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Abstract

Multilingual pretrained language models
(mPLMs) have been widely adopted in cross-
lingual transfer, and code-mixing has demon-
strated effectiveness across various tasks in the
absence of target language data. Our contribu-
tion involves an in-depth investigation into the
counterproductive nature of training mPLMs
on code-mixed data for information retrieval
(IR). Our finding is that while code-mixing
demonstrates a positive effect in aligning rep-
resentations across languages, it hampers the
IR-specific objective of matching representa-
tions between queries and relevant passages.
To balance between positive and negative ef-
fects, we introduce ContrastiveMix, which dis-
entangles contrastive loss between these con-
flicting objectives, thereby enhancing zero-shot
IR performance. Specifically, we leverage both
English and code-mixed data and employ two
contrastive loss functions, by adding an addi-
tional contrastive loss that aligns embeddings
of English data with their code-mixed counter-
parts in the query encoder. Our proposed Con-
trastiveMix exhibits statistically significant out-
performance compared to mDPR, particularly
in scenarios involving lower linguistic similar-
ity, where the conflict between goals is more
pronounced. Our code is publicly available.1

1 Introduction

Multilingual pretrained language models (mPLMs)
have been a key ingredient in cross-lingual trans-
fer. Several studies (Devlin et al., 2019; Lample
and Conneau, 2019; Conneau et al., 2019; Feng
et al., 2022a) have highlighted that the inherent
multilinguality of these models facilitates knowl-
edge transfer from high-resource to low-resource
languages, even in data-scarce scenarios.

In cross-lingual transfer, code-mixing (Qin et al.,
2021; Feng et al., 2022b) has been effective in

1https://github.com/DoJunggeun/
contrastivemix

both sentence-level and token-level zero-shot cross-
lingual tasks. Code-mixing, employed in the ab-
sence of target language data, involves sentences
containing words from multiple languages, aligns
representations across different languages by train-
ing mBERT (Devlin et al., 2019) on code-mixed
data.

However, code-mixing is less effective in the
case of cross-lingual transfer for information re-
trieval (IR), compared to training solely on English
data. In contrast to cross-lingual transfer for classi-
fication tasks, where the primary challenge is rep-
resentation alignment, IR introduces the additional
hurdle of representation matching between relevant
query-passage pairs, where DPR (Karpukhin et al.,
2020) is a de facto standard architecture. Our hy-
pothesis is that code-mixing, while contributing to
the shared goal of representation alignment, may
adversely affect the IR-specific challenge of query-
passage matching, by introducing noise into text
embeddings.

Our contribution aims to strike a balance be-
tween the positive and negative effects of code-
mixing on zero-shot IR performance, introducing
ContrastiveMix as our proposed solution. Our
distinction is disentangling the two objectives of
representation alignment and relevance match-
ing into two contrastive loss functions, involving
both English and code-mixed data, to facilitate rel-
evance matching. Specifically, we incorporate an
additional contrastive loss, aligning embeddings of
English data with their code-mixed counterparts,
solely in the query encoder. With these two loss
functions, our method aligns cross-lingual repre-
sentations while mitigating interference caused by
embedding noise during IR learning. As a result,
ContrastiveMix effectively achieves both language
alignment and relevance matching.

Experimental results demonstrate that Con-
trastiveMix outperforms mDPR, with statistically
significant distinctions observed across eight di-
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verse languages. In contrast, a naive code-mixing
approach consistently falls short when compared
to mDPR. These eight languages can be categori-
cally divided into two groups based on linguistic
similarities, one belonging to the Indo-European
language family, the same as English (or the high
similarity group), and the other constituting a low
similarity group.

As the challenge of representation alignment is
lower in the former group, consistently highlighted
by the effectiveness of mPLMs in such group evi-
denced by Chi et al. (2020); Krishnan et al. (2021);
Xu et al. (2022), mitigating the adverse effects on
alignment becomes more apparent in the low simi-
larity group. Our observations confirm that the im-
pact of ContrastiveMix is notably more pronounced
in the low similarity group, resulting in a widened
performance gap of 1.29 MRR@100 when com-
pared to mDPR.

Our contributions can be summarized as follows:
(1) We demonstrate that training IR models on
code-mixed data is not effective for cross-lingual
transfer. (2) We propose a method to enhance zero-
shot IR performance through code-mixing. (3)
We analyze the effectiveness of code-mixing in
IR through representation alignment.

