
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 2: Short Papers), pages 699–710

June 16-21, 2024 ©2024 Association for Computational Linguistics

Arithmetic Reasoning with LLM: Prolog Generation & Permutation

Xiaocheng Yang and Bingsen Chen and Yik-Cheung Tam
Shanghai Frontiers Science Center of Artificial Intelligence and Deep Learning

New York University Shanghai
{xy2128,bc3088,yt2267}@nyu.edu

Abstract
Instructing large language models (LLMs) to
solve elementary school math problems has
shown great success using Chain of Thought
(CoT). However, the CoT approach relies on an
LLM to generate a sequence of arithmetic cal-
culations which can be prone to cascaded cal-
culation errors. We hypothesize that an LLM
should focus on extracting predicates and gen-
erating symbolic formulas from the math prob-
lem description so that the underlying calcula-
tion can be done via an external code interpreter.
We investigate using LLM to generate Prolog
programs to solve mathematical questions. Ex-
perimental results show that our Prolog-based
arithmetic problem-solving outperforms CoT
generation in the GSM8K benchmark across
three distinct LLMs. In addition, given the in-
sensitive ordering of predicates and symbolic
formulas in Prolog, we propose to permute the
ground truth predicates for more robust LLM
training via data augmentation.

1 Introduction

Large language models (LLMs), with their scaling
of model size and data size, have demonstrated im-
pressive performance across various understanding
and generation tasks (Brown et al., 2020; Chowdh-
ery et al., 2022; Rae et al., 2021; Thoppilan et al.,
2022; Touvron et al., 2023; Almazrouei et al., 2023;
Jiang et al., 2023). Nevertheless, such LLMs fall
short in addressing mathematical problems that in-
volves arithmetic, commonsense, and symbolic rea-
soning – topics that may appear deceptively simple
to humans (Rae et al., 2021). Existing works lever-
aged Chain-of-Thought (CoT) reasoning that asks
language models to generate both the answer and
the step-by-step reasoning chain, which helps break
down a complex reasoning task into a sequential
thought process (Wei et al., 2022b). Particularly,
arithmetic reasoning with CoT is shown to be an
emergent ability that language models acquired
during the scaling process (Wei et al., 2022a).

Question

L
ar

ge
 L

an
gu

ag
e

M
od

el
Chain of Thought

Raymond and Samantha are
cousins. Raymond was born 6
years before Samantha.
Raymond had a son at the age of
23. If Samantha is now 31, how
many years ago was Raymond's
son born?

Ground Truth
When Raymond's son was
born Samantha was 23 - 6 =
17 years old. Thus it has been
31 - 17 = 14 years since
Raymond's son was born.
Answer: 14

Samantha is 31 - 6 = 25 years old.
Raymond's son was born 25 - 23 = 2 years ago.

Prolog Generation

:- use_module(library(clpq)).

age_diff(raymond, samantha, 6).

age(raymond, 23).
age(samantha, 31).

solve(Years_ago) :-
 age_diff(raymond, samantha, Age_diff),
 age(raymond, Raymond_age),
 age(samantha, Samantha_age),
 {Raymond_son_age = Raymond_age - Age_diff},
 {Years_ago = Samantha_age - Raymond_son_age}.

Answer:
14

Prolog
Interpreter

Answer: 2

Figure 1: Overview of Prolog generation for arithmetic
reasoning with large language models.

Yet, natural language reasoning is not native to
mathematical operations and symbolic manipula-
tions. A line of work has focused on augmenting
language models with deterministic computation
resources like a calculator (Schick et al., 2023) or
program-based tools (Gao et al., 2023; Gou et al.,
2023). However, all such methods require a se-
quential reasoning trajectory, where models need
to translate the natural language questions into se-
quential mathematical or logical operations. Our re-
search probes into the application of Prolog, a logic
programming language, in solving the arithmetic
reasoning task. Prolog solves arithmetic reasoning
tasks by defining an unordered set of predicates
and running queries over them. We further explain
the unique properties of Prolog in Section 2. In
Prolog code generation for arithmetic reasoning,
LLMs extract facts and rules in mathematical ques-

699

mailto:xy2128@nyu.edu
mailto:bc3088@nyu.edu
mailto:yt2267@nyu.edu

tions and formulate them into Prolog code. If the
facts and rules are accurately captured, a Prolog
interpreter can precisely solve for a correct answer
in a deterministic way.

