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Abstract

Large language models (LLM) have recently
shown the extraordinary ability to perform un-
seen tasks based on few-shot examples pro-
vided as text, also known as in-context learning
(ICL). While recent works have attempted to
understand the mechanisms driving ICL, few
have explored training strategies that incen-
tivize these models to generalize to multiple
tasks. Multi-task learning (MTL) for general-
ist models is a promising direction that offers
transfer learning potential, enabling large pa-
rameterized models to be trained from simpler,
related tasks. In this work, we investigate the
combination of MTL with ICL to build models
that efficiently learn tasks while being robust to
out-of-distribution examples. We propose sev-
eral effective curriculum learning strategies that
allow ICL models to achieve higher data effi-
ciency and more stable convergence. Our exper-
iments1 reveal that ICL models can effectively
learn difficult tasks by training on progressively
harder tasks while mixing in prior tasks, de-
noted as mixed curriculum in this work.

1 Introduction

Recently, the emergence of in-context-learning ca-
pabilities in LLMs has revolutionized the field of
NLP (Wei et al., 2022a). By pre-training with next-
word predictions, these models can be prompted
with few-shot examples and make accurate in-
context predictions during inference (Brown et al.,
2020). The ICL capability demonstrated even by
smaller Transformer models presents an alterna-
tive way to understand LLMs (Dong et al., 2023;
Li et al., 2023a; Lu et al., 2023). To empirically
understand this phenomenon, Garg et al. (2022)
focus on learning a single function class in-context
by a Transformer model. Their model achieves
competitive normalized mean-squared error (MSE)

1Our code and models are available at https://github.
com/harmonbhasin/curriculum_learning_icl

compared to the optimal ordinary least squares es-
timator when performing in-context linear regres-
sion. Nevertheless, these models sometimes fail to
converge and often struggle to generalize to more
challenging function classes. While the follow-up
studies (Akyürek et al., 2023; Von Oswald et al.,
2023; Yang et al., 2023) have extensively analyzed
how these models conduct ICL, little work exists
exploring how training on multiple function classes
can enable Transformer models to generalize and
perform ICL more efficiently. As we believe that
these generalist models are designed to perform
multiple tasks, there is a need to study the multi-
task ICL capability of these models, which is miss-
ing in the literature.

From prior multi-task learning studies (Zhang
et al., 2023; Ruder, 2017; Weiss et al., 2016), mod-
els can be trained on multiple related tasks to im-
prove their performance on individual tasks. De-
spite its popularity, MTL has been difficult to un-
derstand in Transformer models when trained on
natural language, most likely due to the difficulty of
ranking and scheduling language tasks (Crawshaw,
2020). However, the newly introduced framework
of learning function classes in context (Garg et al.,
2022) provides an easier way to study this MTL
paradigm. For example, the difficulty of a poly-
nomial function class can be scaled by changing
its degree (e.g., linear to quadratic), or changing
the input distribution (e.g., Gaussian to Gaussian
with decaying eigenvalues). Motivated by this new
paradigm, we conduct a systematic analysis by
training a Transformer on varying function class
families and input distributions in a multi-task man-
ner to examine if the same principles from MTL
carry over into ICL.

During training, we explore different curriculum
learning strategies to schedule the ICL tasks of
multiple function classes: sequential, mixed, and
random (§3.3). For benchmarking, we train another
set of models only on a single function class family
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following Garg et al. (2022). We quantitatively and
qualitatively compare our models trained with and
without curriculum across all tasks and analyze the
normalized MSE and attention matrices (§4). Our
experiments show that curriculum learning is more
data-efficient, achieving comparable performance
to single-task models using only 1/9 of the training
data. These curriculum models can also obtain an
optimal MSE in function classes where none of the
single-task models converge.