2 Related Work

2.1 Code-Mixing in NLP

Several studies (Zhang et al., 2019; Yang et al.,
2020, 2021) have explored the use of code-mixed
sentences to enhance representations across mul-
tiple languages, demonstrating success in various
tasks such as machine translation and cross-lingual
parsing. Qin et al. (2021) exhibited the capability
of zero-shot cross-lingual transfer through multi-
lingual code-mixing as data augmentation across
several classification and sequence labeling tasks in
19 languages. Feng et al. (2022b) improved zero-
shot performance in Part-of-Speech tagging and
Named-Entity Recognition across 33 languages by
considering token-level coherence based on the
similarity between code-mixed sentences and En-
glish sentences.

2.2 Code-Mixing in Information Retrieval

Recent works (Huang et al., 2023; Litschko et al.,
2023) utilized code-mixing for cross-lingual in-
formation retrieval in a document reranking man-
ner. Litschko et al. (2023) employed bilingual
and multilingual code-mixing, based on word em-

beddings and parallel Wikipedia titles, to improve
cross-lingual retrieval between two languages and
multilingual retrieval among multiple languages.
However, they did not focus on cross-lingual trans-
fer for monolingual IR.

3 Method

3.1 Preliminaries: Multilingual DPR
Dense Passage Retrieval (DPR) (Karpukhin et al.,
2020) is a widely used architecture using two BERT
encoders to encode queries and passages. DPR is
optimized to maximize the inner products of em-
beddings of a query and its relevant passage during
training. At inference time, DPR retrieves passages
with the most similar embedding to a given query
through maximum inner product search.

The training objective involves comparing all
pairs of queries and passages in a batch. With the
query embedding denoted as q, the corresponding
gold passage embedding as pt, and passage embed-
dings as pi (including pt, i = 1, 2, ..., N), the loss
function is defined as follows.

Lir(q, pi) = − log

(
eq·pt

∑N
i=1 e

q·pi

)
(1)

DPR initialized with multilingual BERT is re-
ferred to as multilingual DPR (mDPR). We use
mDPR as baseline architecture.

3.2 NaiveMix: Naïve Code-Mixing
Naïve code-mixing approach, named NaiveMix,
is to train models on code-mixed data, similar to
previous studies (Qin et al., 2021; Huang et al.,
2023; Litschko et al., 2023).

We conduct code-mixing through the following
steps. First, at each training step, we select entire
queries or passages with a probability of rs in a
batch. Second, we choose words to be replaced
within each selected data with a probability of rw.
Subsequently, we replace the selected words with
equivalent terms in the target language.

3.3 Motivation: Mixed Effect of Code-Mixing
There are two conflicting objectives in achieving
cross-lingual transfer for IR: aligning representa-
tions between source and target languages, and
effectively matching relevant query-passage pairs.
The first goal, language alignment, can be achieved
through NaiveMix, since training mPLMs on code-
mixed data typically contributes to language align-
ment, as indicated by Qin et al. (2021). However,
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NaiveMix hinders the additional goal of relevance
matching due to the embedding differences be-
tween English and code-mixed text.

Further compounding this issue, embedding dif-
ferences become larger for longer text representa-
tions, such as passages in IR. The average cosine
similarities of mBERT embeddings between En-
glish data, in the validation set of Natural Questions
(Kwiatkowski et al., 2019), and their code-mixed
counterparts are 0.944 (SD = 0.036) for queries and
0.867 (SD = 0.257) for passages.

The lower similarity and substantial variation in
code-mixed passages appear to pose a greater hin-
drance to relevance matching. Therefore, we apply
code-mixing only to the query encoder to align lan-
guage representations while avoiding interference
with relevance matching.

3.4 Proposed: ContrastiveMix

To address the dilemma of two conflicting goals, we
propose ContrastiveMix, which is designed to learn
IR in English while transferring this knowledge to
the target language through code-mixing. This ap-
proach involves training models on English data
with an additional contrastive loss Lc, that aligns
English query with its corresponding code-mixed
query. By introducing this objective, we can sep-
arate the roles of English IR data and code-mixed
data into IR learning and representation alignment,
instead of directly training on code-mixed data.

Specifically, we implement this method as an
in-batch contrastive loss. When the batch size is
N , the embedding vectors of the English query and
its code-mixed counterpart are denoted as qs and
qt, respectively, and the embedding vectors of all
code-mixed queries within the batch represented
as qj (including qt, j = 1, 2, ..., N ), the contrastive
loss term is defined as follows:

Lc(qs, qt) = − log

(
eqs·qt

∑N
j=1 e

qs·qj

)
(2)

and the entire training objective is

L = Lir + wLc (3)

where w is a hyperparameter for weighting the
contrastive loss.