Our research has the following contributions:
1) We curate and open-source the GSM8K-Prolog
dataset with a semi-automatic approach, which con-
tains arithmetic reasoning problems and their cor-
responding Prolog code solutions. 2) Our experi-
ments show that Prolog code generation is consis-
tently better than CoT on the arithmetic reasoning
task, indicating that LLM can focus on predicate
extractions and rely on an external tool to calculate
and perform the logical induction to address math-
ematical problems. 3) Given the non-sequential na-
ture of predicates in Prolog code, we propose pred-
icate permutation as a data augmentation method
and demonstrate its efficacy in robust LLM train-
ing.

:- use_module(library(clpq)).

earn(weng, 12).
work(weng, 50).

solve(Total_salary) :-
 earn(weng, Salary_per_hour),
 work(weng, Working_minutes),
 {Total_salary = Salary_per_hour * Working_minutes / 60}.

Original Ground Truth

:- use_module(library(clpq)).

solve(Total_salary) :-
 work(weng, Working_minutes),
 {Total_salary = Salary_per_hour * Working_minutes / 60},
 earn(weng, Salary_per_hour).

work(weng, 50).
earn(weng, 12).

Permuted Ground Truth

Facts

Goals

Rule

Figure 2: Prolog and permuted Prolog code samples.

2 Preliminaries: Prolog Language

Prolog is a logic programming language, which
was initially designed for artificial intelligence and
computational linguistics (Clocksin and Mellish,
2003; Bratko, 2012; Covington, 2002). As shown
in the upper graph of Figure 2, a Prolog program
defines a set of predicates that contains facts and
goals. In the example, facts include earn(weng,
12) that declares the hourly salary of Weng, and
work(weng, 50) that defines the working minutes
of Weng; the goals constitute a rule in the form of
solve<answer>:-<goal_1>,<goal_2>, A

rule is true when all the goals are satisfied. Having
all the facts and goals defined in the program, users
can make a query to obtain the solutions that make
the rule true given all the facts. Moreover, Prolog
codes are not sequential like Python, meaning that
the order of facts and rules does not alter the result
of the program. The lower graph in Figure 2, shows
an equivalent sample that permutes the order of the
predicates, which produces the same result as the
original program.

3 Method

3.1 GSM8K-Prolog Dataset

To our knowledge, there has not been a dataset for
solving mathematical questions with Prolog. We
hence curated a dataset based on GSM8K (Cobbe
et al., 2021), a popular benchmark of diverse grade
school math word problems, in a semi-automatic
manner with OpenAI’s Text Completion API 1. In
particular, we used the same dataset splits and ques-
tions in GSM8K and prompted GPT-4 to generate
the Prolog programs to solve the questions. We
then manually corrected some malfunctioning sam-
ples. In this manner, we obtained a high-quality
corpus with 100% accuracy in terms of the code
results. Algorithm 1 describes the detailed pseudo-
code for creating this dataset. We open-sourced
this dataset to the research community with the
MIT license. 2.

3.2 PROPER: Prolog Permutation

Since Prolog predicates are permutable, inspired
by XLNet (Yang et al., 2020) that performs a token-
wise permutation via attention masking, we de-
cided to also use the permutation technique. The
XLNet, via the permutation, can attend to tokens
on both sides during training and thus can partially
obtain the property of autoencoding while main-
taining the property of autoregressive modeling.
Similarly, PROPER takes advantage of the permu-
tative property of facts and goals in the Prolog pro-
grams as indicated in Figure 2. For each original
program, we sample n of its permutations and mix
them into the dataset. In this way, models can learn
to extract predicates in the mathematical questions
based on any other predicates regardless of the or-
dering, which more precisely reflects the nature

1https://platform.openai.com/docs/guides/
text-generation/chat-completions-api

2https://huggingface.co/datasets/
Thomas-X-Yang/gsm8k-prolog

700

https://platform.openai.com/docs/guides/text-generation/chat-completions-api
https://platform.openai.com/docs/guides/text-generation/chat-completions-api
https://huggingface.co/datasets/Thomas-X-Yang/gsm8k-prolog
https://huggingface.co/datasets/Thomas-X-Yang/gsm8k-prolog

Method
Llama-2 CodeLlama Mistral

GSM8K GSM-HARD GSM8K GSM-HARD GSM8K GSM-HARD

CoT 33.8% 12.0% 37.5% 13.9% 58.9% 30.8%

Prolog 41.5% 32.4% 55.0% 41.6% 66.3% 50.6%
PROPER 51.0% 37.4% 59.0% 45.9% 70.2% 54.4%

Table 1: Accuracy results on the GSM8K and GSM-HARD datasets. We compare regular Prolog generation (Prolog)
and PROPER Prolog generation with the CoT baseline (supervised finetuning with LoRA using CoT ground truth
labels in the original GSM8K dataset).

of the Prolog language. We describe the practical
details of permutation in Appendix A.2.