2 Related Work

In-context Learning In-context learning has gar-
nered increasing attention in the past few years
(Dong et al., 2023), and many papers have ana-
lyzed ICL with natural language (Min et al., 2022b;
Xie et al., 2022; Min et al., 2022a). It was not until
Garg et al. (2022) that the analysis of ICL through
the paradigm of function class learning emerged.
Garg et al. (2022) showed that Transformers can
learn linear regression close to the optimal ordinary
least squares estimator, and other more complex
function classes with respectable accuracy. How-
ever, they found that some function classes (e.g.
Gaussian with decaying eigenvalues) were hard to
learn by Transformers, as the training loss failed to
converge. Yadlowsky et al. (2023) investigated a
framework similar to Garg et al. (2022), where they
explored training models on a mixture of function
classes; however, they did not delve into curriculum
learning strategies. Many papers also explored how
ICL works, with current literature pointing to it be-
ing a fuzzy gradient descent (Akyürek et al., 2023;
Von Oswald et al., 2023; Yang et al., 2023). Ad-
ditional theoretical work has examined how trans-
formers can implement near-optimal regression al-
gorithms and has analyzed stability conditions for
ICL (Li et al., 2023b).

Curriculum Learning Bengio et al. (2009) first
introduced curriculum learning as a way to train
models similar to the way that humans learned, by
learning tasks in order from easy to hard. This
work inspired a new area of research focused on
utilizing curriculum learning in different contexts
(Xu et al., 2020; Wang et al., 2021; Soviany et al.,
2022). Among this exploration has been more com-
plex curriculum learning strategies in well stud-
ied contexts (Graves et al., 2017; Varshney et al.,
2022). The novel function learning problem formu-
lation in Garg et al. (2022) has encouraged us to
focus on simple curriculum learning strategies that

have been well-studied. Our sequential curriculum
aligns with the definition provided by Bengio et al.
(2009). We have adapted our mixed curriculum
from the standard curriculum, which is referred to
as a “balanced curriculum” in Soviany et al. (2022).
Finally, our random curriculum serves as a base-
line approach, as described in Soviany et al. (2022).
By conducting the first exploratory study on these
simple, widely-used curriculum learning strategies,
we pave the way for more sophisticated strategies.

Attention Analysis Transformers (Vaswani et al.,
2017) have revolutionized our capabilities of per-
forming tasks in a variety of fields. Recognizing
the significance of attention behind Transformers,
we aimed to analyze it in the context of ICL, akin
to previous work (Clark et al., 2019). Olsson et al.
(2022) and Elhage et al. (2021) found that spe-
cific attention heads, specified as “induction heads”,
were responsible for the ICL ability of Transform-
ers, both in large and small Transformers. To mea-
sure this, they created their own metric. Intrigued
by the possibility that certain heads might attend
to specific tasks within a multi-task framework,
we decided to visualize the attention matrix. In-
spired by Vig and Belinkov (2019) that showed a
simple and interpretable way to visualize attention,
we used this approach as a proxy to develop our
own analyses of the attention matrices in this study.
Furthermore, other recent studies have focused on
summarizing attention flow through Transformer
models from input embeddings to later layers with
attention rollout (Abnar and Zuidema, 2020).

Instruction Prompting Instruction prompting
has been widely used in natural language tasks to
improve accuracy and tends to be robust to vari-
ations during test time (Liu et al., 2023). Wei
et al. (2023) showed that models of different ar-
chitectures responded differently to instruction to-
kens, with the format of the instruction affecting
multi-task settings. Yin et al. (2023) showed that
providing key information in tasks in a common
format improved the ability of the model to learn
the task. Recently frameworks have emerged that
prompt LLMs with intermediate reasoning steps
to elicit better reasoning capabilities (Wei et al.,
2022b), known as Chain of Thought (CoT) prompt-
ing. (Besta et al., 2023) and (Yao et al., 2023)
extend CoT prompting to consider multiple reason-
ing paths to improve performance. Future work
may consider using these methods to improve ICL
in the multi-task setting.
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3 Methods

3.1 Problem Definition

Following Garg et al. (2022), we define the prob-
lem of ICL as passing in an i-shot sequence Si =
(x1, f(x1), x2, f(x2), . . . , xn, f(xi), xi+1) to the
Transformer (denoted as Mθ) and generating an
output Mθ(S

i) to predict the ground-truth f(xi+1),
where the examples have not been seen during train-
ing. We refer to this i-shot prediction problem,
where input is given in pairs, as ICL.