4 Experiment

4.1 Setting

Datasets. We train models on Natural Questions
(Kwiatkowski et al., 2019) and evaluate their per-
formance on Mr.TyDi (Zhang et al., 2021; Clark
et al., 2020) and MIRACL (Zhang et al., 2023),
multilingual datasets for monolingual information
retrieval, containing 11 and 18 languages, respec-
tively.

Dictionary for Code-Mixing. We follow Qin et al.
(2021) to use MUSE2 (Lample et al., 2018) bilin-
gual dictionaries to replace English words with
their equivalents in target language. In cases where
multiple target words are available in the MUSE
dictionary, we randomly select one.

Sparse-Dense Hybrid Approach. Dense retrieval
models can yield better performance by adopting
the hybrid approach in most cases, with minimal ad-
ditional computational costs. Therefore, we adopt
the sparse–dense hybrid approach following Zhang
et al. (2021), where the final retrieval score is com-
puted by a linear combination of the BM25 score
and the dense retrieval score. The weighting param-
eter is tuned in the range [0, 1] on the validation
set, with a step size of 0.05.

Evaluation. We evaluate models using MRR@100
and Recall@100, as in Zhang et al. (2021), where
each metric has been scaled within the [0, 100]
range by multiplying by 100. MRR (Mean Re-
ciprocal Ranking) assesses the model’s ability to
generate a high-quality ranking, while Recall pro-
vides an upper limit on overall effectiveness in an
end-to-end scenario. Evaluation is conducted on all
eight languages (Arabic, Thai, Japanese, Korean,
Indonesian, Bengali, Finnish, Russian) common
between Mr.TyDi and MUSE, and on all five lan-
guages (Chinese, Hindi, Persian, Spanish, French)
not in Mr.TyDi and common between MIRACL
and MUSE. Since the test set of MIRACL dataset
is not publicly available, we used the validation set
for evaluation.

4.2 Baselines

We compare ContrastiveMix with two baselines.

mDPR, trained on Natural Questions. We expect
a certain degree of cross-lingual transfer due to
multilinguality of mBERT.

2https://github.com/facebookresearch/
MUSE
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Language Group Low Similarity (target scenario) High Similarity (ablation)

Method Ar Th Ja Ko Id Fi Avg Ru Bn Avg

mDPR 47.49 46.80 35.35 36.38 48.73 37.58 42.06 43.61 54.45 49.03
NaiveMix 44.64* 44.43 32.98* 35.90 48.06 37.71 40.62 41.04* 50.26* 45.65
ContrastiveMix (ours) 48.54* 48.58* 36.8* 38.43* 49.42* 38.35* 43.35 43.79 54.11 48.95

Table 1: MRR@100 on the Mr.TyDi. Results significantly different (p < 0.05, paired t-test) from mDPR are starred.

Group target ablation

Method zh fa es fr hi Avg

mDPR 44.93 48.09 63.12 41.65 56.96 52.46
NaiveMix 44.81 46.87* 62.97 40.69 55.05 51.40
Ours 45.70 48.42 63.76 42.10 56.51 52.70

Table 2: MRR@100 on the MIRACL.

NaiveMix, trained on code-mixed queries and pas-
sages. The hyperparameters for code-mixing are
determined to rs = 0.2 and rw = 0.5 on the valida-
tion set.

4.3 Implementation Details

We trained models based on the mDPR architecture
with separate query and passage encoders3. In all
experiments, following Karpukhin et al. (2020), we
trained models using the in-batch negative setting
with a batch size of 128 and one additional negative
passage per query, for up to 40 epochs with a learn-
ing rate of 10−5 using the Adam optimizer and lin-
ear scheduling with warm-up. We determined the
loss weight parameter w through grid search on the
validation set in the range of [0.001, 1]. We trained
models based on Tevatron (Gao et al., 2023)4 and
evaluated them with Pyserini (Lin et al., 2021)5.

4.4 Result

Table 1 and Table 2 present the results of exper-
iments in terms of MRR@100. In Table 3, we
provide macro-average performances of all method
combinations in our target scenarios.