4 Experiments

4.1 Setup
Dataset We used the GSM8K-Prolog described
in Section 3.1. We denote the corpus as D. The
training set is Dtrain and the test set is Dtest. The
total corpus size is 8792, where 7473 samples be-
long to the training set and 1319 belong to the test
set. During training, 100 samples were selected
from the training set to constitute the validation set.
The input format follows the instruction prompt
used in Stanford Alpaca (Taori et al., 2023) (See
sample prompts in Appendix A.3). We discarded
samples that exceeded 512 tokens. Notably, when
we used PROPER to augment the dataset, we used
slightly altered input prompts for permuted samples
because we found that using the same instruction
for both the original ground truth codes and the per-
muted ones degraded the performance of the model.
A likely reason is that having multiple correct out-
put tokens for the same input instruction confuses
the model. In addition, besides the GSM8K’s test
set, GSM-HARD (Gao et al., 2023), which replaces
the numbers in the GSM8K test set with large num-
bers and thus makes questions hard for language
models, was also used for evaluation.

Training We experimented with different LLMs’
7B versions, including Llama2 (Touvron et al.,
2023), CodeLlama (Rozière et al., 2023) and Mis-
tral (Jiang et al., 2023). We adopted 8-bit quan-
tization and LoRA (Hu et al., 2021) to finetune
models efficiently at a reasonable performance
cost. We applied LoRA to finetune query and
value weight matrices in the transformer blocks.
We experimented with different LoRA rank and
alpha settings, including (r, α) = (8, 16), (16, 32),
and (32, 64). With more trainable parameters,
r = 32, α = 64 yielded significantly better results,

which we thereby adopted as the configuration for
all the experiments. Note that this setting resulted
in training only 0.248% of the 7 billion parameters
for Llama2 and CodeLlama, and 0.188% of the
7 billion for Mistral. We document our training
details and GPU usage in Appendix A.5.

Evaluation At inference time, we used beam
search with a beam size of 4 to generate the Prolog
code. We then used the PySwip library 3, a for-
eign interface of Prolog in Python, as the Prolog
interpreter to produce the final answer. We used
accuracy as the metric for evaluation. It is defined
as

Acc =

∑|Dtest|
i=1 1{P(apredi)=P(atruei)

}

|Dtest|
× 100%

where P denotes the Prolog interpreter. Notably,
since we noticed that the PySwip library cannot
handle decimal answers, we only considered the
samples with an integer answer.

4.2 Results
Prolog generation performs consistently better
than CoT across three models. According to
Table 1, generating Prolog to solve mathematical
questions yields significantly more accurate results
with a 10.9% margin over the CoT baseline on aver-
age across all models on GSM8K. This gap further
expands to 22.6% on GSM-HARD, indicating ex-
ceptional superiority over CoT when large number
calculations are involved. Although Llama-2 and
Mistral exhibit large performance gaps when ap-
plying CoT reasoning, generating Prolog code pro-
duces better results than CoT on both models. This
observation indicates that Prolog generation works
well regardless of the model’s inherent arithmetic
reasoning capability. Also, CodeLlama demon-
strates a larger performance gain when switching

3Prolog version 9.0.4. PySwip version 0.2.11. https:
//github.com/yuce/pyswip

701

https://github.com/yuce/pyswip
https://github.com/yuce/pyswip

Ratio Llama-2 CodeLlama Mistral

1:0 41.5 55.0 66.3

1:1 50.9 (49.5) 58.7 (56.6) 70.2 (69.1)

1:2 51.0 (49.4) 59.0 (58.3) 68.8 (66.8)

Table 2: Accuracy(%) results on GSM8K with
different permutation ratios. We report both
the best and average accuracy of 1:1 and 1:2
over three trials with different randomly per-
muted data in the form of max (avg). Note that
the 1:0 case essentially means not applying
PROPER.

Figure 3: Validation loss curves for training Llama2, CodeLlama, and
Mistral with different permutation ratios (We only report the first trial
when we use permuted data since the loss curves are very similar
across trials).

from CoT to Prolog generation, which is potentially
attributed to its pretraining on the code-related cor-
pus. In other words, CodeLlama is specifically
trained to generate structured programs better than
natural language reasoning.

With a proper permutation ratio, PROPER fur-
ther enhances LLM’s arithmetic reasoning with
Prolog generation. Permutation ratio refers to
the ratio between original samples and permuted
samples. As shown in Table 2, by adding two
permuted samples for each original sample, we ob-
served an increased accuracy of 9.5% and 4.0%
of Llama-2 and CodeLlama respectively on the
test set. This improvement indicates that learning
the non-sequential structure of Prolog predicates is
helpful for LLMs to generate correct Prolog pro-
grams to solve arithmetic problems. On the other
hand, the lowered accuracy of Mistral, compared
with its case of one permutation per sample, sug-
gests that PROPER might be limited for models
already with high Prolog generation capacity.