We consider a data-generating process where d-
dimensional inputs are drawn from any arbitrary
distribution (i.e., xi ∼ Dx) and a function f is sam-
pled from the class of functions related to single-
index probabilist’s normalized Hermite polynomi-
als (i.e, f ∼ F).

Similar to Garg et al. (2022), the training objec-
tive is to minimize the squared error l(·, ·) between
the prediction Mθ(S

i) and ground-truth f(xi+1):

min
θ

ESi

[
1

k + 1

k∑

i=0

l(Mθ(S
i), f(xi+1))

]
.

Appendix A shows more training details.

3.2 Tasks

We explore two types of tasks: learning a function
class and learning a data distribution (see Appendix
B). We consider a single-index function:

f(x) = φ(⟨x,w⟩).

Function Class Learning We look at the class
of functions derived from normalized probabilist’s
Hermite polynomial with degree n and constants
removed, i.e., 1√

n!
Hen(x), which satisfies orthog-

onality. This is useful as it guarantees that the
function values of all tasks are uncorrelated. For
each task, we separately sample x and w from an
isotropic Gaussian distribution, where w remains
constant for an i-shot sequence. We define K = 3
polynomial function classes as follows: denoting
t = ⟨x,w⟩, we pick φ ∈ {φlinear, φquadratic, φcubic}
for three function classes F1, F2, F3, respectively.

φlinear(t) = t,

φquadratic(t) =
1√
2
(t+

1√
2
(t2 − 1))

φcubic(t) =
1√
3
(t+

1√
2
(t2 − 1) +

1√
6
(t3 − 3t))

3.3 Curriculum Learning
We define the total training steps to be T , where the
t-th training step ranges from t = 1, 2, . . . , T . Our
curriculum learning strategy (sequential, mixed, or
random) is used to allocate our K tasks across
training time. In this paper, we explore K = 3
function classes defined earlier.

Sequential Curriculum We first separate the to-
tal training steps T into K partitions. Within the
k-th partition of training steps, we train the model
on learning a function from the k-th function class,
in order of increasing difficulty:

f ∼





F1 1 ≤ t < T
3

F2
T
3 ≤ t < 2T

3

F3
2T
3 ≤ t < T

Mixed Curriculum We first separate the total
training steps T into K partitions. Let ξ be (uni-
formly) drawn from {1, 2} and ζ be (uniformly)
drawn from {1, 2, 3}. We select tasks from the pre-
vious k partitions with equal probability (1 denotes
the indicator function):

f ∼





F1 1 ≤ t < T
3∑2

s=1 1(ξ = s)Fs
T
3 ≤ t < 2T

3∑3
s=1 1(ζ = s)Fs

2T
3 ≤ t < T

Random Curriculum At each training step t,
we randomly sample from the list of K tasks with
equal probability:

f ∼
3∑

s=1

1(ζ = s)Fs, 1 ≤ t < T

3.4 Attention Analysis
To understand how single and multi-task models
learn, we analyze the Transformer’s self-attention
weights. Specifically, we mask out the attention ma-
trices for each head to keep only the self-attention
scores between each f(xi) token and its corre-
sponding xi token. To summarize the head’s in-
clination to attend to previous tokens, we aggregate
these scores by taking the mean across all f(xi)
tokens. We repeat this for all attention heads in all
layers and plot the aggregated scores in a head-by-
layer heatmap. We define a “retrospective head”
as an attention head that has a lighter value in the
heatmap, indicating that this specific head learns
to attend to the previous input token when con-
structing a representation for the current token, a
natural pattern that encourages understanding of
the input-output pairs, i.e., (xi, f(xi)).
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4 Results

Figure 1: Comparison of the moving average of all
three curriculum learning strategies when evaluated
on a quadratic function class dataset during test time.
The mixed curriculum is the only model that is able
to achieve an accurate normalized MSE. The random
curriculum performs comparatively worse, whereas the
sequential curriculum performs substantially worse (y-
axis is limited in order for mixed and random curricula
to be differentiated).