Effectiveness of ContrastiveMix. Table 1 shows
the performance of ContrastiveMix in eight lan-
guages, which we categorized into high- and low-
similarity groups, in terms of linguistic similarity to
English. In the high similarity group (Bn, Ru), both
belonging to the Indo-European language family,
the objective of representation alignment is largely

3initialized with bert-base-multilingual-cased
4https://github.com/texttron/tevatron
5https://github.com/castorini/pyserini

Method Query Passage MRR@100 Recall@100

mDPR 42.06 84.47

NaiveMix
✓ ✓ 40.62 84.34

✓ 39.28 82.51
✓ 41.89 84.62

ContrastiveMix
✓ ✓ 42.60 84.73

✓ 42.01 84.45
✓ 43.35 84.91

Table 3: Average performances in low-similarity group
languages in Mr.TyDi.

achieved in mDPR, as consistently observed in
prior literature (Chi et al., 2020; Krishnan et al.,
2021; Xu et al., 2022), making the dilemma be-
tween the two objectives less prominent (hence, we
denote as ablation).

Meanwhile, in our target group for cross-lingual
transfer into the low similarity group (Ar, Th, Ko,
Ja, Id, Fi), ContrastiveMix significantly outper-
forms mDPR and NaiveMix in terms of MRR@100
across all languages. Results on the MIRACL
dataset shown in Table 2 also exhibit similar trends
to those explained. Moreover, unlike NaiveMix,
there was no significant performance degradation
in terms of Recall@100 in any case, as shown in
Table 4 in Appendix A.

Analysis of Representation Alignment. Models
trained with code-mixed queries show better per-
formance compared to others, as shown in Table 3.
This is attributed to better representation alignment
between languages, evident in UMAP visualiza-
tion (McInnes et al., 2018).

As shown in Figure 1, the query encoder of Con-
trastiveMix clearly demonstrates a significant over-
lap in representations between English (green dots)
and the target language (red dots). In contrast, as
presented in Figure 2 in Appendix A, encoders of
mDPR reveal distinct language clusters, aligning
with findings from prior studies (Krishnan et al.,
2021; Xu et al., 2022). NaiveMix shows an overlap
in the query encoder, but not in the passage encoder
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Figure 1: Visualization of the representations of differ-
ent languages, in the validation set of Mr. TyDi, from
query encoder of ContrastiveMix model trained with
Korean as the target language.

as in mDPR, as shown in Figure 3 in Appendix A.
These results indicate that code-mixed queries con-
tribute to improving language alignment, but code-
mixed passages do not, which justifies the design
decision of ContrastiveMix: applying contrastive
loss for language alignment only to the query en-
coder.

NaiveMix models show a performance drop de-
spite better language alignment, due to disrupted
relevance matching. Their passage-only version
performs the worst, as code-mixed passages fail in
language alignment. In contrast, even passage-only
ContrastiveMix performs comparably to mDPR,
indicating the contribution of relevance matching.
Query-only ContrastiveMix, our proposed method,
shows the best performance, further benefiting
from improved language alignment.

5 Conclusion

This paper identifies and overcomes a dilemma in
using code-mixing for cross-lingual transfer in IR.
Specifically, we add contrastive loss, designed to
align the embeddings of English sentences with
their code-mixed counterparts, as a key component
of the training objective. Our approach experimen-
tally demonstrated better performance than mDPR,
with statistical significance.

Limitation

Although it is necessary to carefully consider con-
text to ensure appropriate replacements when deal-

ing with polysemy, we randomly selected from
among multiple candidates in the MUSE dictio-
nary during code-mixing. Additionally, we did not
consider token-level coherence in our approach,
unlike Feng et al. (2022b).
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A Appendix

Table 4 presents the experimental results in terms of
Recall@100. Figure 2 and Figure 3 show the visu-
alization of representations of different languages
in the validation set of Mr. TyDi.
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Language Group Low Similarity High Similarity

Method Ar Th Ja Ko Id Fi Avg Ru Bn Avg

mDPR 87.29 87.81 81.40 74.63 90.68 84.99 84.47 81.68 92.79 87.24
NaiveMix 86.47 87.43 78.86* 74.78 91.91* 86.57* 84.34 79.93 90.54* 85.24
ContrastiveMix (ours) 87.45 87.77 82.23* 75.22 90.99 85.80* 84.91 81.32 91.80 86.56

Table 4: Recall@100 on the Mr.TyDi.

Figure 2: Visualization of the representations from query encoder (left) and passage encoder (right) of mDPR model
trained with Korean as the target language.

Figure 3: Visualization of the representations from query encoder (left) and passage encoder (right) of NaiveMix
model trained with Korean as the target language.
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