Lowered validation loss from PROPER does not
lead to higher accuracy. As is shown in Figure 3,
increasing the permutation ratio results in signifi-
cantly lowered validation loss. This is because we
first added in permutations and then split a valida-
tion set from the training set. Consequently, the
permutations of validation samples were included
in the training set and the generalization ability
of the language models enabled the models to uti-
lize the permutations to improve the performance
on the validation set, causing a soft data leakage.
Therefore, according to Table 2, the permutation
ratio of 1:2 yielded a weakened performance on
Mistral although the validation loss was the lowest.

Figure 4: Validation loss curves and validation accu-
racy curves for training Llama2 with different methods
(We only report the first trial when we use permuted
data since the loss and accuracy curves are very similar
across trials).

Increased validation loss from PROPER does not
lead to decreased validation accuracy. Exclud-
ing the permutations of validation samples from the
training set, we report both the cross-entropy loss
and the accuracy on the validation set for Llama2
using different methods in Figure 4. A mismatch
between the loss and accuracy is observed. As a
loss curve decreases to the minimum and bounces
back, the corresponding accuracy curve keeps in-
creasing and then maintains a high level. As is
shown in Table 3, by choosing checkpoints based
on validation accuracy instead of validation loss,
the performance can be improved across all meth-
ods. Moreover, the improvement for the Prolog and
PROPER method is significantly greater than that
of CoT, suggesting a larger divergence between
the objective of cross entropy loss and the ultimate
accuracy of Prolog generation. Therefore, it is sug-
gested to choose the best checkpoint based on the

702

Method Initial No Leakage No Leakage
(by loss) (by accuracy)

CoT 33.8 33.8 36.5
Prolog 41.5 41.5 47.9

ProPer 1:1 50.9 (49.5) 44.3 (43.4) 50.1 (48.4)
ProPer 1:2 51.0 (49.4) 44.4 (43.6) 51.3 (50.3)

Table 3: Accuracy(%) results of training Llama2 on the
GSM8K dataset. We compare the results of avoiding
validation sample leakage in the training set and picking
the optimal checkpoint based on validation loss and
accuracy with the initial results with leakage. The best
and average accuracy of 1:1 and 1:2 are in the form of
max (avg).

validation accuracy. Nevertheless, the new perfor-
mance is similar to the initial results where leakage
is involved. We notice that late checkpoints yield
better performance according to the validation ac-
curacy and the validation loss keeps decreasing in
the initial setting. Therefore, both settings hap-
pen to pick late checkpoints, resulting in similar
performance.

We have also tested Python generation, for which
the corpus was generated by the same procedure
as Algorithms 1 except that we prepare Python
codes instead of Prolog codes. It gives an accuracy
of 55.12% on GSM8K using Llama2 as the base
model, better than both Prolog and PROPER. One
possible reason is that Python now is the prevalent
programming language and Llama2 might have
been pretrained on a large amount of Python codes.
We believe if sufficient Prolog codes are used for
training, Prolog generation can at least match up
with Python generation due to its essence of sym-
bolic reasoning.

We present some representative error cases of
Mistral (1:1) in Appendix A.4.

5 Related Work

Arithmetic Reasoning The Chain-of-Thought
(CoT) prompting approach (Wei et al., 2022b) first
proposes to prompt the model to generate the rea-
soning chain step-by-step to reach the final an-
swer. Afterwards, advancements have been made
in LLMs’ reasoning capacity via step-by-step meth-
ods (Zhou et al., 2023; Zhu et al., 2023; Huang
et al., 2022; Liang et al., 2023). However, the nat-
ural language generation still performs poorly on
complex or multi-step reasoning. Therefore, one
trajectory of efforts has been made to leverage rea-
soning structures like trees (Yao et al., 2023; Long,

2023) and graphs (Besta et al., 2023; Zhang et al.,
2023). Another trajectory is to render the reasoning
task based on external tools (Cobbe et al., 2021;
Mishra et al., 2023; Gou et al., 2023; Gao et al.,
2023; Shao et al., 2023; Chen et al., 2023), which is
the one that we are following. Besides, Yuan et al.’s
(2023) RFT method shares the idea of dataset aug-
mentation, but they compile rejection samples from
multiple models to form an augmented training set,
which is different from PROPER’s automatic per-
mutation.