Curriculum Learning Comparison Figure 1
shows that the mixed curriculum outperforms both
the random and sequential curricula when evaluat-
ing all models on a quadratic function class dataset
according to mean squared errors (MSE) during test
time. We find that the mixed curriculum strategy
provides the most benefit towards learning multiple
tasks. This is further validated in Supplementary
Figure 5, which shows that the mixed curriculum is
most stable over all tasks, achieving an accurate so-
lution after sufficient few-shot examples (20/80/90-
shot examples for Linear/Quadratic/Cubic respec-
tively). We hypothesize that this is due to stable pe-
riods of training, where the model can adapt to the
given function class, whereas the random curricu-
lum does not have such a schedule. Additionally,
mixed curriculum likely outperforms sequential
curriculum because including tasks from previous
training blocks mitigates catastrophic forgetting
(Zhai et al., 2023). Thus, we stick with the mixed
curriculum model in the following experiments.

Qualitative Attention Analysis Figure 2 dis-
plays how masking 7 retrospective heads (as de-
fined in §3.4) causes a significant increase in nor-
malized MSE compared to 7 non-retrospective
heads in the mixed curriculum model. Using our
attention analysis in Supplementary Figure 4, we
identify retrospective heads as those with yellow
values, whereas non-retrospective heads are high-

lighted with dark purple values. This supports the
theory that specific heads may be reasonable for
the ICL capability of these models (Olsson et al.,
2022). Additionally, these retrospective heads stay
the same across different task evaluations. Pairing
this with the normalized MSE analysis in Supple-
mentary Figure 5, we hypothesize that these models
are conducting approximations rather than learning
the true tasks as the model achieves optimal, but
not perfect (normalized MSE = 0) over all tasks.

Curriculum Learning Convergence Figure 3
reveals 60% of mixed curriculum models converge,
whereas 0% of the single-task models trained on
quadratic function classes converge. Specifically,
these models do not achieve optimal (below 1) nor-
malized MSE during training time and at test time.
We believe curriculum learning aids in this task, as
we allow the model to warm up the training with the
objective (calculate f(x) from x) on easier tasks.
In contrast, the poor performance of the single-task
models may be explained by their cryptic attention
patterns (Supplementary Figure 2). These findings
help us understand how curriculum learning can
be used to learn difficult function classes that are
otherwise unlearable by single-task models.

Curriculum Learning Data Efficiency Figure 4
illustrates the performance of a single-task model
and a mixed curriculum model during training
when evaluated on a cubic function class valida-
tion dataset. Our experiments uncover that the
mixed curriculum model can improve data effi-
ciency, learning harder tasks with fewer examples.
The mixed curriculum model is pre-trained on 1/9
of the training examples seen by the single-task cu-
bic model, yet the mixed curriculum model has bet-
ter performance on the validation set. Pulling from
qualitative attention analysis, we hypothesize that
the mixed curriculum model is able to use its ap-
proximate understanding of the linear and quadratic
function classes to improve the initial normalized
MSE of a cubic function class. This explains why
the cubic model starts at 450 normalized MSE,
whereas the mixed model starts at 200 normalized
MSE. When analyzing both models at test time
(Supplementary Figure 3 and 5) the mixed model
has comparable performance to the single-task cu-
bic model. These findings suggest that curriculum
learning can assist data efficiency by making use
of transfer learning from easier tasks.
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Figure 2: Masking retrospective heads (bottom row) causes significant increase in normalized MSE compared to
non-retrospective heads (top row) in the mixed curriculum model.

Mixed models
Single task models

Figure 3: Comparison of the moving average of five dif-
ferent seeded single-task (blue-purple) and mixed cur-
riculum models (orange-red) evaluated on a quadratic
function class dataset during test time. Mixed curricu-
lum models are able to learn quadratic function classes
whereas the single task models are unable to, indicated
by the spikes and upward trend in normalized MSE.

