76.3/76.4/76.4 99.4
(4) (3)+ residual drop 34.6/34.8/34.9 11.2/11.3/11.5 27.5/27.6/27.8 76.5/76.6/76.6 99.7
(5) Two-step + QK ft. 34.2/34.4/34.5 11.3/11.5/11.7 27.5/27.7/27.9 76.4/76.5/76.6 98.4

(6) Pipeline 37.7/37.9/38.1 14.3/14.5/14.6 31.0/31.1/31.3 78.1/78.1/78.2 99.7
(7) Supervised 38.2/38.4/38.6 14.6/14.8/14.9 31.2/31.4/31.6 78.1/78.1/78.2 99.8

ru-en
(1) Baseline zero-shot 0.7/0.7/0.7 0.1/0.1/0.1 0.6/0.7/0.7 63.3/63.3/63.3 0.0
(2) Adv. classifier 31.6/31.9/32.2 9.7/9.9/10.1 25.1/25.3/25.5 75.6/75.7/75.7 99.6
(3) Balanced adv. classifier 31.9/32.2/32.5 10.0/10.2/10.4 25.4/25.6/25.9 75.7/75.8/75.9 99.8
(4) (3)+ residual drop 32.9/33.1/33.4 10.4/10.6/10.8 26.0/26.3/26.5 76.0/76.1/76.2 99.9
(5) Two-step + QK ft. 32.6/32.8/32.9 10.6/10.7/10.8 26.1/26.3/26.4 76.0/76.1/76.3 99.6

(6) Pipeline 34.4/34.6/34.9 12.0/12.2/12.4 28.2/28.5/28.7 77.2/77.3/77.4 99.7
(7) Supervised 35.7/36.0/36.3 12.9/13.2/13.4 29.2/29.4/29.7 77.4/77.5/77.5 99.7

es-ru
(1) Baseline zero-shot 0.5/0.6/0.6 0.1/0.1/0.1 0.5/0.6/0.6 64.6/64.6/64.7 0.0
(2) Adv. classifier 16.6/16.9/17.1 3.9/4.1/4.2 13.8/14.1/14.3 72.4/72.5/72.6 97.6
(3) Balanced adv. classifier 17.1/17.3/17.5 4.1/4.3/4.4 14.1/14.3/14.5 72.7/72.8/72.9 99.9
(4) (3)+ residual drop 17.6/17.8/18.0 4.3/4.5/4.6 14.5/14.8/15.0 73.0/73.1/73.2 100.0
(5) Two-step + QK ft. 17.4/17.6/17.8 4.5/4.6/4.6 14.7/14.8/14.9 73.2/73.4/73.6 98.4

(6) Pipeline 16.4/16.7/16.9 3.5/3.7/3.8 14.2/14.4/14.6 73.7/73.8/73.8 100.0
(7) Supervised 20.8/21.0/21.3 6.0/6.1/6.3 17.7/18.0/18.2 75.1/75.2/75.3 100.0

tr-en
(1) Baseline zero-shot 4.4/5.0/5.6 0.9/1.1/1.4 4.1/4.6/5.1 62.6/62.9/63.1 1.6
(2) Adv. classifier 31.0/32.0/33.0 10.0/10.7/11.4 25.3/26.1/26.9 74.9/75.2/75.5 98.9
(3) Balanced adv. classifier 31.7/32.6/33.6 10.3/11.0/11.7 25.7/26.6/27.4 75.2/75.5/75.8 99.8
(4) (3)+ residual drop 31.2/32.1/33.0 9.7/10.3/11.0 24.9/25.7/26.5 74.9/75.2/75.5 99.1
(5) Two-step + QK ft. 38.3/38.6/38.8 14.4/14.6/14.7 30.5/30.7/30.9 77.1/77.4/77.6 99.7

(6) Pipeline 39.9/40.9/41.8 16.1/17.0/17.8 33.2/34.1/35.0 78.4/78.7/79.0 99.4
(7) Supervised 40.4/41.4/42.5 17.1/18.1/19.1 33.5/34.5/35.5 78.5/78.8/79.1 99.4

en-tr
(1) Baseline zero-shot 2.4/2.7/3.0 0.4/0.5/0.5 2.3/2.5/2.7 60.8/60.9/61.1 0.0
(2) Adv. classifier 2.5/2.8/3.0 0.4/0.5/0.6 2.3/2.5/2.8 60.7/60.9/61.0 0.0
(3) Balanced adv. classifier 2.5/2.8/3.1 0.4/0.5/0.6 2.4/2.6/2.8 60.8/60.9/61.1 0.0
(4) (3)+ residual drop 2.4/2.7/3.0 0.4/0.5/0.6 2.3/2.5/2.7 60.8/61.0/61.1 0.0
(5) Two-step + QK ft. 20.2/20.4/20.6 5.7/5.8/5.8 16.5/16.7/16.9 71.0/71.3/71.5 98.7

(6) Pipeline 20.1/20.9/21.6 5.1/5.5/6.0 18.0/18.7/19.4 72.8/73.1/73.4 99.8
(7) Supervised 22.7/23.7/24.8 7.4/8.0/8.7 19.7/20.7/21.5 72.9/73.2/73.5 100.0

tr-tr
(1) Baseline zero-shot 20.0/20.9/21.7 5.5/6.0/6.5 17.4/18.0/18.8 71.2/71.5/71.8 96.4
(2) Adv. classifier 5.3/5.7/6.2 1.0/1.1/1.3 4.7/5.2/5.6 62.6/62.8/63.0 10.6
(3) Balanced adv. classifier 3.2/3.5/3.8 0.5/0.5/0.7 3.0/3.2/3.5 60.9/61.1/61.3 0.1
(4) (3)+ residual drop 2.2/2.5/2.7 0.3/0.4/0.5 2.1/2.3/2.5 60.6/60.8/60.9 0.0
(5) Two-step + QK ft. 22.9/23.1/23.3 6.9/7.0/7.1 18.2/18.4/18.6 71.7/72.0/72.2 100.0

(6) Pipeline 19.9/20.7/21.5 5.4/5.8/6.3 17.7/18.5/19.2 73.0/73.2/73.5 99.8
(7) Supervised 29.2/30.3/31.3 11.4/12.3/13.0 25.3/26.2/27.2 75.2/75.4/75.7 99.7

Table 8: Full zero-shot crosslingual summarization results on WikiLingua calculated using 95% bootstrap confidence
intervals (results are presented as 0.025/0.5/0.975 percentiles).
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