Neural Symbolic Reasoning Neural symbolic
reasoning (Andreas et al., 2016; Neelakantan et al.,
2017; Hudson and Manning, 2019; Gupta et al.,
2020; Nye et al., 2021) aims to leverage both neural
networks and symbolic reasoning to obtain better
reasoning abilities and transparency. Those meth-
ods suffer from low scalability of learning and rea-
soning components. LLMs are hence adopted to
generate symbolic representations from natural lan-
guage (Lyu et al., 2023; Pan et al., 2023; Yang
et al., 2023), where deterministic symbolic solvers
will process the query and symbolic representations
generated by LLMs to conduct reasoning or proofs.
Prolog has been a popular candidate for the format
of symbolic representations. We are posited on
this trajectory and in the specific field of arithmetic
reasoning.

6 Conclusion

In conclusion, we aim to enhance the reasoning
performance of LLMs. We adopt the pipeline that
the model generates Prolog predicates from a math-
ematical question in natural language and an ex-
ternal Prolog interpreter processes the query for
a final result. We contribute an open-sourced cor-
pus named GSM8K-Prolog, which is a high-quality
Prolog-annotated version of GSM8K. We show that
Prolog generation substantially outperformed CoT
generation across all three 7B models for solving
arithmetic reasoning problems. We also propose
PROPER, a data augmentation method designed
specifically for Prolog code generation, which
enables the finetuned models to learn the non-
sequential nature of Prolog predicates. PROPER

further improves the model’s accuracy on GSM8K-
Prolog and mitigates early convergence during
training. Lastly, due to the gap between cross-
entropy loss objective and accuracy, we suggest
using validation accuracy instead of validation loss
to pick the best checkpoint.

703

Limitations

Although we have experimentally conducted full-
parameter finetuning, the result was not satisfying.
We believe it is because of the limited size of the
original corpus. Therefore, at the current stage, we
cannot have a comparison with other methods like
ToRA (Gou et al., 2023) or RFT (Yuan et al., 2023).
Future research can look into preparing a larger and
more diverse corpus adapted to Prolog code genera-
tion. Besides, We did not try scaling the base model
to more than 7B parameters. So we do not know
the impact of model scaling on the performance
of Prolog code generation for arithmetic reasoning.
Furthermore, due to the limitation of the PySwip
library, solvable questions are restricted to the ones
with an integer answer. Future work can expand
the domain by using other interpreting tools.

References
Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-

shamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Merouane Debbah, Etienne Goffinet, Daniel Hes-
low, Julien Launay, Quentin Malartic, Badreddine
Noune, Baptiste Pannier, and Guilherme Penedo.
2023. Falcon-40B: an open large language model
with state-of-the-art performance.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. 2016. Neural module networks. In 2016
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 39–48.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger-
stenberger, Lukas Gianinazzi, Joanna Gajda, Tomasz
Lehmann, Michal Podstawski, Hubert Niewiadom-
ski, Piotr Nyczyk, and Torsten Hoefler. 2023. Graph
of thoughts: Solving elaborate problems with large
language models.

Ivan Bratko. 2012. Prolog programming for Artificial
Intelligence. Addison-Wesley.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2023. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek

Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways.

W. F. Clocksin and C. S. Mellish. 2003. Programming
in Prolog. Springer-Verlag.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems.

Michael A. Covington. 2002. Natural language pro-
cessing for Prolog programmers. Prentice Hall.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen,
Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu
Chen. 2023. Tora: A tool-integrated reasoning agent
for mathematical problem solving.

Nitish Gupta, Kevin Lin, Dan Roth, Sameer Singh, and
Matt Gardner. 2020. Neural module networks for
reasoning over text. In International Conference on
Learning Representations.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu,
Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2022.
Large language models can self-improve.

Drew Hudson and Christopher D Manning. 2019. Learn-
ing by abstraction: The neural state machine. In Ad-
vances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,

704

https://doi.org/10.1109/CVPR.2016.12
http://arxiv.org/abs/2308.09687
http://arxiv.org/abs/2308.09687
http://arxiv.org/abs/2308.09687
http://arxiv.org/abs/2211.12588
http://arxiv.org/abs/2211.12588
http://arxiv.org/abs/2211.12588
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2211.10435
http://arxiv.org/abs/2211.10435
http://arxiv.org/abs/2309.17452
http://arxiv.org/abs/2309.17452
https://openreview.net/forum?id=SygWvAVFPr
https://openreview.net/forum?id=SygWvAVFPr
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2210.11610
https://proceedings.neurips.cc/paper_files/paper/2019/file/c20a7ce2a627ba838cfbff082db35197-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c20a7ce2a627ba838cfbff082db35197-Paper.pdf

Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang,
Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng Tu, and
Shuming Shi. 2023. Encouraging divergent thinking
in large language models through multi-agent debate.

Jieyi Long. 2023. Large language model guided tree-of-
thought.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,
Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. 2023. Faithful chain-of-
thought reasoning.