5 Discussion

In this paper, we examine how different curricu-
lum learning strategies affect a Transformer’s ICL
capability. We compare these curriculum models
against their respective single-task models and eval-
uate them across related tasks. This reveals that the
mixed curriculum provides the best results, with
increased data efficiency and model convergence.
Our attention analysis shows that these curriculum
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Figure 4: Comparison of the moving average of a single-
task model and a mixed curriculum model evaluated on
a cubic function class dataset during training time. The
mixed curriculum model is initialized with a checkpoint
trained on linear and quadratic function examples, while
the single-task model is initialized with random weights.

learning models share the same retrospective heads
across related tasks. Masking these retrospective
heads during test time drastically drops the accu-
racy of these models across tasks, indicating that
specific heads are responsible for ICL. This work
provides the preliminary analysis necessary to ex-
plore curriculum learning in these ICL settings in
natural language. We hope that these results pro-
vide an important insight into how we can better
pre-train LLMs to ICL efficiently.
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Limitations

Our work investigates ICL on standard function
classes which can be mathematically defined, how-
ever it may be difficult to extend our work to natural
language tasks as they are hard to define. The ex-
tensibility of our work to natural language tasks
therefore remains an open question. We make use
of three well-known curriculum learning strategies,
however, more effective strategies should be inves-
tigated. We work with a relatively small model,
thus our results may not be transferable to larger
models such as Llama-2 or GPT-4 and we work
with noiseless data which may inflate the accuracy.
Lastly, we acknowledge that ICL can be inconsis-
tent (models only learn approximations for tasks
and have varying performance across seeds) and
should not be used in high-risk situations.
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Appendix

A Experimental Settings

We train on the GPT-2 (Radford et al., 2019) model (22.4 million parameters) provided by HuggingFace
(Wolf et al., 2019) 2 with 12 heads, 8 layers, and an embedding size of 256 over 500,000 steps, where
each batch size is 64. Each batch consists of 100 (xi, f(xi)) pairs (we expect higher order polynomials
to require more in-context examples to converge). During training time each model is evaluated every
2,000 steps on a validation dataset of size 32,000. During test time each model is evaluated on 64
randomly selected examples. We train GPT-2 using a A100-SXM4-80GB provided by the Center for High
Throughput Computing (2006).

B Distribution Learning

In addition to different function classes, we explore training data generated from different distributions,
given that recent literature has shown that these models do not perform well under distributional shifts
(Garg et al., 2022; Yadlowsky et al., 2023). Particularly, we sample inputs xi from (i) Gaussian distribu-
tions, (ii) skewed Gaussian distributions (decaying eigenvalues), and (iii) student-t distributions (df = 4).
Attention analysis (Supplementary Figure 6 and 8) and normalized MSE (Supplementary Figure 7 and 9)
across tasks may be found for both single-task and curriculum models in the Supplementary Materials.

C Instruction Prompting

We explore two sets of instruction prompting architectures: one-hot encoded vectors and preset instruction
vectors. The goal of instruction prompting was to evaluate whether our objective could benefit from
instruction prompting the way language translation or other NLP tasks do.

C.1 One Hot Encoded Instruction Vector (OHEI)
After generating our (xi, f(xi)) pairs, we append a single one hot encoded vector p to the beginning of
the sequence, with the one hot encoding corresponds to the “task”:

p =





p0 = 1 φ = φ1

p1 = 1 φ = φ2

p2 = 1 φ = φ3

We then apply a linear transformation to transform the concatenation into the dimension, 256, of our
Transformer.

C.2 Preset Instruction Vector (PI)
After we use a linear transformation to transform our (xi, f(xi)) pairs to the input dimension, 256, of our
Transformer we append a unique vector, p ∼ N (0, Id), that has been sampled from an isotropic Gaussian
distribution. This “instruction vector” remains constant throughout the training of all models, but remains
different for each of the different tasks.