Swaroop Mishra, Matthew Finlayson, Pan Lu, Leonard
Tang, Sean Welleck, Chitta Baral, Tanmay Rajpuro-
hit, Oyvind Tafjord, Ashish Sabharwal, Peter Clark,
and Ashwin Kalyan. 2023. Lila: A unified bench-
mark for mathematical reasoning.

Arvind Neelakantan, Quoc V. Le, Martin Abadi, An-
drew McCallum, and Dario Amodei. 2017. Learning
a natural language interface with neural programmer.
In International Conference on Learning Representa-
tions.

Maxwell Nye, Michael Henry Tessler, Joshua B. Tenen-
baum, and Brenden M. Lake. 2021. Improving co-
herence and consistency in neural sequence models
with dual-system, neuro-symbolic reasoning.

Liangming Pan, Alon Albalak, Xinyi Wang, and
William Yang Wang. 2023. Logic-lm: Empower-
ing large language models with symbolic solvers for
faithful logical reasoning.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, et al. 2021. Scaling language models:
Methods, analysis & insights from training gopher.
arXiv preprint arXiv:2112.11446.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle,
Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish
Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wen-
han Xiong, Alexandre Défossez, Jade Copet, Faisal
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. 2023. Code
llama: Open foundation models for code.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
arXiv preprint arXiv:2302.04761.

Zhihong Shao, Yeyun Gong, Yelong Shen, Min-
lie Huang, Nan Duan, and Weizhu Chen. 2023.
Synthetic prompting: Generating chain-of-thought
demonstrations for large language models. In Pro-
ceedings of the 40th International Conference on

Machine Learning, volume 202 of Proceedings of
Machine Learning Research, pages 30706–30775.
PMLR.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam
Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng,
Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al.
2022. Lamda: Language models for dialog applica-
tions. arXiv preprint arXiv:2201.08239.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. 2022a. Emer-
gent abilities of large language models.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022b. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Sen Yang, Xin Li, Leyang Cui, Lidong Bing, and
Wai Lam. 2023. Neuro-symbolic integration brings
causal and reliable reasoning proofs.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2020.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models.

705

http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2305.19118
http://arxiv.org/abs/2305.19118
http://arxiv.org/abs/2305.08291
http://arxiv.org/abs/2305.08291
http://arxiv.org/abs/2301.13379
http://arxiv.org/abs/2301.13379
http://arxiv.org/abs/2210.17517
http://arxiv.org/abs/2210.17517
https://openreview.net/forum?id=ry2YOrcge
https://openreview.net/forum?id=ry2YOrcge
http://arxiv.org/abs/2107.02794
http://arxiv.org/abs/2107.02794
http://arxiv.org/abs/2107.02794
http://arxiv.org/abs/2305.12295
http://arxiv.org/abs/2305.12295
http://arxiv.org/abs/2305.12295
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
https://proceedings.mlr.press/v202/shao23a.html
https://proceedings.mlr.press/v202/shao23a.html
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2206.07682
http://arxiv.org/abs/2206.07682
http://arxiv.org/abs/2311.09802
http://arxiv.org/abs/2311.09802
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/2305.10601
http://arxiv.org/abs/2305.10601

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting
Dong, Chuanqi Tan, and Chang Zhou. 2023. Scal-
ing relationship on learning mathematical reason-
ing with large language models. arXiv preprint
arXiv:2308.01825.

Yifan Zhang, Jingqin Yang, Yang Yuan, and Andrew
Chi-Chih Yao. 2023. Cumulative reasoning with
large language models.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, and Ed Chi.
2023. Least-to-most prompting enables complex rea-
soning in large language models.

Xinyu Zhu, Junjie Wang, Lin Zhang, Yuxiang Zhang,
Yongfeng Huang, Ruyi Gan, Jiaxing Zhang, and Yu-
jiu Yang. 2023. Solving math word problems via
cooperative reasoning induced language models. In
Proceedings of the 61st Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long
Papers). Association for Computational Linguistics.

706

http://arxiv.org/abs/2308.04371
http://arxiv.org/abs/2308.04371
http://arxiv.org/abs/2205.10625
http://arxiv.org/abs/2205.10625
https://doi.org/10.18653/v1/2023.acl-long.245
https://doi.org/10.18653/v1/2023.acl-long.245

A Appendix

A.1 Generation Procedure of GSM8K-Prolog
Below is the detailed pseudo-code for the GSM8K-Prolog dataset generation.

Algorithm 1 Procedure of GSM8K-Prolog Generation

Input: The original GSM8K dataset, denoted as set X = {(qi, aCoT
i)}Ni=1, where each sample consists

of one question qi and one Chain-of-Thought answer aCoT
i ; A Prolog interpreter P that returns the

output of a Prolog program; A Chain-of-Thought answer retriever C that parses out the final answer of
a natural language reasoning chain.

Output: GSM8K-Prolog dataset D = {(qi, aProlog
i)}Ni=1

Initialize a set of indices I ← {1, · · · , N}, a static instruction prompt in the new dataset pins, and an
initial question for querying OpenAI API qgen.
Manually craft 10 correct Prolog codes {aProlog

i }10i=1 that correctly solve {qi}10i=1 in X to initialize D
for i ∈ I do

Retrieve a sample (qi, a
CoT
i) ∈ X

Prompt GPT-4 with {qgen} ∪ {(qk, aCoT
k , a

Prolog
k)10k=1} ∪ {qi, aCoT

i } to obtain a
Prolog
i

if P(aProlog
i) = C(aCoT

i) then
D ← D ∪ {(pins, qi, a

Prolog
i)}

I ← I \ {i}
end if

end for
Manually select the top 10 clean and logical Prolog code from the current D to form a new few-shot
sample set Qfixed = {(qk, aCoT

k , a
Prolog
k)k/∈I}, |Qfixed| = 10.

for j = 1, . . . ,M do // M trial attempts
for i ∈ I do

Retrieve a sample (qi, a
CoT
i) ∈ X

Sample Qrandom ← {(qk, aCoT
k , a

Prolog
k)k/∈I}, |Qrandom| = 10 from D

// Adding 10 dynamic samples and 10 fixed samples into the 20-shot prompt.
Prompt GPT-4 with {qgen} ∪Qfixed ∪Qrandom ∪ {qi, aCoT

i } to obtain a
Prolog
i

if P(aProlog
i) = C(aCoT

i) then
D ← D ∪ {(pins, qi, a

Prolog
i)}

I ← I \ {i}
end if

end for
end for
if I ≠ ∅ then

Manually correct Prolog codes {aProlog
i }i∈I that solve {qi}i∈I

D ← D ∪ {(pins, qi, a
Prolog
i)i∈I}

end if

A.2 Permutation procedures
Permutations can be performed both on the level of facts or rules and on the level of goals in a rule. In
practice, for each piece of code, we first permute the goals in the solve<answer>:-<goal_1>,<goal_2>,
... predicate. Since the total number of permutations is sensitive to the number of goals and can easily
grow to a large magnitude, thus running out of memory, we used the permutation method in the itertools
library to yield an iterator over the permutations. Then, we took up to 10 goal permutations from the
iterator. If there were less than 10 goal permutations in total because the code was concise and there were
not many goals, we took as many goal permutations as possible. Then, in the same manner, we took up

707

to 10 fact and rule permutations. In principle, there would be at most 100 permuted samples generated
for one original sample. Then, for each sample, while conducting an experiment that required a certain
number of permutations, we randomly sampled permutations from the set of permutations of size up to
100. For some sample, if the target number of permutations exceeded the total permutations it had, we
took all its permutations instead.

A.3 Instruction Prompt Samples

Below are the instruction prompts we used for different training settings (CoT, Prolog, and Permuted
Prolog).

Setting Prompt Template

CoT Below is an instruction that describes a task, paired with an input that provides further
context. Write a response that appropriately completes the request.
Instruction:
Please generate an explanatory answer to solve the given math problem.
Input:
<Question>
Output:
<CoT Reasoning>

Prolog Generation Below is an instruction that describes a task, paired with an input that provides further
context. Write a response that appropriately completes the request.
Instruction:
Please generate a piece of Prolog code to solve the given math problem.
Input:
<Question>
Output:
<Prolog Code>

Permuted Prolog Generation Below is an instruction that describes a task, paired with an input that provides further
context. Write a response that appropriately completes the request.
Instruction:
Please generate a piece of Prolog code in non-sequential order to solve the given math
problem.
Input:
<Question>
Output:
<Prolog Code>

A.4 Error Analysis

In this section, we present some typical errors made by our best-performing model to understand the
behavior and bottleneck of LLM generation of prolog programs to solve arithmetic reasoning tasks. We
sampled 70 problematic Prolog codes generated by finetuned Mistral using the 1:1 permutation setting,
which had yielded the highest accuracy, that had errors and manually checked the type of errors using the
Swi-Prolog interpreter. 100% of them had semantic errors, meaning their logic of solution was wrong. 7%
of them had syntax errors, meaning the Swi-Prolog yields syntax errors on those codes. Some examples
of typical syntax errors are listed below. The lines causing errors are in bold. The details of the errors are
explained in the comments.