C.3 Instruction Prompting Remains Unclear
Supplementary Figure 1 shows the comparison of a mixed curriculum with no instruction prompting,
to the two instruction prompting architectures listed above, evaluated over all function class tasks.
Applications of the one hot encoded instruction (OHEI) vector to the mixed curriculum causes minimal
improvement, whereas application of the preset instruction (PI) vector to the mixed curriculum worsens
model performance in the quadratic and cubic function class evaluation during test time. We believe
the former has minimal effect in performance as the one-hot encoded vectors may just be seen as noise,
whereas the latter most likely worsens the ability of the model to learn the task as it may be seen as an

2https://huggingface.co/docs/transformers/model_doc/gpt2
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extreme version of noise (it may disrupt the flow of xi, f(xi), confusing the model). Overall, we believe
that instruction tokens may not be tractable in this setting due to the difficulty of learning a 20-dimensional
instruction.
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Figure 1: Normalized MSE over the number of in-context examples for the mixed curriculum model, mixed
curriculum model with one hot encoded instruction (OHEI) vector and mixed curriculum model with preset
instruction (PI) vector. Solid line represents the moving average (window = 10) whereas the dashed line is the true
value. Scientific notation is used for the y-axis. Both of our attempts at instruction prompting are unsuccessful as
normalized MSE remains the same or worsens across all tasks.
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Figure 2: Attention analysis as described in Section §3.4 for the single-task function class learning models. The
linear model has different attention patterns when evaluated on the linear and cubic test time dataset as it has not
seen cubic examples during training. The quadratic model has no retrospective heads as it does not converge, a fact
that is made clear when analyzing normalized MSE in Supplementary Figure 3. The cubic model seems to have
learned the easier tasks (e.g. linear and quadratic) from learning the harder task (cubic).
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Figure 3: Normalized MSE over the number of in-context examples for the single-task function class learning
models. Solid line represents the moving average (window = 10) whereas the dashed line is the true value. Scientific
notation is used for the y-axis. The linear model is only able to achieve optimal MSE in the linear test time
evaluation. The quadratic model never converges as it does not achieve optimal MSE in the quadratic test time
evaluation, and as a result, does not perform well in the other task evaluation. The cubic model is able to achieve
optimal MSE in the quadratic and cubic test time evaluation, however it struggles to perform well in the linear test
time evaluation.
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Figure 4: Attention analysis as described in Section §3.4 for the curriculum function class learning models. All
curriculum models maintain the same retrospective heads across tasks.
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Figure 5: Normalized MSE over the number of in-context examples for the curriculum function class learning
models. Solid line represents the moving average (window = 10) whereas the dashed line is the true value. Scientific
notation is used for the y-axis. The mixed curriculum model outperforms the other curriculum models on all
tasks. The random curriculum model performs well compared to the mixed curriculum model in linear and cubic
evaluation, however it is unable to learn the quadratic function class. The sequential curriculum model is unable to
learn any of the tasks.
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Figure 6: Attention analysis as described in Section §3.4 for the single-task distribution learning models. All
single-task models keep the same retrospective heads across tasks. We hypothesize that this happens in this task and
not function class learning as the f(xi) for the different distributions will be on a similar scale, which is not true in
function class learning (e.g., linear will result in much smaller output than cubic).
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Figure 7: Normalized MSE over the number of in-context examples for the single-task distribution learning models.
Solid line represents the moving average (window = 10) whereas the dashed line is the true value. Scientific notation
is used for the y-axis. The Gaussian model may only be able to learn the Gaussian distribution as the skewed
Gaussian and Student t distributions have tails that are too large. The skewed Gaussian model is unable to converge
as indicated by the test time evaluation, resulting in poor performance in other tasks. The Student t model is able to
learn all tasks relatively well as it’s tailing is not as heavy as the skewed Gaussian distribution so it’s able to learn
the task.
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Figure 8: Attention analysis as described in Section §3.4 for the curriculum distribution learning models. All
curriculum models maintain the same retrospective heads across tasks.
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Figure 9: Normalized MSE over the number of in-context examples for the curriculum distribution learning models.
Solid line represents the moving average (window = 10) whereas the dashed line is the true value. Scientific notation
is used for the y-axis. All curriculum models seem to achieve optimal normalized MSE for all tasks, indicating that
curriculum models are able to successfully learn several tasks.
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