708

Question Prolog Code

Julia’s boat sprang a leak while she was
out on the lake. The boat was taking on
two liters of water for every ten feet she
rowed back towards shore. It took her
sixteen seconds to row twenty feet. The
shore was 64 seconds away. How much
water had the boat taken on by the time
Julia reached shore?

:- use_module(library(clpq)).

liters_per_10_feet(julia, 2).

time_per_20_feet(julia, 16).

distance_to_shore(julia, 64).

solve(Water_taken_on) :-
liters_per_10_feet(julia, Liters_per_10_feet),
time_per_20_feet(julia, Time_per_20_feet),
distance_to_shore(julia, Distance_to_shore),
{Seconds_per_10_feet = Time_per_20_feet / 2},
{Total_seconds = Distance_to_shore / 10 * Seconds_per_10_feet},
{Total_feet_rowed = Total_seconds / Seconds_per_20_feet * 20}, % The variable has never been defined.
{Total_liters_taken_on = Total_feet_rowed * Liters_per_10_feet},
{Water_taken_on = Total_liters_taken_on}.

Bill bakes 300 rolls, 120 chocolate crois-
sants, and 60 baguettes every day. Each
roll is 4 inches long, each croissant is 6
inches long, and each baguette is two feet
long. If Bill puts all the baked goods end
to end, how long will they be in feet?

:- use_module(library(clpq)).

bake(bill, rolls, 300).
bake(bill, chocolate_croissants, 120).
bake(bill, baguettes, 60).

length(roll, 4). # The predicate has already been reserved by Prolog.
length(chocolate_croissant, 6).
length(baguette, 2).

solve(Total_length) :-
bake(bill, rolls, Num_rolls),
bake(bill, chocolate_croissants, Num_chocolate_croissants),
bake(bill, baguettes, Num_baguettes),
length(roll, Roll_length),
length(chocolate_croissant, Chocolate_croissant_length),
length(baguette, Baguette_length),
{Roll_total_length = Num_rolls * Roll_length},
{Chocolate_croissant_total_length = Num_chocolate_croissants * Chocolate_croissant_length},
{Baguette_total_length = Num_baguettes * Baguette_length},
{Total_length = Roll_total_length + Chocolate_croissant_total_length + Baguette_total_length}.
% This code also contains a semantic error because it fails to convert the unit of inch to feet.

In a race with 240 Asians, 80 were
Japanese, and the rest were Chinese. If
the number of boys on the Chinese team
was 60, how many girls were on the Chi-
nese team?

:- use_module(library(clpq)).

total_participants(240).
japanese_participants(80).
chinese_boys(60).

solve(Girls_on_chinese_team) :-
total_participants(Total_participants),
Japanese_participants , % The correct syntax: japanese_participants(Japanese_participants),
{Chinese_participants = Total_participants - Japanese_participants},
chinese_boys(Chinese_boys),
{Girls_on_chinese_team = Chinese_participants - Chinese_boys}.

Brinley is in Mr. Bert’s math class. Mr.
Bert gives six tests each semester. He
allows the students to remove the lowest
score from the average each semester. If
Brinley has scores of 89, 71, 92, 100 and
86 on the first five tests, what score does
she need on the sixth test to get an average
of 93?

:- use_module(library(clpq)).

num_tests(mr_bert, 6).
lowest_score_removal(mr_bert, 1).
target_average(mr_bert, 93).

scores(brinley, [89, 71, 92, 100, 86]).

solve(Test_score) :-
num_tests(mr_bert, Num_tests),
lowest_score_removal(mr_bert, Lowest_score_removal),
target_average(mr_bert, Target_average),
scores(brinley, Scores),
Length is Num_tests - Lowest_score_removal,
{Total_score = sum(Scores)}, % The built-in predicate is misused.
{Average_score = Total_score / Length},
{Test_score = (Target_average * Length) - Total_score}.

A.5 Training Details and Computational Budget
During finetuning, we controlled the number of epochs to be 6, batch size to be 128, and learning rate
to be 3× 10−4. For a single training run, we used 2 NVIDIA RTX 4090 GPUs to finetune Llama2 and
CodeLlama and 2 NVIDIA RTX 8000 GPUs to finetune Mistral. We adopted Distributed Data Parallelism
to speed up training. Training on the original CoT data in GSM8K or the non-permuted Prolog code data
took around 2 hours on 2 NVIDIA RTX 4090 GPUs and around 10 hours on 2 NVIDIA RTX 8000 GPUs.
When we added in permuted samples, the training time grew proportionally with the dataset size since we
controlled the number of epochs and batch size. During inference on the test set, we used a batch size of 2

709

on an RTX 4090 GPU, which took around 6 hours to finish a full inference round, and a batch size of 3 on
one RTX 8000 GPU, which took around 7 hours to finish a full inference round.

710

